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A B S T R A C T   

The rapid and accurate estimation of maize above-ground biomass (AGB) is pivotal for precise agricultural 
management. The rapid evolution of unmanned aerial vehicles (UAVs) and sensor technology has introduced a 
novel method for obtaining AGB information. Nevertheless, individual sensors may lack comprehensive data, 
leading to reduced AGB estimation accuracy in certain scenarios. This study collected UAV multi-spectral (MS) 
and thermal infrared (TIR) data, alongside soil and plant analyzer development (SPAD) values, from maize across 
multiple growth stages (jointing, trumpet, and big trumpet) during 2022 and 2023. Diverse data fusion programs 
were devised to explore the potential of combining multi-source sensor data with SPAD values to estimate AGB. 
The efficacy of CatBoost was evaluated and benchmarked against Support Vector Regression (SVR) and Random 
Forest Regression (RFR) algorithms. For the entire growth, findings reveal that the fusion of multi-source sensor 
data (MS + TIR) can mitigate the data insufficiency in single-sensor estimations. The resulting R2 values range 
from 0.608 to 0.817. Optimal estimation outcomes were achieved by the fusion of multi-source sensor data with 
SPAD values (MS + TIR + SPAD), yielding R2 values ranging from 0.685 to 0.872. For a single growth stage, 
there are variations in the estimation accuracy across different growth stages. From the jointing stage to the big 
trumpet stage, the estimation accuracy consistently increases, with the highest accuracy observed during the big 
trumpet stage, with R2 ranging from 0.721 to 0.901. Additionally, in alignment with the results for the entire 
growth stage, the fusion of multi-source sensor data with SPAD values still yields the highest estimation accuracy 
during different growth stages. In a comparison of different machine learning algorithms, for both the entire 
growth stage and single growth stages, SVR, RFR, and CatBoost achieved R2 values ranging from 0.305 to 0.824, 
0.368 to 0.881, and 0.451 to 0.901, respectively. Notably, the CatBoost algorithm exhibited heightened esti
mation accuracy. The fusion of multi-source sensor data with SPAD values combined with the CatBoost algorithm 
results in accurate and reliable maize AGB estimation accuracy. This high-throughput approach to crop phe
notyping is characterized by speed and accuracy and serves as a valuable reference for rapidly acquiring AGB 
information in this geographical region.   

1. Introduction 

Above-ground biomass (AGB) is the organic matter accumulated by a 
crop at a certain time and per unit area. It is an important indicator for 
crop growth monitoring, nutrient diagnosis and yield estimation (Devia 
et al., 2019). Timely access to AGB information is of far-reaching sig
nificance for agricultural management. The traditional AGB acquisition 
method is mainly manual measurement, which has high accuracy when 

applied to small areas. For large areas, the manual method not only 
requires a lot of human and material resources but also has poor time
liness and is easily affected by human factors. Remote sensing technol
ogy has the advantages of low cost and high timeliness, providing the 
possibility of quickly and accurately obtaining AGB information over 
large areas. At present, satellite remote sensing technology has the ad
vantages of a wide range and simple image acquisition method, which 
has incomparable advantages for the acquisition of large-scale AGB 
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information. However, satellite remote sensing will be restricted by 
weather conditions, and there are problems such as low image resolu
tion and long revisit cycles, which is not ideal for the practical effect of 
precision agriculture (Zhai et al., 2023a). Unmanned aerial vehicle 
(UAV) remote sensing technology, with its advantages of simple oper
ation, repeatable observation, and access to high spatial and temporal 
resolution remote sensing images (Jin et al., 2020b). It has shown great 
advantages in the fine management and regulation of agriculture. 

