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A B S T R A C T   

Climate change often leads to the vulnerability of vegetation cover, while the impact of human activities on 
vegetation cover is undoubtedly more complex in this context, especially in Ethiopia. This paper analyzed the 
spatiotemporal dynamics of vegetation growth in Ethiopia from 2003 to 2018 by the enhanced vegetation index 
(EVI) based on different time scales and explored the coefficient of variation and driving factors of the fractional 
vegetation coverage (FVC). The results indicated that the EVI mainly presents a “double peak” pattern, with large 
spatiotemporal differences between quarters and months in Ethiopia. The FVC increased by 0.0005 per year, but 
vegetation showed a browning trend after 2013. The FVC degraded area accounted for 43.9% of the total area, of 
which the significantly degraded area accounted for 7.51% due to human activities, mainly in northern, central, 
and southern Ethiopia. The effects of precipitation and maximum temperature on vegetation differed on time 
scales. Spatially, the vegetation on the northwest side of the Main Ethiopian Rift Valley (MERV) was dominated 
by a combination of maximum temperature and precipitation, while vegetation on the southeast side of MERV 
was mainly influenced by precipitation. However, the spatial overlay analysis with degraded and healthy 
vegetation zones revealed that human activities were the key driver of vegetation cover change rather than 
climate change. This study provides support for further development of vegetation health conservation policies in 
Ethiopia and monitoring of vegetation dynamics in other countries around the world.   

1. Introduction 

Vegetation is a general term for all surface plant communities, 
including forests, grasslands, shrubs, etc., and is a key factor in the 
Earth's terrestrial ecosystem (Arneth, 2015). Vegetation communities 
are the places where many animals and microorganisms depend, among 
which forest and grassland ecosystems are important carbon pools 
(Palmer, 2021). In addition, vegetation has a wide range of socioeco-
nomic benefits, providing a continuous supply of wood and energy for 
human beings, supporting human livestock development, and providing 
an ecological barrier to food security. 

As a major component of land cover, vegetation cover has been one 

of the core elements of global change research. Vegetation cover-related 
studies are mainly combined with remote sensing estimation, vegetation 
structure function, biodiversity, ecosystem services, dynamic evolution 
and drivers, scenario simulation, interaction, and urban expansion- 
socioeconomic-vegetation change correlation analysis (Shen et al., 
2021; Swain et al., 2017; Zhang et al., 2021a; Zhou et al., 2022). The 
development of remote sensing technology provides a wide range of 
data support for monitoring vegetation dynamics. In recent years, many 
researchers have enriched this field of study at different spatial scales, 
including the global scale (Cao et al., 2021; Miralles et al., 2017), con-
tinental scale (Cannone et al., 2021; Guo et al., 2018), national scale, 
and regional scale (Li et al., 2020; Thompson et al., 2021). Among them, 
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numerous studies have shown climate change and human activities are 
generally considered to be the main drivers of vegetation cover change 
(Ebrahimi Khusfi and Zarei, 2020; Naeem et al., 2020). The flexibility to 
identify and quantify the effects of these factors on vegetation cover has 
been the focus of many researchers (Shi et al., 2021; Zhang et al., 2013). 
Piao et al. (2015) used an ecosystem model to identify the most likely 
causes of greening trends in China and concluded that climate change 
had a negative impact on vegetation greening in arid and semi-arid 
regions. 

Unlike the effects of climate change on vegetation cover, the effects 
of human activities on regional vegetation cover are usually multifac-
eted and complex due to their close dependence on vegetation resources. 
Some recent studies have shown that ecological reforestation, grass 
restoration projects, and grazing ban policies usually have positive im-
pacts on vegetation cover, while indiscriminate logging, mountain fires, 
urban expansion, and mineral extraction will squeeze the growth space 
of vegetation cover and eventually lead to the degradation of vegetation 
cover (Feng et al., 2020; Kumar et al., 2017; Remy et al., 2017). Frac-
tional vegetation coverage (FVC) is the ratio of the vertical projected 
area of vegetation to the total ground area (Gitelson et al., 2002; Wu 
et al., 2014), and is an important indicator to reflect the quality of the 
ecological environment (Gitelson et al., 2002; Li et al., 2014; Wu et al., 
2014). Vegetation indices (VIs) are commonly used to estimate FVC, 
such as the normalized difference vegetation index (NDVI), the 
enhanced vegetation index (EVI) (Qiu et al., 2013; Dutta et al., 2015). 
NDVI shows saturation in dense vegetation canopies, including forests, 
while the EVI improves the sensitivity to dense vegetation, reduces the 
influence of atmospheric and soil backgrounds, and has a stronger 
ability to distinguish vegetation (Liu and Huete, 1995; Rouse et al., 
1974). Several studies monitored the dynamic changes in vegetation 
cover and its relationship with topography in the wind-sand source area 
and the Pisha Sandstone area based on the FVC (Wang et al., 2020; Yang 
et al., 2015). This indicates that FVC has the equivalent or better ability 
to quantify vegetation cover change. Natural vegetation cover change is 
a subtle and long process. Describing vegetation cover change dynami-
cally from multiple dimensions is the core of this paper's research. 

