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Abstract Air pollution and lake eutrophication have 
led to a reduction in incident total radiation and water 
transparency in many lakes, resulting in a decrease in 
available underwater light. This reduction in available 
light depends significantly on the dynamics of spring 
phytoplankton communities. However, the process 
and mechanisms behind these effects are not yet well 
understood. In this study, we conducted a field mes-
ocosm experiment to observe the responses of the 
phytoplankton community to varying levels of light 
intensity (100%, 85%, and 65% photosynthetically 
active radiation, PAR). Our study revealed that reduc-
ing PAR resulted in an earlier peak of cyanobacterial 

biomass in spring, while the biomass of chlorophytes 
and bacillariophytes declined with decreasing light 
intensity. The weakening of light intensity promoted 
the recovery of photosynthetic activity in cyano-
bacteria but reduced the photosynthetic activity in 
chlorophytes and bacillariophytes. Additionally, the 
decrease in light intensity reduced the diversity of 
phytoplankton communities, accelerating the rate of 
species turnover. However, the rate of species turno-
ver slowed down as the dominance of cyanobacteria 
was established in the later stages of the experiment. 
Therefore, the weakening of light intensity is ben-
eficial to the early establishment of the dominance of 
cyanobacteria in the phytoplankton community struc-
ture, accelerating the succession process of phyto-
plankton community. These findings contribute to the 
exploration of the effects of reduced light intensity 
on the establishment of cyanobacterial dominance in 
spring, providing valuable insights for the manage-
ment of lake ecosystems.
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Introduction

Climate change and human activities have resulted 
in two-thirds of the globally recorded long-term spe-
cies exhibiting earlier spring phenology. This has 
caused alterations in the distribution range, seasonal 
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dynamics, and composition of species in freshwater 
ecosystems (IPCC 2022). Phytoplankton is highly 
sensitive to changes in the environment. While tem-
perature is considered the primary factor driving phy-
toplankton succession in spring, light plays a more 
important role in regulating the phytoplankton bio-
mass or spring blooms (Sommer and Lewandowska 
2010). Temperature is a well-established factor that 
influences the growth and distribution of phytoplank-
ton during spring. However, the effects of light and 
temperature on phytoplankton growth and distribu-
tion are often intertwined, making it challenging 
to separate their respective impacts in field studies. 
Consequently, the role of light in the succession of 
spring phytoplankton communities is not yet fully 
understood.

Light is a crucial factor that directly affects the 
growth and productivity of phytoplankton by influ-
encing photosynthesis. The efficiency of photosyn-
thesis is largely determined by the intensity of light, 
which can further affect the biomass and biological 
activity of phytoplankton (Gao et al. 2019). However, 
in the last 60 years, there has been a global trend of 
radiation dimming, which has caused a decline of 
4% to 6% in surface total radiation due to air pollu-
tion and increased aerosols from human activities 
(Wild et  al. 2009; Yang et  al. 2018). Additionally, 
the increase in phytoplankton biomass resulting from 
eutrophication, particularly in bacillariophytes or 
filamentous cyanobacteria during spring, can further 
reduce water clarity and enhance light attenuation 
(Zhang et  al. 2018). As a result, the availability of 
underwater light has been greatly reduced in aquatic 
ecosystems due to the long-term decrease in incident 
total radiation and water clarity (Zhang et al. 2020).

Light is the primary energy source for the growth 
of phytoplankton. The intensity and photoperiod 
of light affect the amounts of photosynthetic prod-
ucts, thereby influencing the growth of phytoplank-
ton (Happer 1992; Anderson et  al. 1997). Differ-
ent algae have different requirements for light, and 
appropriate light intensity can improve the light 
use efficiency of phytoplankton and promote their 
growth (Guo 2010). Differences in light conditions 
can also lead to vertical migration and changes in 
community structure (Zeng et al. 2014). When light 
intensity weakens, the synthesis of chlorophyll 
and photosynthetic pigments in Chlorophyta and 
Bacillariophyta is affected, reducing their light use 

efficiency. This leads to a slowdown in organic syn-
thesis in cells, thereby affecting their growth and 
reproduction (Huisman et al. 1999). However, most 
of cyanobacteria can move vertically in the water by 
adjusting their own buoyancy and choosing a suit-
able water layer for living (Šesták et  al. 2001). In 
addition, cyanobacteria have a lower chlorophyll 
content but larger light absorption cross-sectional 
area, adjustable photosynthetic pigment composi-
tion, special chloroplast morphology and arrange-
ment, and the ability to adapt to different light envi-
ronments. As a result, changes in light intensity may 
sometimes have less effect on cyanobacteria than 
other phytoplankton (Brauer et  al. 2012; Gaskill 
et  al. 2020). Therefore, reducing the underwater 
available light may lead to cyanobacteria dominat-
ing in eutrophic lakes, resulting in ecological imbal-
ances (Zhang et al. 2022).