The UAV-based platform mounted sensors showed high accuracy in 
the estimation of crop phenotypic parameters. There are differences in 
the data information obtained by different sensors. For example, multi- 
spectral (MS) sensors quantitatively estimate crop growth parameters 
through the interaction of different wavelengths of light with the plant 
in terms of reflection, absorption, and transmission (Houborg and 
McCabe, 2016). Thermal infrared (TIR) sensors are unaffected by light 
and monitor crop growth primarily by measuring crop canopy temper
ature and the crop response to water stress (Maes and Steppe, 2019). In 
the estimation of crop phenotypic parameters researches, a single sensor 
obtains less information about the crop and has a lower estimation ac
curacy, while the fusion of multi-source sensor data can reflect crop 
growth information from different aspects, which can effectively 
improve the estimation accuracy. For example, in the study of winter 
wheat yield estimation, the fusion of UAV MS, TIR and RGB data has 
significantly improved the estimation effect compared to using only a 
single sensor (Fei et al., 2022). The fusion of hyperspectral data with 
RGB data in the potato AGB estimation study was superior to using 
hyperspectral data only (Li et al., 2020a). In addition, incorporating 
auxiliary information such as crop height, crop nitrogen content and soil 
factor on the basis of UAV remote sensing data can further improve the 
estimation accuracy of crop phenotypic parameters. Incorporating crop 
height information based on hyperspectral data further improves the 
accuracy of wheat AGB estimation (Yue et al., 2017). In addition to 
remote sensing data, some biochemical indicators such as chlorophyll 
content are also good indicators of crop growth. Soil and plant analyzer 
development (SPAD) values are closely related to chlorophyll content 
and can be used as effective parameters for crop phenotype estimation 
(Ling et al., 2011). To our knowledge, there are no studies that fusion of 
UAV multi-source sensor data with SPAD values for maize AGB esti
mation, which will be explored in this study. 

However, significant variations in physiological and morphological 
characteristics occur across different growth stages of crops (Qiao et al., 
2022b). These variations pose intricate implications for the estimation 
of crop phenotypic parameters using remote sensing technology. Each 
growth stage is accompanied by distinct vegetation structures, canopy 
densities, and optical properties, which may impact the interpretation 
and analysis of remote sensing data. For instance, during the initial 
growth stage of crops, the small and young vegetation might lead to 
confusion with the background, resulting in errors in remote sensing 
data. On the other hand, in the mature growth stage of crops, dense 
vegetation can interfere with remote sensing signals through light 
transmission and reflection, consequently affecting the accuracy of 
estimation results (Qiao et al., 2022a). Hence, a thorough investigation 
into the influence of different growth stages on remote sensing tech
nology for estimating crop phenotypic parameters is crucial. Gaining 
insights into the reliability, accuracy, and applicability of remote 
sensing data at different growth stages enhances our ability to utilize 
remote sensing techniques effectively for monitoring and assessing the 
growth status of crops. 

In recent years, with the rapid development of computer science and 
artificial intelligence, deep learning models such as Artificial Neural 
Networks (ANN) and Convolutional Neural Networks (CNN) have made 
significant strides in estimating crop phenotypic parameters (Jin et al., 
2020a). As robust deep learning models, ANN and CNN have the ability 
to learn intricate feature representations from large-scale data and 
automatically extract patterns relevant to crop phenotypic parameters 
from images, remote sensing data, or other pertinent data (Yu et al., 