The degradation of vegetated ecosystems may further lead to 
desertification, an increase in greenhouse gases, and even a range of 
social problems, such as reduced agricultural production and increased 
poverty (Gebru et al., 2020; Ortiz-Bobea et al., 2021). Identifying the 
degradation status of vegetation under the influence of climate change 
and human activities is a critical task to protect terrestrial vegetation 
ecosystems. 

Ethiopia is a typical developing country and is deeply affected by 
climate change (Shuai et al., 2018). Due to global changes, the country 
has experienced a 20% decrease in precipitation since 1960, with a 
substantial increase in the frequency of droughts (Beyene, 2015). 
Ethiopia's economic development is highly dependent on natural re-
sources (Adem et al., 2020). Unsustainable resource extraction will 
undoubtedly aggravate vegetation degradation and affect vegetation 
ecosystem resilience. To promote the healthy development of vegetation 
ecosystems in Ethiopia, determining the spatial distribution of climate 
change and human activities' impacts on vegetation cover, identifying 
the main drivers, and distinguishing between degraded vegetation zones 
and healthy vegetation zones are the focus of current work. Previous 
studies showed that the main factor affecting the degradation of vege-
tation cover in the Buno Bedelle zone, Oromia Region of Ethiopia, was 
resettlement (Abera et al., 2020). Another study showed that urbani-
zation was the main cause for the change in Addis Ababa's vegetation 
cover (Arsiso et al., 2018). Hence, the anthropogenic stressors on 
vegetation cover differently in different regions. In the context of global 
warming, the impact of human activities on vegetation cover is likely to 
be more profound. Although Ethiopia has achieved remarkable eco-
nomic development since the turn of the 21st century, it has also pro-
foundly altered the surface vegetation landscape. However, the current 
scale of vegetation dynamics studies in Ethiopia is dominated by local 

area-based case studies, and the understanding of vegetation response 
mechanisms to climate change and human activities is still limited, with 
lack of national-scale studies. 

Therefore, the nationwide analysis of the response of vegetation 
cover to climate change and human activities is critical to improve the 
ecological resilience of the country's vegetation and to identify sources 
of disturbance. The objectives of the study were to (1) answer the basic 
characteristics of interannual, quarterly, and monthly EVI succession in 
Ethiopia from 2003 to 2018; (2) construct a 16-year FVC dataset and 
visualized the development status (healthy and degraded) of vegetation 
cover; (3) analyze the interannual and monthly correlation between 
climate factors, human activities, and FVC to reveal the spatial distri-
bution zones of the impact of human activities on FVC; and (4) discuss 
the driving factors of vegetation cover change and provide a new 
perspective on the dynamic monitoring and the conservation of vege-
tation cover. 

2. Materials and methods 

2.1. Study area 

Ethiopia is located in the center of the Horn of Africa and has a total 
area of approximately 1.14 million km2 (Fig. S1 (a)). The topography of 
the country is peculiar, ranging from the Afar Depression (− 197 m 
below sea level) in the east to the World Heritage Mountains (4000 m 
above sea level) in the north, and its highlands are divided into the 
northwest and southeast plateaus by the East African Rift Valley, known 
as the “Roof of Africa” (Asefa et al., 2020). The average precipitation is 
838.84 mm and the average temperature is 30.67 ◦C in Ethiopia. Pre-
cipitation in Ethiopia is affected by the Pacific climate system thousands 
of miles away, especially in the central and central-eastern Pacific near 
the equator (Funk et al., 2016). The overall population density of 
Ethiopia is low, mostly concentrated in the plateau (Amsalu and 
Gebremichael, 2010). Ethiopia is dominated by rain-fed agriculture. 
Many households across the country are predominantly renting land, 
which can result in the indiscriminate use of land and make vegetation 
cover tend to fragment. 

2.2. Data and processing 

Annual and quarterly EVI calculations were completed based on the 
MOD13Q1 product, a global 250 m resolution 16-d synthetic vegetation 
index product. The data version is V006, with a total of 368 images from 
2003 to 2018 and 4 images downloaded for January and February 2019. 
The calculation of monthly EVI was performed based on the MOD13A3 
product, with a total of 192 images. The dataset has a spatial resolution 
of 1 km and is based on a 16-d synthetic product of the same resolution 
by a weighted-average temporal synthetic algorithm. EVI data was ob-
tained by the AppEEARS (https://lpdaacsvc.cr.usgs.gov/appeears/). 
Monthly, annual precipitation and maximum temperatures were derived 
from the TerraClimate raster dataset, with a resolution of approximately 
0.04◦ × 0.04◦ (Abatzoglou et al., 2018) (http://thredds.northwest 
knowledge.net:8080). The DEM was obtained from the 4th version of 
SRTM digital elevation data (Jarvis et al., 2008), and the land use data 
was from GLC_FCS30–2010 (Zhang et al., 2021b). 