Light intensity not only directly affects algal 
growth but also plays a crucial role in biomass, com-
munity diversity, and species succession (Reynolds 
2006; Edwards et al. 2013). Manipulating light condi-
tions is a commonly used technique to study the rela-
tionship between light and phytoplankton community 
dynamics. Shading treatment is a popular method in 
this regard. Kojima et al. developed the "partial shad-
ing method" and discovered that when the shading 
area exceeded 30%, the growth of cyanobacteria was 
inhibited. Further, when the shading area exceeded 
60%, the biomass of phytoplankton decreased signifi-
cantly (Kojima 2000). Hence, reducing the available 
light resources can significantly affect the biomass of 
phytoplankton (Chen et al. 2009). Environmental fac-
tors such as light intensity have a crucial role to play 
in determining the biodiversity of phytoplankton, 
including the number and abundance of different spe-
cies, as well as their interactions. Some indoor stud-
ies found that the biomass of phytoplankton reached 
its lowest point, and the community diversity was at 
its maximum at a specific light intensity (Yan et  al. 
2018). Phytoplankton community evolved toward 
algae species that were tolerant to environmental 
stress along a decreasing light gradient (Gong et  al. 
2020). Hence, light intensity can directly impact the 
survival, reproduction, and interaction of species and 
is an important factor in altering community structure 
and species composition.

In this study, we put forward the hypothesis that a 
decrease in underwater light will result in a variation 
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of phytoplankton composition, leading to a higher 
dominance of cyanobacteria and a subsequent decline 
in phytoplankton diversity. This, in turn, will accel-
erate the succession process of phytoplankton com-
munity. To test this hypothesis, we conducted a field 
mesocosm experiment under different light intensi-
ties to explore the impact of reduced underwater light 
(100%, 85%, and 65% photosynthetically active radia-
tion levels) on the establishment of cyanobacterial 
dominance and the dynamic changes in the structure 
of the spring phytoplankton community.

Methods

Mesocosm experiment

The mesocosm experiment with light manipula-
tion was conducted at the Taihu Laboratory for Lake 
Ecosystem Research (CERN TLLER) and started on 
April 1, 2013, and ended on May 17, 2013, during 
recovering and growing period of phytoplankton. In 
this experiment, 150  L of water samples was taken 
from Lake Taihu. To remove large zooplankton, the 
water samples were filtered through a nylon sieve 
with 64-μm mesh size before the water samples were 
placed in plastic tanks (70 cm in height and 58 cm in 
inner diameter). And these tanks were suspended in a 
concrete pond (7 m long × 6 m wide × 2 m deep) serv-
ing as a water bath to reduce daily temperature fluc-
tuation. The treatment groups of three photosyntheti-
cally active radiation (PAR) gradients were formed 
by shielding the tanks with white gauze, establishing 
100% PAR (no white gauze shielding), 85% PAR (one 
layer of white gauze shielding), 65% PAR (two lay-
ers of white gauze shielding). Three replicates were 
established for each treatment group, and the under-
water light intensity was measured using a LI-1400 
quantum meter at 8:00, 13:00, and 17:00 every day to 
determine the average light intensity that reached the 
water surface.

During the treatment, all mesocosms were left 
open to allow rainwater to enter. As evaporation rates 
varied between the mesocosms, deionized water was 
added every 2–3 days to maintain the same water 
level in all tanks. Nutrient concentrations were moni-
tored in each tank every other day, and the levels of 
nitrogen and phosphorus were recorded. Prompt 
adjustments were made to the nutrient levels by 

adding  KH2PO4,  NH4Cl, and  NaNO3 as necessary, in 
order to maintain their relative stability and consist-
ency with the initial status and to minimize the inter-
ference of external factors on experimental results. To 
prevent microorganisms from adhering to the inside 
walls of the tanks, gentle brushing was performed at 
6:30 p.m. every day, except for the tank bottoms.

Sample collection and analyses

Water temperature and pH were measured in each 
tank using a multiparameter water quality analyzer 
(HORIBA multi-parameter water quality analyzer 
U-53). One liter of mixing water was collected from 
each tank for laboratory analyses. The water samples 
were filtered using a Whatman GF/C glass-fiber filter 
membrane with an aperture size of 1.2 μm for the dis-
solved nutrients before these analyses. The concentra-
tions of total nitrogen (TN, unfiltered), dissolved total 
nitrogen (DTN), total phosphorus (TP, unfiltered), 
and dissolved total phosphorus (DTP) were deter-
mined after thawing with the use of a combined per-
sulfate digestion, followed by the spectrophotometric 
analysis. The detection limits for phosphorus (TP and 
DTP) and nitrogen (TN and DTN) are 0.01 mg/L and 
0.05 mg/L, respectively. Nitrate  (NO3−) and nitrite 
 (NO2−) were measured using a continuous flow ana-
lyzer with a detection limit of 0.07 mg/L (Skalar SA 
1000, Breda, The Netherlands).