2023). However, deep learning models may face challenges in certain 
scenarios, including high data requirements, substantial computational 
resource demands, and intricate parameter tuning. To address these is
sues, machine learning algorithms have demonstrated advantages in 
crop phenotyping research, including reduced reliance on training time 
and computational resources. For instance, in constructing crop phe
notyping estimation models, individual learning models like Ridge 
Regression, Least Absolute Shrinkage and Selection Operator, and Sup
port Vector Regression (SVR) have exhibited high predictive accuracy 
and robustness (Zhai et al., 2023b). Nonetheless, existing research pri
marily employs single learning model approaches, which are con
strained in performance, demanding of substantial datasets, and exhibit 
poor generalization on small or fluctuating datasets. To enhance the 
overall modeling performance, ensemble learning is introduced as a 
machine learning method. Ensemble learning involves training multiple 
base learners and combining them using specific strategies to yield a 
more comprehensive strong learner (Feng et al., 2020). Currently, 
ensemble learning mainly comprises the Bagging framework and the 
Boosting framework. Among them, Random Forest Regression (RFR) 
based on the Bagging framework and CatBoost based on the Boosting 
framework are two commonly used ensemble learning methods. RFR has 
been successfully applied in crop phenotyping research, yielding 
excellent estimation accuracy (Zha et al., 2020). On the other hand, the 
CatBoost algorithm excels in handling categorical features, adaptive 
feature scaling, missing value treatment, and robustness, thereby 
enhancing estimation accuracy and reducing implementation 
complexity. Despite being a novel ensemble learning algorithm with 
demonstrated utility in hydrological studies (Huang et al., 2019) and 
structural engineering research (Lee et al., 2021), its application in crop 
phenotyping research remains relatively limited. However, as a potent 
gradient boosting framework, CatBoost has not been fully explored in 
AGB estimation. 

In summary, the primary objectives of this study are as follows: (1) 
To assess the viability of fusing UAV multi-source sensor data with SPAD 
values for estimating maize AGB. (2) To analyze the influence of 
different growth stages on the accuracy of maize AGB estimation. (3) To 
construct a maize AGB estimation model using CatBoost and compare its 
performance against SVR and RFR models. 

2. Materials and methods 

2.1. Study area and experimental design 

The study was conducted over a two-year period in 2022 and 2023 at 
the Xinxiang Comprehensive Base of the Chinese Academy of Agricul
tural Sciences, Xinxiang County, Henan Province, China (113◦45′42 “E, 
35◦08′05 ”N, Fig. 1). In the 2022 experiment, ten different maize vari
eties were chosen and cultivated on June 15. Four distinct fertilizer 
treatments were employed, namely N0: 0 kg/hm2, N1: 80 kg/hm2, N2: 
120 kg/hm2, and N3: 160 kg/hm2. Each fertilizer treatment encom
passed three replications of every maize variety, thereby resulting in a 
total of 120 plots, each measuring 8 m2 (2 m × 4 m). In the 2023 
experiment, the maize cultivating took place on June 17th, and the 
experimental design remained consistent with that of 2022. The man
agement practices applied in the field were optimized based on local 
conditions. 

2.2. Data acquisition 

2.2.1. UAV data acquisition and pre-processing 
The DJM210 UAV (SZ DJI Technology Co., Shenzhen, China) was 

employed as the remote sensing platform, outfitted with both the MS 
sensors (RedEdge MX, MicaSense Inc., Seattle, USA) and the TIR sensors 
(ZENMUSE XT, SZ DJI Technology Co., Shenzhen, China) to facilitate 
the acquisition of multi-sensor data (Fig. 2). Comprehensive information 
regarding the two sensors is elucidated in Table 1. 
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The aerial missions were executed under optimal, cloud-free condi
tions between 10:00 and 13:00 BST on different dates. These dates 
include July 13th, 2022 (jointing stage), July 23rd, 2022 (trumpet 
stage), and August 2nd, 2022 (big trumpet stage), in addition to July 

15th, 2023 (jointing stage), July 23rd, 2023 (trumpet stage), and August 
2nd, 2023 (big trumpet stage). DJI GS PRO 2.0.17 software (SZ DJI 
Technology Co., Shenzhen, China) was used to plan the flight route in 
the study area. The flight altitude is set to 30 m. The forward and lateral 
overlaps were set to 85% and 80% respectively. Before and after each 
flight, calibration board data was collected for post-radiation correction. 
Stitching and radiometric correction of the images was carried out using 
Pix4D 4.4.12 software (Pix4D, Lausanne, Switzerland), with the 
following main steps: Firstly, images and ground control points (GCPs) 
are imported, and the spatial positioning of GCPs is employed to perform 
terrain correction on the images. Subsequently, the software conducts 
feature extraction and matching to establish correlations between im
ages. Based on the matched feature points, a sparse point cloud model is 
generated to represent the surface structure of the area. Following this, a 
denser point cloud model is further generated to capture more detailed 
surface information. Using the dense point cloud, orthorectified images 

Fig. 1. The geographical location and experimental design of the study. (a) China’s border. (b) Henan Province’s border. (c) RGB image of the study area in 2022. (d) 
RGB image of the study area in 2023. 