Based on the natural breakpoint method and land use data (Fig. S1 
(b)), the FVC was divided into four levels, namely, 0–0.2 for poor 
coverage, 0.2–0.45 for low coverage, 0.45–0.75 for middle coverage, 
and 0.75 to 1 for high coverage. In order to ensure the consistency of 
spatial resolution between EVI and climatic factor data, the resolution 
resampling was carried out on this data. It should be noted that the mean 
annual maximum temperature (MAMaxTemp) and mean annual pre-
cipitation (MAPpt) refer to the arithmetic average of the monthly data 
month by month during the year. The mean monthly maximum tem-
perature (MMMaxTemp) and mean monthly precipitation (MMPpt) are 
the average values for the same months during the study period. 
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2.3. Dimidiate pixel and center of gravity migration models 

The dimidiate pixel model is a practical remote sensing estimation 
model that assumes that the surface of an image element consists of a 
vegetated part and a nonvegetated part. The equation of the dimidiate 
pixel model is (Gao et al., 2020): 

FVC = (EVI − EVIsoil)
/(

EVIveg − EVIsoil
)

(1)  

where EVIsoil is the EVI value of completely bare soil or no vegetation 
cover area (EVImin), and EVIveg represents the EVI value of a completely 
vegetation cover pixel, i.e., the EVI value of pure vegetation pixel 
(EVImax). 

The gravity center migration model was used to quantify the 
migration direction and distance of different FVC. The equation is (Fu 
et al., 2016): 

X =
∑n

i=1
(Ci ×Xi)

/
∑n

i=1
Ci (2)  

Y =
∑n

i=1
(Ci ×Yi)

/
∑n

i=1
Ci (3)  

where X and Y denote the latitude and longitude coordinates of the 
center of gravity of the FVC distribution, respectively; Ci denotes the 
area of the ith vegetation image element, and Xi and Yi denote the 
latitude and longitude coordinates of the center of gravity of the ith 
vegetation image element, respectively. 

2.4. The coefficient of variation and maximum value composite methods 

The coefficient of variation (CV) was a quantification of the degree of 
dispersion of data points around the mean in a data series and was used 
to measure the response to interannual fluctuations in vegetation cover 
(He et al., 2021). The maximum value composite (MVC) method can 
effectively eliminate the effects of atmospheric scattering, cloud cover 

and solar altitude angle on remote sensing image values, and was used in 
data reconstruction (Holben, 1986). In this study, EVI data of different 
time scales was obtained based on MVC method. 

2.5. Sen's slope and Mann-Kendall test 

Sen's slope is the median of the calculated series and is often used to 
determine the magnitude of the rise and fall of the trend change in time 
series data (Sen, 1968). The Mann-Kendall (MK) test has no re-
quirements for the distribution of the series and is not sensitive to out-
liers, and the use of this method can complete the test for the 
significance of the trend of the series (Kendall, 1948; Mann, 1945). Data 
pre-whitening was performed prior to the MK test. 

2.6. Correlation and residual trend analysis methods 

The correlation between FVC and climate factors (maximum tem-
perature, precipitation) in Ethiopia from 2003 to 2018 was analyzed per 
pixel using the Pearson correlation coefficient, and the significance was 
revealed using the f-test. The residual trend (RESTREND) method was 
used to analyze trends in the impact of human activities on FVC (Ge 
et al., 2021). 

3. Results 

3.1. Spatiotemporal variability characteristics for EVI 

3.1.1. Spatiotemporal variation of interannual EVI 
An overall slow growth trend of the EVI was found, with a linear 

growth rate of 0.04%/a (Fig. 1 (a)). The highest value of EVI was 
reached in 2013, while the lowest value occurred in 2009. Meanwhile, 
the interannual values were highly variable and characterized by 
irregular fluctuations of sawtooth shape. This reflects the variability and 
complexity of EVI influencing factors in the study area. The spatial 
conversion of the EVI was relatively stable during the study period but 
with obvious spatial heterogeneity (Fig. 2 (a)), showing a decreasing 

Fig. 1. Annual EVI and CV value of FVC (a), quarterly (spring, summer, autumn, and winter) EVI (b), monthly EVI (c), annual FVC and its change-points (p1, p2, and 
p3 points) (from 2003 to 2018) (d). 
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trend from northwest to southeast. 