Phytoplankton samples of 500 mL were collected 
approximately every 6 days and fixed with 5 mL of 
acid Lugol’s solution. Species or genus identification 
was performed using the most recent literature (Hu 
and Wei 2006). Counts were conducted in random 
fields (more than 30 fields) in sedimentation cham-
bers (30 mL) using an inverted microscope according 
to the criteria established by Utermöhl (1958). Bio-
volume was calculated using the method developed 
by Hillebrand et  al. (1999), while biomass was esti-
mated based on the algal volume in each sample and 
converted to fresh weight assuming a specific gravity 
of 1 g/cm.3

The maximum optical quantum yield (Fv/Fm) 
reflects the efficiency of excitation and capture in 
the reaction center of photosystem II (PSII) and is 
used to evaluate the distribution ratio of energy in 
the center of optical system responses, as estab-
lished by Genty et  al. (1989) and Falkowski and 
Kolber (1993). Although it has been shown in 
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studies that this ratio does not have a completely 
linear relationship with the capacity for photosyn-
thesis (Andersen et  al. 1997), it is still commonly 
used to characterize the maximum photosynthetic 
capacity of PSII (Falkowski and Kolber 1995). 
The effective quantum yield (Fv′/Fm′) is the effec-
tive photochemical quantum yield of PSII, which 
reflects the efficiency of primary light energy cap-
ture by open PSII reaction centers. The two indi-
ces were measured using a Phyto-PAM fluorometer 
(Walz, Effeltrich, Germany) equipped with a Phyto-
ED emitter–detector unit following the protocol 
described in a previous study (Guan et  al. 2020). 
The measurements were taken in the same environ-
ment as the samples grew, after a 15-min dark adap-
tation. F0 is the fluorescence yield of all the reaction 
centers in PSII when they are fully open, and can be 
immediately measured using weak probe light after 
a period of dark adaptation. Fm is the maximum 
fluorescence signal emitted by all the closed reac-
tion centers of PSII in the dark-adapted state. Fm′ 
is the maximum fluorescence yield of PSII in the 
light-adapted state, when the reaction centers are 
open and dynamic equilibrium is maintained. The 
measurements were measured by a 600-ms pulse of 
saturating irradiance. Ft was the current instantane-
ous fluorescence signal in the light-adapted steady 
state. The fluorescence parameters were calculated 
using the following equations. The blank fluores-
cence value was obtained by measuring the fluores-
cence of a 0.22-μm filtered sample.

In addition, Phyto-PAM fluorometry is capable 
of distinguishing different pigmented phytoplankton 
groups, such as cyanobacteria, chlorophytes, and dia-
toms/dinoflagellates, by utilizing four distinct excita-
tion wavelengths (665, 645, 520, and 470 nm). This 
approach enables the independent measurement of 
the fluorescence signals of each phytoplankton group 
in a mixed sample.

Calculating species diversity

To evaluate different aspects of species diver-
sity, we used species richness and Pielou’s even-
ness index to assess the number of species and the 

Fv∕Fm =
(

Fm − F0
)

∕Fm
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biomass differences among different species. We 
also used Simpson’s index (Simpson 1949) and 
Shannon–Wiener index (Shannon and Weaver 1949) 
to assess the diversity and complexity of commu-
nity species. Additionally, we used the dominance 
index to evaluate the dominant species of the com-
munity, where a species with a relative abundance 
of Y ≥ 0.02 is considered dominant (Sun et al. 2006; 
Xu and Shen 1995).

Species richness:

Pielou’s evenness index:

Simpson’s index:

Shannon–Wiener index:

Dominance index:

where S is the total number in the community and N 
is the sum of the number of individuals of all species 
in the community, Pi is the proportion of the num-
ber of individuals of species i to the total number of 
individuals in the community, fi is the percentage of 
the quadrat number of species i in the total quadrat 
number.

Calculating community turnover rate

The concept of turnover refers to the idea that when 
species are in a dynamic equilibrium state, the total 
number of species will remain relatively stable over 
time, but the species composition will change (Mac-
Arthur and Wilson 1963; Diamond 1969; Collins 
et al. 2008). We calculated turnover using the turno-
ver function in the Codyn package with R (Hallett 
et  al. 2016), which includes three metrics: total 

(1)R =
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turnover, appearances, and disappearances. The for-
mula for calculating the total species turnover rate 
is as follows:

“appearances” refer to the number of new or immi-
grated species in an ecosystem during a certain time 
period. “disappearances” refer to the number of spe-
cies that disappeared or emigrated from the ecosys-
tem during the same time period. “Total species 
observed in both timepoints” is the total number of 
species present in the ecosystem at two time points.