Fig. 2. The UAV and its equipped sensors. (a) DJI M210, (b) RedEdge MX, (c) ZENMUSE XT.  

Table 1 
RedEdge MX and ZENMUSE XT2 main parameters.  

Attribute MS sensor TIR sensor 

Weight 232 g 629 g 
Size 87 × 59 × 45.4 mm 123.7 × 112.6 × 127.1 

mm 
Spectral band Red, green, blue, red edge, near 

infrared 
Thermal infrared 

Band range 400 ~ 900 nm 7500 ~ 13500 nm 
Image 

resolution 
1280 × 960 640 × 512  
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are generated to eliminate terrain-induced distortions, followed by a 
color correction to ensure consistent presentation. Ultimately, the soft
ware produces orthorectified images in both MS and TIR for the study 
area, providing high-quality remote sensing data for accurate estimation 
of maize AGB in this study. 

Due to the incomplete coverage of maize, it is necessary to separate 
the maize plants from the soil. In this study, the separation of plant and 
soil, along with the extraction of maize canopy features, was conducted 
using ArcMap 10.8 software (Environmental Systems Research Institute, 
Inc., Redlands, CA, USA). The soil-adjusted vegetation index was a 
robust metric for effectively discriminating between maize and soil. In 
ArcMap 10.8 software, a mask delineating the maize plants was gener
ated from the grayscale image of the soil-adjusted vegetation index. This 
mask was then applied to the image to eliminate soil-related elements. 
Finally, seven vegetation indices were extracted from the MS images as 
canopy spectral features, and the normalized relative canopy tempera
ture was extracted from the TIR images as a canopy thermal feature. The 
features extracted from both MS and TIR images are listed in Table 2. 

2.2.2. SPAD values and AGB acquisition 
SPAD values and AGB of maize in each plot were measured simul

taneously on the day of the UAV aerial mission. The SPAD values were 
obtained as follows: Three maize plants were randomly selected from 
each plot. The upper, middle and lower parts of the top leaves of the 
plant canopy were measured using a SPAD-502 plus and the average 
value was taken as the canopy SPAD value of the plant. Then the average 
of the SPAD values of the three plants was calculated as the SPAD value 
of the maize canopy in the plot (Fig. 3). 

AGB was measured as follows: Two uniformly growing maize plants 
were randomly selected from each plot as samples and dried in a blast 
oven until their mass was constant. Then the samples were weighed for 
dry weight Finally, the AGB per unit area of maize was calculated based 
on the sample dry weight and population density (Fig. 3). 

When observing the SPAD values and AGB for the year 2022, a clear 
trend can be discerned: with the gradual increase in fertilizer levels, both 
the SPAD values and AGB exhibit a progressive rise. However, a notable 
exception is observed in the case of the N3 treatment, corresponding to 
the highest fertilizer application level, where SPAD values and AGB 
display a significant decrease. This phenomenon may be the result of the 

N3 treatment, the plot was previously used for cultivating apple trees 
until 2022. Apples, being high-nutrient-demanding crops, caused sub
stantial nutrient depletion in the soil, especially without proper nutrient 
replenishment before maize cultivation. Consequently, during maize 
cultivation, the soil might have been relatively deficient in nutrients, 
thereby affecting maize growth and leading to a distinct decrease in both 
SPAD values and AGB. In the 2023 experiment, utilizing plots with 
continuous crop cultivation, a trend emerges where increasing fertilizer 
levels correspond to higher SPAD values and AGB. 