3.1.2. Temporal differences in quarterly EVI 
Fig. 1 (b) shows that the winter EVI is the lowest in the same year, 

fluctuating back and forth between 0.199 and 0.256. The interannual 
variation maintained a balanced and cyclical trend of EVI increase and 
decrease in winter, except for 2006, when the EVI peaked. The EVI had a 
slowly increasing trend (plant growth period) from winter to spring. 
Comparing the EVI in summer and autumn, we found that the overall 
trend of the EVI was relatively stable, but the fluctuations showed long- 
term staggered increases or decreases in summer and autumn. Specif-
ically, the EVI ranking was autumn (5.67) > summer (5.5) > spring 
(4.92) > winter (3.29). 

High values of quarterly EVI were generally distributed in the west- 
central, northwestern, and southwestern parts of Ethiopia, while low 
values were mainly distributed in the northeast, followed by the 
southeast (Fig. 2 (b)). The nonvegetated bare land was concentrated in 
the northeast, and its quarterly EVI showed an overall decreasing trend 
from the northwest to the northeast. In the transition from spring to 
summer, the EVI increased substantially in the northeastern Amhara and 
Tigray regions, while it decreased substantially in the southwestern 
Somali region. The average altitude of the Midwest highlands of 
Ethiopia is 2500–3000 m, dominated by rainforest vegetation, resulting 
in an increase in the EVI in this region. During the transition from 
summer to autumn, this increasing trend was reversed, and the area of 
high EVI decreased. The EVI increased in the southeast, mainly in the 
lowlands, indicating that the seasonal variation in phenology varied 
substantially among different plant cover types. In summary, the spatial 
distribution of the EVI in Ethiopia varied substantially with the seasons, 
and different changing trends were found in the uplands and lowlands. 

3.1.3. Temporal differences in monthly EVI 
The EVI reached its lowest value at 0.2 in February (Fig. 1 (c)). After 

February, the EVI increased at a faster rate until May, when it reached a 

small peak (0.34). After June, the EVI increased at a slow rate until 
September, when it reached the peak of the year (0.38). EVI decreased 
rapidly after September. This reflected the overall phenological char-
acteristics of the vegetation in the study area. Overall, the year-round 
variation in the EVI in Ethiopia showed a “double peak” pattern. 

3.2. Dynamic change of FVC 

3.2.1. CV of FVC 
The interannual variation coefficients of FVC were divided into five 

grades: strong fluctuation area, moderate fluctuation area, slight fluc-
tuation area, relatively stable area, and stable area. The results showed 
that the mean CV of the study area ranged from 0.45 to 0.55, with 
substantial interannual fluctuations (Fig. 1 (a)). The CV peaked in 2009, 
indicating that the FVC was strongly disturbed in 2009. Fig. 3 (a) shows 
that the FVC in the northwest and southwest of the study area was in a 
stable state, with an area of 348,700 km2, accounting for 30.38% of the 
total area. The strong fluctuation area was mainly located in the 
northeastern part of the Afar region. The moderate fluctuation area was 
mainly located at the border of the Afar and Tigray states, as well as in 
southwestern Ethiopia. 

3.2.2. FVC grading and spatiotemporal evolution 
According to the statistics of FVC levels (Fig. S2), the study area was 

mainly dominated by middle and high coverage. From 2003 to 2018, the 
middle coverage increased by 4.01%, and the low coverage decreased by 
2.19%. The high coverage remained unchanged at about 32%, which 
indicated that the overall vegetation cover status was relatively stable. 
The center of gravity migrated most obviously in the poor coverage, 
followed by the middle coverage. The high coverage in southwestern 
Ethiopia had the least migration span, with the direction of “south-
west–southeast–west” (Fig. 3 (b)). 

The highest FVC was 0.43 in 2013, and the lowest value was 0.38 in 
2009 (Fig. 1 (d)). The rising trend rate of FVC was 0.05%/a, which was 

Fig. 2. The spatial distribution of annual (2003, 2008, 2013, 2018) EVI (a) and quarterly (spring, summer, autumn, and winter) EVI (b) in Ethiopia.  
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similar to the interannual trend of the EVI. During the period 
2003–2018, the FVC generally went through a process of “greening – 
browning – greening – browning”. The change points also reflected this 
process. As shown in Fig. S2, poor coverage was mainly distributed in 
the Afar State, showing a trend of first browning and then greening. In 
2003, the poor coverage was 123,000 km2, accounting for 11.25% of the 
total area. In 2018, the ratio was 9.06%, with a total decrease of 22,900 
km2. The low coverage was mainly distributed in southeastern Ethiopia, 
showing a trend of first greening and then browning. The middle 
coverage was mainly distributed in the central part of the study area. In 
2018, the middle coverage was 380,000 km2, accounting for 

approximately 36% of the study area. Ethiopian croplands were mainly 
distributed in central and northwestern Ethiopia, which are important 
parts of middle coverage. High coverage was distributed in the western 
parts of the study area, showing “browning – greening – browning” 
trends. 