Mean rank shifts (MRS) represent the relative 
change in species rank abundance and indicate the 
change in relative abundance over time (Collins et al. 
2008). We calculated MRS using the rank_shift func-
tion as:

where N is the number of species in common in both 
time points, t is the time point, and Ri,t is the relative 
rank of species i at time t. The analyses were per-
formed in the R environment (version 4.2.1, R Core 
Team, 2020).

Data analysis

The mean values and ranges of environmental 
parameters and nutrients in the collected water sam-
ples were calculated and are presented in Table  1. 
Differences in these variables among groups were 
compared using Tukey’s HSD post hoc test, with 
statistical significance considered at p < 0.05. Prior 

(6)Total turnover =
appearances + disappearances

Total species observed in both timepoints

(7)MRS =
N∑
i=1

�Ri,t+1−Ri,t�
N

to analysis, the data were  log10x or  log10(x + 1) 
(if a value of zero occurred) transformed to meet 
assumptions of normality or homogeneity of vari-
ance. No significant differences were found in the 
environmental parameters and nutrient concentra-
tions among the three experimental groups (n = 12, 
p > 0.05). The statistical analysis was performed 
using SPSS 26.0 (SPSS, Chicago, Illinois, USA) for 
Windows. The time changes in the metrics indicat-
ing biomass, photochemical efficiency, diversity, 
and changes in community were also tested with 
Tukey’s HSD post hoc test by comparing the sig-
nificance of adjacent data. We employed a general-
ized linear mixed model (GLMM) to account for the 
respective and combined effects of light treatment 
and time on total and taxonomic group biomass, 
diversity indices, and community turnover rate. The 
sampling time was considered as the repeated-meas-
ures variable in the models. The fixed effects in our 
analysis were the light treatments (100%, 85%, and 
65% PAR levels), while the group numbers of these 
treatments were entered as random variables. We 
conducted this analysis using the Statsmodels pack-
age in Python 3.9.

Results

Responses of phytoplankton biomass to declining 
PAR

The biomass of phytoplankton in the three groups 
gradually increased over time with an average bio-
mass of 74.62 mg/L and was significantly affected by 
the declining underwater light (p < 0.001, Table  2). 
The phytoplankton biomass in the 65% PAR group 

Table 1  Environmental 
parameters summarized 
as the mean values 
(minimum–maximum 
value) in the mesocosms 
from April 2013 to May 
2013

TN total nitrogen, NO3
− 

nitrate nitrogen, NO2
− 

nitrite nitrogen, TP total 
phosphorus, DTP dissolved 
total phosphorus

100% PAR 85% PAR 65% PAR

PAR (μmol  m−2  s−1) 629.9 (62.0–1066.0) 535.4 (52.7–906.1) 409.4 (40.3–692.9)
Temperature (°C) 19.0 (12.3–26.0) 19.0 (12.3–26.0) 19.0 (12.3–26.0)
pH 8.70 (8.16–9.52) 8.61 (8.06–9.39) 8.70 (8.16–9.55)
TN (mg/l) 4.56 (3.09–7.22) 4.52 (3.02–7.20) 4.51 (3.02–7.14)
DTN (mg/l) 3.51 (2.74–5.17) 3.47 (2.59–5.16) 3.45 (2.53–5.18)
NO3

− (mg/l) 1.23 (0.74–1.70) 1.23 (0.77–1.70) 1.21 (0.74–1.70)
NO2

− (mg/l) 0.10 (0.03–0.24) 0.10 (0.03–0.26) 0.10 (0.03–0.25)
DTP (mg/l) 0.03 (0.01–0.07) 0.03 (0.01–0.07) 0.03 (0.01–0.07)
TP (mg/l) 0.11 (0.03–0.28) 0.11 (0.03–0.25) 0.11 (0.03–0.25)
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reached an earlier and higher peak compared to the 
other groups. Specifically, the maximum biomass of 
phytoplankton in the 65% PAR group occurred on the 
35th day, reaching 278 mg/L. On the other hand, in 
the 85% and 100% PAR groups, the maximum bio-
mass was 165 mg/L and 267 mg/L, respectively, and 
occurred on the 41st day (Fig. 1).

At the outset of the experiment, the dominant spe-
cies of phytoplankton were bacillariophytes, dino-
flagellates, and some species of Euglena. However, in 
the middle of the experiment, cyanobacteria showed 
a recovery in growth and gradually replaced bacil-
lariophytes and other algae to become the dominant 
species. During the later stage of the experiment, the 
biomass of Chlorophyta in the 100% PAR group was 
significantly higher than that in the other two groups 
(p < 0.05). On the other hand, the phytoplankton com-
munity in the 65% and 85% PAR groups was domi-
nated by cyanobacteria.