2.3. Regression techniques 

2.3.1. SVR 
SVR has shown high prediction accuracy and strong stability in crop 

phenotype studies and is one of the commonly used machine learning 
algorithms (Bian et al., 2022). The basic principle is to train using a loss 
function to fit sample data by constructing an optimal decision hyper
plane that minimizes the distance between the sample and the hyper
plane. In order to achieve optimal performance, machine learning 
algorithms require parameter adjustments to enhance their effective
ness. In this study, parameter tuning for SVR encompasses the selection 
of kernel functions, which include linear, polynomial (poly), and radial 
basis functions (rbf). Determining an appropriate kernel function entails 
considering the characteristics of the data and the nature of linear and 
nonlinear relationships. The C parameter, serving as a regularization 
parameter, is utilized to balance model complexity and tolerance. In this 
study, the range of C values for adjustment is set from 0.1 to 1, with a 
step size of 0.01. On the other hand, the gamma parameter is employed 
to adjust the width of the rbf kernel; a smaller gamma value widens the 
basis function, while a larger gamma value narrows it. For this study, the 
range of gamma adjustment is set between 0.1 and 1, with a step size of 
0.01. For all machine learning algorithms employed in this study, a grid 
search approach is utilized to explore various parameter combinations 
and select the optimal parameter configuration that leads to the best 
performance. 

2.3.2. RFR 
RFR is a typical representative algorithm in ensemble learning using 

bagging as a framework (Breiman 2001). It is characterized by the 
ability to randomly sample the samples and features in the training set, 
which can reduce the occurrence of overfitting situations. RFR consists 
of a combination of multiple decision trees, each tree is randomly 
sampled and generates corresponding predicted values during the model 
training process. Eventually, the regression of RFR is completed by 
integrating the predicted values of all decision trees. RFR has obvious 
advantages when dealing with large samples and high dimensional data. 
Parameter adjustments for RFR include n_estimators (the number of 
decision trees) and max_depth (the maximum depth of decision trees). 
Increasing n_estimators enhances model diversity, thus increasing 
robustness and the ability to capture complex relationships within the 
data. However, an excessive number of decision trees might lead to 
increased training time and memory consumption, necessitating a bal
ance between efficiency and performance. In this study, the adjustment 
range for n_estimators is set from 50 to 1000, with a step size of 10. The 
depth of decision trees determines the model’s grasp of data features. 
Overly deep decision trees can result in overfitting, making the model 
overly sensitive to training data and leading to poor performance on new 
data. Constraining max_depth prevents the model from excessively 
learning noise and details in the training data, thereby enhancing its 
generalization capability. However, setting max_depth too small might 
render the model overly simplistic, unable to capture the intricate re
lationships within the data, resulting in underfitting. In this study, the 
adjustment range for max_depth is set from 3 to 30, with a step size of 1. 

2.3.3. CatBoost 
CatBoost was first proposed by Yandex in 2017 and is implemented 

Table 2 
Two different types of features selected for this study.  

Data 
type 

Features Formula  

MS Normalized difference 
vegetation index 

(NIR-R)/(NIR + R) (Tucker 1979)  

Green normalized 
difference vegetation 
index 

(NIR-G)/(NIR + G) (Gitelson et al., 
1996)  

Red-edge normalized 
difference vegetation 
index 

(EDGE-R)/(EDGE +
R) 

(Gitelson et al., 
2003)  

Soil adjusted vegetation 
index 

(1 + L)*(NIR-R)/ 
(NIR + R + L)(L =
0.5) 

(Huete 1988)  

Enhanced vegetation 
index 

2.5*(NIR-R)/(NIR 
+ 6*R-7.5*B + 1) 

(Liu and Huete 
1995)  

Ratio vegetation index NIR/R (Pearson and Miller 
1972)  

Triangle vegetation index 60*(NIR-G)-100(R- 
G) 

(Broge and Leblanc 
2001) 