3.2.3. Trends of vegetation change in Ethiopia during 2003–2018 
The overall variation in the rate of FVC ranged from − 3.8%/a to 4%/ 

a (Fig. 3 (c)). The area of FVC decrease and increase accounted for 43.9% 
and 56.1% of the total area, respectively. Ethiopia was divided into 
several climatic zones (Viste et al., 2013), among which the contribution 

Fig. 3. CV (a), migration trajectory (b), Sen's slope and MK test (c) of FVC in Ethiopia during 2003–2018.  

S. Yang et al.                                                                                                                                                                                                                                    



Ecological Informatics 71 (2022) 101776

6

rates of driving factors were different, resulting in the obvious spatial 
heterogeneity of vegetation cover change. The area of significant change 
in FVC was 110,000 km2, accounting for approximately 18.87% of the 
total area. A total of 7.51% of the area decreased in FVC significantly, 
while 11.36% increased significantly. Although the significant greening 
was larger than the significant browning in the study area, the com-
parison between the magnitude of the changing trend and the change 
area (the number of grids) could infer that there were different degrees 
of vegetation degradation (Table 1). In zones I, III, IV, VII, and XI, the 
significantly decreased area of FVC was larger than the significantly 
increased area. Areas of significant change mainly showed a banded 
distribution, but sporadic distribution also existed. The areas with FVC 
significantly reduced were considered as degraded areas, and the areas 
with FVC significantly increased indicated relatively better vegetation 
growth. Thus, the main zones of degraded and healthy vegetation could 
be identified in Ethiopia, with three degraded vegetation zones 
distributed in the southern, northern, and central parts and two healthy 
vegetation zones distributed in the southeastern and western parts of the 
study area. The northern degraded vegetation zone consists mainly of 
Tigray, Amhara, Afar, and Benshangul oblasts. The central and southern 
degraded vegetation zone includes the main part of the Oromia region 
and the capital (Addis Ababa) and the southwest part of Somali state. 
The western healthy vegetation zone mainly includes the Southern 

Nations and Nationalities People's Region (SNNPR) and Gambela. The 
eastern healthy vegetation zone mainly consists of most of the Somali. 

3.3. Driving factors of vegetation cover 

3.3.1. Spatiotemporal characteristics of temperature and precipitation 
The mean maximum temperature was >35 ◦C in the northeastern 

parts of Ethiopia and the lowlands below 500 m above sea level in the 
southeastern Somali during 2003 to 2018 (Fig. 4 (a)). In the central 
highland zone, the temperature continuously decreased with increasing 
altitude. The mean precipitation was >1550 mm in the western high-
lands of the study area, but in the central highland region, the precipi-
tation was <1350 mm. In the Afar and Somali regions, where the 
elevation was generally lower, the precipitation was mostly <350 mm 
(Fig. 4 (b)), indicating the complexity and unevenness of the spatial 
distribution of precipitation in Ethiopia. We found that the maximum 
temperature increase rate was 0.0083 ◦C/a, and the precipitation in-
crease rate was 6.73 mm/a in Ethiopia. The maximum temperature 
deviated greatly in 2009 and 2015 due to the high-intensity El Niño. In 
particular, the precipitation fluctuated greatly. The precipitation in 
2003 and 2009 was relatively low. In 2013, the precipitation reached its 
maximum and then showed a decreasing trend. 

3.3.2. Interrelationship between FVC and climate factors 
The time lag analysis showed that there was no time lag between EVI 

and temperature, while there was one month time lag between EVI and 
precipitation (Table 2). The correlation analysis took into account the 
time lag of vegetation coverage on climate variables. 

The distribution of the correlation between FVC and the MAMax-
Temp was substantially spatially heterogeneous (Fig. 5 (a)). The areas 
with the higher correlation were mainly located in the central highlands 
of Ethiopia and the border areas of Afar, Oromiya, and Somali. In central 
Ethiopia at high altitudes (>2000 m), temperature has played an 
important positive role in the growth and maintenance of local dense 
vegetation. We found that the MAMaxTemp in these regions was mainly 
positively correlated with FVC. In the border area of the Afar, Oromiya, 
and Somali regions, there was a negative correlation between MAMax-
Temp and FVC. The results showed that the areas of negative and pos-
itive correlations between MAMaxTemp and FVC accounted for 60.14% 
and 39.86% of the total area, respectively. The area that passed the p <

Fig. 3. (continued). 

Table 1 
Comparison of changes in FVC in Ethiopia during 2003–2018.   