The results showed that there were 21 dominant 
species totally in the study system, including 7 spe-
cies of cyanobacteria, 12 species of Chlorophyta, 
and 2 species of Bacillariophyta. In the 100% PAR 
group, there were 7 dominant species of cyanobac-
teria, 12 dominant species of Chlorophyta, and 2 
dominant species of Bacillariophyta. Microcystis 
in Cyanophyta has the highest dominance value of 
3.206. In the 85% PAR group, there were 5 domi-
nant species of cyanobacteria, 10 dominant spe-
cies of Chlorophyta, and no dominant species of 
Bacillariophyta. Pseudanabaena in Cyanophyta 
has the highest dominance value of 2.707. In the 
65% PAR group, there were 5 dominant species 
of cyanobacteria, 4 dominant species of Chloro-
phyta, and no dominant species of Bacillariophyta. 
Pseudanabaena still has the highest dominance 
value of 4.615. Furthermore, the types and numbers 
of dominant species of Chlorophyta and Bacillari-
ophyta were found to decrease with decreasing light 
intensity (Table  3). The dominant cyanobacteria 
observed were Microcystis, Pseudanabaena, Doli-
chospermum, and Aphanizomenon, which exhib-
ited higher dominance values. In the 100% PAR 
group, the biomass of Microcystis remained con-
sistently the highest. However, in the 85% and 65% 
PAR groups, the biomass of Aphanizomenon and 
Pseudanabaena was higher than that of Microcys-
tis, showing a trend of initially increasing and then 
decreasing (Fig. 2).

Photosynthetic responses to declining PAR

At the start of the experiment, the Fv/Fm values of 
cyanobacteria were low in all three groups. However, 
they increased rapidly from the 29th day in the 65% 
and 85% PAR groups. In contrast, Fv/Fm values in 
the 100% PAR group remained low throughout the 
entire experiment. The Fv/Fm values of Chlorophyta 
increased earlier than those of cyanobacteria. The 
Fv/Fm values of Chlorophyta in the 100% PAR group 
consistently increased and reached a maximum value 
of 0.56 on the 47th day. In contrast, the Fv/Fm val-
ues of Chlorophyta in the 65% and 85% PAR groups 
decreased since the 29th day. The Fv/Fm values of 
Bacillariophyta did not differ significantly among the 
three groups (p > 0.05). Moreover, the effective pho-
tosynthetic activity of Bacillariophyta was lower than 
their maximum photosynthetic activity and followed 
a similar pattern in all three groups (Fig. 3).

Responses of phytoplankton community dynamic to 
declining PAR

The decreasing light did not have a significant impact 
on the phytoplankton richness, except during the ini-
tial stage of the experiment. However, it did result in 
a decrease in Pielou’s evenness index, Simpson index, 
and Shannon–Wiener index after the 30th day of the 
experiment (p < 0.05, Fig. 4; Table 2). Moreover, the 
declining underwater light led to a decrease in the 
turnover rate of the phytoplankton community, par-
ticularly in terms of the total turnover (p = 0.038) and 
disappearance metrics (p = 0.046, Fig.  5, Table  2). 
There was no significant effect observed on the met-
rics of appearance and MRS (p > 0.05).

Discussion

Responses of phytoplankton biomass and 
photosynthesis to declining PAR

Our findings suggest that the reduction of PAR results 
in an earlier peak in cyanobacterial biomass during 
the spring. This is particularly crucial as it can affect 
the timing and magnitude of the summer cyanobac-
terial bloom. The timing of the spring cyanobacterial 
biomass peak is influenced by a multitude of factors, 



Aquat Ecol 

1 3
Vol.: (0123456789)

Table 2  Results of generalized linear mixed model (GLMM) for phytoplankton total and taxonomic group biomass, diversity indices and 
community turnover rate, using PAR treatment as between-subject factor and day in the experiment (time) as within-subject factor

Significant values of factors (P < 0.05) are in bold type
a R2 = 0.710 (adjusted R2 = 0.567)
b R2 = 0.717 (adjusted R2 = 0.581)
c R2 = 0.601 (adjusted R2 = 0.405)
d R2 = 0.899 (adjusted R2 = 0.850)
e R2 = 0.844 (adjusted R2 = 0.768)
f R2 = 0.867 (adjusted R2 = 0.801)
g R2 = 0.855 (adjusted R2 = 0.784)
h R2 = 0.580 (adjusted R2 = 0.374)

Effect Type III sum of squares df Mean square F P

Total biomass Corrected model 430,467.408a 26 16,556.439 4.98  < 0.001
Intercept 386,987.45 1 386,987.45 116.398  < 0.001
Time 2890.063 2 1445.032 0.414 0.663
PAR 380,712.024 8 47,589.003 14.313  < 0.001
Time × PAR 47,029.534 16 2939.346 0.884 0.590