Zone I Zone II Zone III Zone IV Zone V Zone VI  

The number of grids (FVC change range) 
Decrease 9 (0, 

0.0169) 
414 (0, 
0.0312) 

977 (0, 
0.028) 

101 (0, 
0.0179) 

3 (0, 
0.0089) 

24 (0, 
0.0164) 

Increase 1 (0, 
0.0064) 

475 (0, 
0.0298) 

769 (0, 
0.02087) 

99 (0, 
0.0119) 

5 (0, 
0.005) 

348 (0, 
0.0201)  

Zone 
VII 

Zone VII Zone IX Zone X Zone XI –   

The number of grids (FVC change range) 
Decrease 2 (0, 

0.0102) 
683 (0, 
0.0201) 

460 (0, 
0.0223) 

226 (0, 
0.0297) 

396 (0, 
0.0171) 

– 

Increase 1 (0, 
0.006) 

590 (0, 
0.0274) 

2023 (0, 
0.0325) 

778 (0, 
0.0268) 

206 (0, 
0.012) 

– 

Note: 95% confidence level. 
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0.05 significance test was approximately 76,000 km2, accounting for 
6.6% of the total area. The positive correlation between FVC and MAPpt 
reflected that the areas with the higher correlation values were mainly 
located in the central-east, southeast, and southwest (the southwest of 
the SNNPR) of Ethiopia (Fig. 5 (b)). The lower precipitation may 

contribute to the dependence of vegetation growth on precipitation, 
thus showing a regional clustering of positive correlations. Excessive 
precipitation may lead to the oversaturation of vegetation growth, thus 
showing a scenario wherein negative correlations were distributed. 
When vegetation is oversaturated with precipitation demand, it may 
lead to lower radiation and temperature flood disasters, thus limiting the 
growth of vegetation (Nemani et al., 2003). The area of positive corre-
lation between FVC and MAPpt was 63.01% of the total area, and the 
area of negative correlation accounted for 36.99%. The area that passed 
the significance test was 7.87% of the total area, which was mostly 
positively correlated. The correlation area between FVC and MAPpt 
passing the significance test was greater than that with temperature, 
indicating that the effect of precipitation on vegetation cover in the 
study area was greater than that of temperature. 

The regions with the higher correlation between FVC and MMMax-
Temp were distributed in central-eastern, southwestern (dominated by 

Fig. 4. The spatiotemporal distribution of mean maximum temperature (a) and mean precipitation (b) in Ethiopia from 2003 to 2018.  

Table 2 
Correlation coefficients between the EVI and climate variables.  

Templag0 Templag1 Templag2 Templag3 Templag4 Templag5 

¡0.72** − 0.51** − 0.18** − 0.15* 0.48** 0.68** 
Pptlag0 Pptlag1 Pptlag2 Pptlag3 Pptlag4 Pptlag5 

0.70** 0.88** 0.76** 0.44** 0.02 − 0.38** 

Note: Templagi and Pptlagi denote the maximum temperature and precipitation 
with a lag time of i months, respectively; **, highly significant correlation (p <
0.01); *, significant correlation (p < 0.05). 
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the SNNPR), and northwestern Ethiopia (Fig. 5 (c)). Positive and nega-
tive correlations dominated in different regions with large spatial dif-
ferences. Negative correlations predominated in the northwest, while 
positive correlations were in the southeast. The correlation area that 
passed the significance test of p < 0.05 was 480,000 km2 and was mainly 
distributed in the northwest and north-central areas, of which 39.67% 
was negatively correlated and 2.24% was positively correlated. This 
indicated that the correlation between FVC and MMMaxTemp was 
dominated by a significant negative correlation. From Fig. 6 (d), FVC 
was positively correlated with MMPpt in most areas, while it was 
negatively correlated in parts of the SNNPR and Afar state. The area that 
passed the p < 0.05 significance test was 58.4% of the total area, in 
which the positive correlation was predominant. Comparing the regions 
that passed the significance test, it was found that FVC in the northwest 
of the Main Ethiopian Rift Valley (MERV) was mainly affected by 
maximum temperature and precipitation, while the southeastern side of 
MERV was mainly affected by precipitation. 

3.3.3. Impact of human activities on FVC 
Fig. 6 (a) shows that the negative values of FVC residuals accounted 

for 45.87% of the total area and were mainly distributed in northern and 

eastern Afar, southern and southwestern Oromiya, and southwestern 
Somali. The positive values of FVC residuals accounted for 54.13% of the 
total area. However, most of the residual trends in the study area did not 
pass the 0.05 significance test. The area that passed the 0.05 significance 
test was 129,000 km2, showing a “scattered overall and concentrated 
locally” pattern (Fig. 6 (b)). The eastern and northern parts of Ethiopia 
were locally concentrated areas, and the central part was locally 
dispersed. In the southeastern and western regions of Ethiopia, the 
impact of human activities on vegetation cover was continuing to in-
crease. In the south and north, the negative impact of human activities 
on vegetation cover might continue to increase. The areas that passed 
the significance test reflected that the impact of human activities on 
vegetation cover was more frequent in the region. By classifying these 
areas as zones A–E and by spatial overlay comparing them with 
degraded vegetation zones and healthy vegetation zones (Fig. 3 (c)), it 
can be concluded that zones A–E were mainly driven by human activities 
(Fig. 6 (c)). In particular, the increase in FVC in zones A and C may be 
related to the increased positive impact driven by human activities, 
while the decrease of FVC in zones B, D, E may be related to the 
weakening of the positive impact driven by human activities. 

Fig. 5. Correlation distribution between FVC and MAMaxTemp (p < 0.05) (a); correlation distribution between FVC and MAPpt (p < 0.05) (b); Correlation dis-
tribution between FVC and MMMaxTemp (p < 0.05) (c); correlation distribution between FVC and MMPpt (p < 0.05) (d). Notes: the colorless part of the layer is the 
area that fails to pass the significance test of p < 0.05. MERV is the Main Ethiopian Rift Valley (Omenda, 2007). 
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4. Discussion 

4.1. Spatial heterogeneity of driving factors 

The correlation between FVC and precipitation was found to be 
potentially influenced by specific vegetation types, microtopographic 
landforms, and other features (Ghebrezgabher et al., 2020). Our study 
showed that not only was the correlation between precipitation and 
temperature distribution and vegetation cover spatially heterogeneous 

but also that the influence of human activities on vegetation cover 
varied from place to place. This indicated that the dominance of climate 
change and human activities affecting vegetation cover might vary in 
different regions (Huang et al., 2020). And further, differences in 
vegetation habitats due to topography in different latitudinal zones have 
created uniqueness in the spatial and temporal distribution of vegetation 
changes and the interaction of influencing factors. For example, the 
dominant climatic (precipitation and temperature) influences on vege-
tation differ between the southeastern and northwestern regions of 

Fig. 6. Slope (a) and significance test (b) of residuals during 2003–2018 (p < 0.05), and the different change combinations of residuals and FVC in Ethiopia's 
degraded and healthy vegetation zones (c). 
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MERV, which may be related to local slopes, slope orientation, and solar 
irradiance (Muluneh et al., 2017). The northeastern part of the study 
area is sparsely vegetated, dominated by poor vegetation cover, and has 
a low population distribution (Hurni et al., 2019). However, the varia-
tion coefficient of FVC in this regions was the largest (Fig. 3 (a)), and its 
center of gravity had the longest migration trajectory (Fig. 3 (b)). This 
indicated that the lower the vegetation cover, the more fragile the 
ecosystem is and the more vulnerable it is to external disturbances. 

4.2. How do human activities and climate change deepen the impact on 
vegetation cover? 

Studying the effects of climate change and human activities on 
vegetation cover helps us to improve our understanding of ecosystem 
vulnerability (Zhao et al., 2018). The FVC in southern and northern 
Ethiopia showed a significant downward trend, which was regarded as 
vegetation degradation areas (Fig. 3 (c)). These areas were dominated 
by high and middle coverage, and the negative impact of human ac-
tivities on vegetation cover may continuously increase, which should be 
a key zone for ecological regulation and protection in the future. 
Insufficient arable land per capita has led to a high dependence on 
logging and livestock for economic development and farmers' liveli-
hoods (Fao, 2017; Nzabarinda et al., 2021). Livestock farming accounts 
for 40% of agricultural GDP in Ethiopia (Aleme and Lemma, 2015). 
Urban expansion, domestic migration, and rapid population growth are 
important factors of vegetation cover change caused by human activities 
(Hermans-Neumann et al., 2017). Urban expansion encroached on 
natural vegetation areas (De La Barrera and Henríquez, 2017) and 
accelerated land-use turnover. Population pressure inevitably leads to 
increased overgrazing and indiscriminate logging (Busch and Ferretti- 
Gallon, 2020). For example, in the northwestern part of Ethiopia, the 
FVC showed large degradation mainly due to resettlement and agricul-
tural land expansion (Alemu et al., 2015). In the northern highlands of 
Ethiopia, the change in forest cover was mainly caused by the increase in 
population and charcoal demand (Belayneh et al., 2020). The ways in 
which human activities affect vegetation cover also include agricultural 
practices and invasive alien species. In the Afar State, FVC changes were 
mainly related to climate change and human activities, in addition to 
topographic heterogeneity. The uncontrolled growth of exotic species as 
one of the manifestations of human activities has led to ecosystem 
vulnerability and sensitivity (Mehari, 2015; Shiferaw et al., 2019). 