Cyano-bacterial biomass Corrected model 122,875.657b 26 4725.987 5.269  < 0.001
Intercept 59,068.617 1 59,068.617 65.851  < 0.001
Time 89,821.564 8 11,227.696 12.517  < 0.001
PAR 3254.516 2 1627.258 1.814 0.173
Time × PAR 29,799.577 16 1862.474 2.076 0.024

Richness Corrected model 1267.354c 26 48.744 3.071  < 0.001
Intercept 31,968.194 1 31,968.194 2013.844  < 0.001
Time 20.887 2 10.443 0.737 0.483
PAR 932.122 8 116.515 7.454  < 0.001
Time × PAR 297.308 16 18.582 1.171 0.321

Evenness Corrected model 3.023d 26 0.116 18.187  < 0.001
Intercept 30.296 1 30.296 4738.64  < 0.001
Time 0.164 2 0.082 12.744  < 0.001
PAR 2.341 8 0.293 46.298  < 0.001
Time × PAR 0.492 16 0.031 4.812  < 0.001

Simpson Corrected model 2.937e 26 0.113 11.033  < 0.001
Intercept 39.906 1 39.906 3897.593  < 0.001
Time 1.883 8 0.238 23.24  < 0.001
PAR 0.224 2 0.112 10.959  < 0.001
Time × PAR 0.809 16 0.051 4.939  < 0.001

Shannon Corrected model 25.167f 26 0.968 13.261  < 0.001
Intercept 261.503 1 261.503 3582.528  < 0.001
Time 1.362 2 0.681 9.34  < 0.001
PAR 18.449 8 2.306 31.759  < 0.001
Time × PAR 5.258 16 0.329 4.502  < 0.001

Total turnover Corrected model 1.265 g 23 0.055 12.027  < 0.001
Intercept 20.658 1 20.658 4518.479  < 0.001
Time 1.148 7 0.164 35.884  < 0.001
PAR 0.032 2 0.016 3.51 0.038
Time × PAR 0.088 14 0.006 1.378 0.202

Mean rank shifts Corrected model 898.289 h 23 39.056 2.818  < 0.001
Intercept 7684.747 1 7684.747 554.553  < 0.001
Time 735.869 7 105.124 7.586  < 0.001
PAR 6.154 2 3.077 0.222 0.802
Time × PAR 137.804 14 9.843 0.71 0.753



 Aquat Ecol

1 3
Vol:. (1234567890)

such as water temperature, nutrient availability, and 
the availability of light (Lewandowska and Som-
mer 2010; Sommer and Lengfellner 2008; Sommer 
et  al. 2012). Our previous studies have shown that 
the advancement of the spring timing is influenced 
not only by relatively high temperatures but also by 
relatively low light intensity (Zhang et  al. 2022). 
This result is consistent with the findings of previous 
studies.

Cyanobacteria are known for their adaptability 
to a wide range of light intensities, including low 
light conditions (Scheffer et al. 1997; Kong and Gao 
2005). To thrive in low light environments, cyanobac-
teria have evolved diverse mechanisms to optimize 

their photosynthesis and energy utilization. One 
mechanism that cyanobacteria use to optimize their 
photosynthesis and energy use in low light environ-
ments is by adjusting their pigmentation in response 
to changes in light intensity (Zheng et  al. 2021). 
Cyanobacteria have evolved various pigments that 
can absorb different wavelengths of light, includ-
ing chlorophyll a, phycocyanin, and phycoerythrin, 
in order to adapt to changes in light intensity (Cao 
et  al. 2020). When the light intensity is low, cyano-
bacteria increase the production of pigments such as 
phycocyanin and phycoerythrin. This allows them to 
absorb light more efficiently and carry out photosyn-
thesis even under low light conditions (Falkowski and 

Fig. 1  Under different light conditions (100% PAR group in purple, 85% PAR group in green, 65% PAR group in orange), the varia-
tions in total phytoplankton and taxonomic biomass (mean ± sd) along the experiment days
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Raven 1997). Cyanobacteria also possess the ability 
to expand their antenna size, enabling them to capture 
more light energy (Zhang et  al. 2012). In addition, 

cyanobacteria can adjust their cellular metabolism to 
optimize their energy use and adapt to low light con-
ditions. For example, they can reduce their respiration 

Table 3  Dominance index 
values of dominant genus in 
Cyanophyta, Chlorophyta, 
and Bacillariophyta under 
different light conditions

A dominance index 
of ≥ 0.02 indicates a 
dominant genus, while a 
dominance index of > 0.1 
indicates an absolutely 
dominant species

Division Dominant genus 100%PAR 85%PAR 65%PAR

Cyanophyta Microcystis 3.206 1.370 0.569
Pseudanabaena 0.271 2.707 4.615
Dactylococcopsis 0.069 0.075 0.027
Dolichospermum 0.026 0 0
Aphanocapsa 0.173 0.125 0.155
Aphanizomenon 0.133 0.224 0.142
Merismopedia 0.029 0 0