Climate change mainly affects vegetation growth through extreme 
temperature and precipitation (Liu et al., 2021; Xiong et al., 2021). 
extreme temperatures and the lack of precipitation are not conducive to 
the metabolism of vegetation, leading to the death of vegetation or 
changes in its growth conditions to adapt to the climatic environment (Li 
et al., 2018). The interrelationship between vegetation conditions and 
precipitation in the natural ecosystem of Ethiopia is largely similar to 
that of western China, i.e., vegetation conditions were positively 
correlated with precipitation in most arid areas, while they were nega-
tively correlated with precipitation in humid areas (Wang et al., 2015). 
Further, we found the precipitation in summer and autumn was similar, 
both of which were >300 mm. It may be related to the Ethiopian climate 
being controlled by the intertropical convergence zone (ITCZ) (Asefa 
et al., 2020). The time-series changes in the VIs provided in this paper 
corresponded to severe climatic anomalies that occur locally or over 
large parts of the country (Gebrehiwot et al., 2011), mainly manifested 
by the El Niño and Southern Oscillation (ENSO) (Bayable et al., 2021). 
ENSO usually leads to drought and uneven or reduced precipitation 
(Mahmoud and Gan, 2020; Yan et al., 2021), and aggravate the 
destruction of vegetation (Lanckriet et al., 2015). Until now, the study 
area presented a continuous warming trend and extremely complex 
climate changes (Shuai et al., 2018). The frequent occurrence of ENSO is 
very likely to cause the mass death of vegetation and humans (Berenguer 
et al., 2021; Fearnside, 2013). For example, affected by ENSO in 2015, 
large-scale insufficient precipitation occurred in northern and central 

Ethiopia, causing millions of people to fall into trouble (Philip et al., 
2018). Extreme temperatures and precipitation deficits lead to land 
degradation and the destruction of vegetation growing conditions, 
which can increase the burden on farmers' livelihoods and in turn may 
force them to increase deforestation and farmland reclamation for sur-
vival. It was evident that the vegetation ecosystem in Ethiopia was 
deeply affected by climate change and human activities (Tolessa et al., 
2020). However, in this paper, the significant correlation area of annual- 
scale precipitation and maximum temperature on FVC was <10% of the 
total area, indicating that the influence of climatic factors on FVC was 
limited. The RESTREND results showed that human activities were the 
most critical factor contributing to vegetation cover degradation. 

4.3. Uncertainty analysis 

Based on the characteristics of vegetation cover changes at different 
time scales, this paper analyzed the overall change trends of vegetation 
cover across the country and their potential relationship with influ-
encing factors. Similar to other national-scale remote sensing studies, 
the accuracy of the data limits the precision of the results. In this paper, 
the resolution of climate data is lower than that of EVI, and the time 
series data are obtained from the mean values of all rasters, which may 
affect the accuracy of the final analysis results. In addition, the classi-
fication of FVC (high, middle, low, and poor) was mainly verified with 
the help of the Google Earth Pro platform and land use data, rather than 
field measurement data, which may cause uncertainty problems. The 
potential drivers of vegetation cover are broad and complex. The time 
lags of different vegetation cover types (agricultural land, grassland, 
forest, etc.) to climate factors may differ, as well as their resilience after 
exposure to climate change and human disturbance. Future work should 
consider the interaction of more factor variables and multiple vegetation 
cover types. Despite the aforementioned uncertainty in this study, the 
results are still of great positive significance for understanding the basic 
characteristics of vegetation growth, the influencing factors of spatio-
temporal trends of vegetation cover in Ethiopia, and deepening the 
global public awareness of vegetation cover drivers, which can provide 
scientific support for ecological restoration and vegetation management. 

5. Conclusions 

In this paper, we revealed the dynamic change characteristics of 
vegetation cover in Ethiopia at different time scales by EVI and FVC. 
Meanwhile, correlation and RESTREND analysis methods were per-
formed to provide insight into the effects of climate factors and human 
activities on vegetation change. The main findings are as follows.  

(1) The FVC of Ethiopia showed an overall increasing trend. In terms 
of spatial distribution, the quarterly and monthly variations were 
greater than the interannual variations. The EVI gradually 
decreased from northwest to southeast, with obvious spatial 
heterogeneity. The EVI fluctuated irregularly in a sawtooth 
pattern in the time series. The monthly variation in the EVI was 
mainly characterized by the “double peaks” pattern.  

(2) The vegetation cover in Ethiopia is at risk of local degradation. 
Spatially, the area of significant browning in FVC was 7.51%, 
which was lower than the area of significant greening. However, 
in Addis Ababa, Afar, Amhara, Benishangul-Gumuz, Harari, 
SNNPR, and Tigray, the trend of significant browning was 
stronger than significant greening. In Addis Ababa, Amhara, 
Benishangul-Gumuz, Oromiya, and Tigray, the significant 
browning was greater than the significant greening.  

(3) The effects of climate factors and human activities on FVC had 
obvious spatial heterogeneity. Among them, human activities 
were a key factor in the browning of vegetation. In southern, 
northern, and central Ethiopia, the negative impact of human 
activities on FVC likely continued to increase, and the positive 
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impact of local governments on vegetation cover through man-
agement policies was weakened. It is crucial to enhance the 
protection efficiency of vegetation cover in these areas. 
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