Chlorophyta Scenedesmus 0.214 0.106 0.021
Scenedesmus 0.052 0.039 0
Chlorella 0.700 0.734 0.091
Chlamydomonas 0.907 0.218 0.046
Crucigenia 0.085 0.023 0
Selenastrum 0.055 0.035 0
Planctonema 0.053 0.066 0
Dictyosphaerium 0.297 0.096 0.092
Kirchneriella 0.037 0.023 0
Oocystis 0.040 0 0
Actinastrum 0.041 0 0
Mougeotia 0.029 0.081 0

Bacillariophyta Cyclotella 0.027 0 0
Synedra 0.039 0 0

Fig. 2  The variations in the dominant cyanobacterial biomass (Microcystis, Pseudanabaena, Dolichospermum, and Aphanizome-
non) under different light conditions along the experiment days
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rates while increasing their carbon fixation rates, 
which enables them to maintain a positive energy bal-
ance despite the lower light availability (Pierangelini 
et  al. 2015). Our results indicate that reducing PAR 
enhances the capacity for photosynthesis in cyano-
bacteria, while decreasing it in Chlorophyta and 
Bacillariophyta. This suggests that cyanobacteria 
have a stronger ability to utilize low light and use it 
to achieve rapid growth, compared to other algae 
groups. The results indicate that Chlorophyta and 
Bacillariophyta have a lower capacity for photosyn-
thesis as PAR is reduced, suggesting that they are 
more sensitive to fluctuations in light intensity. Thus, 
it is essential to maintain a suitable light intensity to 
ensure their growth rates remain relatively stable.

Different species of cyanobacteria exhibit var-
ied responses to a decrease in PAR, with some such 
as Aphanizomenon and Pseudanabaena exhibiting 

a stronger capacity to adapt to low light conditions 
compared to others. Therefore, their biomass is 
higher in low light conditions, which enables them 
to outcompete Microcystis in terms of biomass pro-
duction. Meanwhile, Microcystis maintained a sus-
tained growth trend in the 100% PAR group and did 
not reach its peak until the end of the experiment. 
The growth of Dolichospermum did not show a sig-
nificant response to the reduction of PAR during the 
experiment. The differences in low light adaptation 
among different cyanobacteria might be attributed 
to their varying temperature optima (Edwards et  al. 
2016). However, the specific mechanisms underlying 
these differences are still unclear and require further 
investigation. Furthermore, it is worth noting that 
in contrast to what is observed in the field, the bio-
mass of total phytoplankton and taxonomic groups 
did not show a sustained increasing trend in the 

Fig. 3  The variations in the maximum photochemical efficiency (Fv/Fm) and effective photochemical efficiency (Fv′/Fm′) of Cyano-
phyta, Chlorophyta, and Bacillariophyta under different light conditions along the experiment days
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experiment, but rather started to decline toward the 
end of the study. This could be attributed to the sig-
nificant increase in biomass during the later stages of 
the experiment, resulting in high biomass levels in the 
relatively closed experimental system, and leading to 
density-dependent effects on the biomass, which ulti-
mately caused a decline in the total phytoplankton 
and taxonomic groups’ biomass.

The photosynthetic efficiency of phytoplank-
ton has been found to decrease significantly with 
increasing light intensity (Kromkamp et  al. 2008; 
From et al. 2014). In natural phytoplankton samples, 
Fv/Fm showed light-driven depression when the light 

intensity exceeded 800 μmol  m–2  s–1 (Vassiliev et al. 
1994). Similarly, in a mesocosm experiment with 
midday light intensity reaching up to 1200 μmol 
 m–2  s–1, Fv/Fm also exhibited light-driven depres-
sion (Bergmann et al. 2002). In our current study, we 
observed that the Fv/Fm of cyanobacteria was inhib-
ited when the average PAR was approximately 630 
μmol  m–2  s–1. The difference of key PAR values in dif-
ferent studies might be dependent on the phytoplank-
ton composition. Different species of phytoplankton 
have varying degrees of adaptation to different levels 
of light intensity (Falkowski et al. 1993). Some phy-
toplankton in Bacillariophyta and Chlorophyta are 

Fig. 4  The variations in the mean values (± sd) of richness, Pielou’s evenness, Simpson index, and Shannon–Wiener index at differ-
ent light conditions along the experiment days
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adapted to perform photosynthesis under higher light 
intensity, while others, such as cyanobacteria, have 
evolved to perform photosynthesis effectively under 
lower light intensity (Gao et  al. 2019). The experi-
mental results confirmed this fact, as the Fv/Fm val-
ues of chlorophytes and bacillariophytes in the 100% 
PAR experimental group showed an increasing trend, 
whereas the Fv/Fm value of cyanobacteria remained 
consistently low. In the 85% and 65% PAR experi-
mental groups, the Fv/Fm values of chlorophytes and 
bacillariophytes decreased and even became zero in 
the later stages of the experiment, whereas the Fv/Fm 

value of cyanobacteria continued to increase (Guan 
et  al. 2020). Cyanobacteria are capable of adjusting 
the composition of their photosynthetic pigments to 
adapt to different light conditions. In low light con-
ditions, they tend to have relatively high content of 
carotenoids, which can absorb longer wavelength 
light in the spectrum and improve photosynthetic effi-
ciency (Li et al. 2020). Therefore, reducing the light 
intensity can help restore the photosynthetic activity 
of cyanobacteria and reduce the photosynthetic activ-
ity of chlorophytes.

Fig. 5  The variations in the total turnover, the appearance, the disappearance, and the mean rank shifts under different light condi-
tions along the experiment days
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Responses of phytoplankton community dynamics to 
declining PAR

The impact of light intensity on the richness and 
diversity of phytoplankton varies depending on the 
algae species and their ability to adapt to different 
light conditions. In this study, the impact of light 
intensity on phytoplankton richness and diversity 
depended on the species of algae and their adapt-
ability to light. While the richness was less affected 
by light intensity, the Pielou index, Simpson index, 
and Shannon–Wiener index showed significant dif-
ferences with varying light intensities during the 
experiment, with an overall downward trend. In the 
experiment, excessive light intensity can lead to the 
death or inhibition of certain algae species that are 
unable to adapt to high light conditions in their pho-
tosynthetic pathways. This can ultimately result in a 
decrease in the diversity and richness of the phyto-
plankton community. It is worth noting that cyano-
bacteria are capable of thriving in both high and low 
light environments. Furthermore, there are also mixo-
trophic phytoplankton species, such as Cryptomonas 
sp. exhibit good adaptability to low light conditions 
(Dong et al. 2016). Therefore, in high light environ-
ment, only algae that have adapted to high light inten-
sity can survive and reproduce in such an environ-
ment, leading to a shift in the species composition of 
the algal community toward relatively low diversity 
and richness. Similarly, excessively low light inten-
sity may result in a reduced rate of photosynthesis, 
enabling only those algae that can adapt to low light 
environments to grow and reproduce. This can ulti-
mately lead to a decrease in the diversity and richness 
of algal communities (Huisman et  al. 1999). There-
fore, maintaining an appropriate light intensity is 
crucial to promote the diversity and richness of algal 
communities. Excessive or insufficient light condi-
tions can result in a decrease in diversity and richness 
of algal communities.

The turnover of phytoplankton species in spring 
is determined by multiple factors (Lu 2017). Ini-
tially, the turnover and mean rank shift values were 
low in all three experimental groups. However, as 
the water temperature and daylight hours increased 
in spring, the growth and activity of phytoplankton 
also increased, thereby promoting the rate of species 
turnover (Righetti et  al. 2019). The different light 
intensities among the three treatment groups resulted 

in changes in the relative abundance of the phyto-
plankton community’s species composition, lead-
ing to species turnover. Under low light conditions, 
cyanobacteria exhibit strong competitive abilities, 
allowing them to occupy the living space and nutri-
ent resources of other phytoplankton, thereby inhibit-
ing the growth and reproduction of other phytoplank-
ton (Ma 2005). During the middle of the experiment, 
there was an increase in the biomass of cyanobacteria 
which became dominant, resulting in a decrease in 
the turnover and mean rank shift values in all three 
treatment groups. Once the biomass of cyanobacteria 
reached its maximum level, the turnover and mean 
rank shift values reached their lowest point. There-
fore, the dominant position of cyanobacteria can have 
a significant impact on phytoplankton species turno-
ver, which may either increase the stability of the 
community (Xue et  al. 2018), or lead to a decrease 
or disappearance of other phytoplankton, thus alter-
ing the ecological structure and function of the water 
body (Huisman et al. 2018).

Conclusions

In conclusion, our study suggests that reduced light 
levels promote the growth of cyanobacteria, resulting 
in an earlier peak in cyanobacterial biomass. More-
over, it also leads to a reduction in species diversity 
and accelerates the transition from spring to summer 
in phytoplankton communities. This study provides 
valuable insights into the responses of spring phyto-
plankton communities, particularly cyanobacteria, to 
changes in underwater light conditions. The results 
can aid in the development of effective lake manage-
ment strategies and the enhancement of cyanobacte-
rial bloom control, which is of great importance for 
the maintenance of water quality and the protection 
of aquatic ecosystems. However, more research is 
needed to fully comprehend the potential cascading 
effects on higher trophic levels that may arise from 
changes in primary producers.
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