TIR Normalised relative 
canopy temperature 

(Tcanopy-Tmin)/ 
(Tmax-Tmin) 

(Maimaitijiang 
et al., 2020) 

R: red band reflectivity, G:green band reflectivity, B: blue band reflectivity, 
EDGE: red edge band reflectivity, NIR: near infrared band reflectivity, Tcanopy: 
mean canopy temperature in that maize plot, Tmax: maximum canopy temper
ature measured in all maize plot, Tmin: minimum canopy temperature measured 
in all maize plot. 
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based on the boosting framework (Prokhorenkova et al., 2018), where 
boosting is implemented as follows (Fig. 4): (1). All base learners use the 
same training samples and assign the same weights to each training 
sample. (2). Train the current base learner, and assign higher weights to 
the samples with larger prediction deviations in the next base learner 
based on the prediction results of the current base learner. (3). Iterate 
step 2 until all base learners have been trained. (4). Finally, the final 
predictions are obtained by weighting the predictions of each base 
learner. Parameter tuning for CatBoost in this study follows the same 
approach as that for RFR. 

CatBoost is an improved gradient boosting decision tree algorithm. 
In each iteration of traditional gradient boosting decision tree, the 
current model gradient is obtained based on the same dataset and the 

base learner is trained based on that gradient. It leads to biased point-by- 
point gradient estimation, resulting in overfitting of the final strong 
learner model. CatBoost uses ordered boosting to optimize the gradient 
estimation method of gradient boosting decision tree. The ordered 
boosting method first generates a random permutation σ of [1, n] to sort 
the original samples and initialize n different models M1, M2, ….….., Mn, 
where each Mi is a model trained with only the first i samples in the 
random permutation. During each iteration step, the unbiased gradient 
estimate for the jth sample is obtained by model Mj-1. The pseudocode is 
shown in Table 3 (Huang et al., 2019). This approach mitigates the ef
fects of traditional gradient boosting decision tree gradient estimation 
bias and the model has a higher generalization capability. In addition, 
unlike the base learner in RFR, CatBoost uses a oblivious tree as the base 

Fig. 3. Maize SPAD values and AGB statistics for four fertilizer treatments at the jointing stage, trumpet stage, and big trumpet stage. (a) 2022 SPAD values, (b) 2022 
AGB, (c) 2023 SPAD values, (d) 2023 AGB. 

Fig. 4. Boosting implementation process.  
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learner, which can increase the model reliability and speed up the 
computation compared to the normal decision tree in RFR (Tang et al., 
2021). 

2.4. Modeling evaluation 

To begin with, the original data is divided into training and testing 
sets in a 4:1 ratio (Table 4). Subsequently, a four-fold cross-validation 
and grid search method are applied to the training set to identify optimal 
model parameters. The fundamental concept of cross-validation in
volves further partitioning the training set into four subsets, cyclically 
utilizing three subsets as training data while the remaining one serves as 
validation data. For each training subset, different model parameter 
combinations are attempted using grid search, and the performance of 
each combination is evaluated using the validation data to determine 
the best parameter configuration. Once parameter tuning is complete, 
the entire training set is employed for model training. Finally, an inde
pendent testing set is used to predict outcomes with the trained model 
(Yu et al., 2023). Performance metrics such as coefficient of determi
nation (R2) and relative root mean square error (rRMSE) are computed 
on the testing set to assess the accuracy of the model in estimating AGB. 
The R2 and rRMSE were calculated as follows: 

R2 = 1 −

∑n
i=1(xi − yi )

2

∑n
i=1(xi − y)2  

rRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − yi )

2

n

√

y
× 100%  

where xi is the measured maize AGB, yi is the estimated maize AGB, y is 
the mean of the measured maize AGB and n is the sample size of the test 
set. 

3. Results 

3.1. AGB estimation for entire growth stage 

This study employed SVR, RFR, and CatBoost algorithms to estimate 
maize AGB throughout its entire growth stage. These algorithms were 
applied using a diverse set of data sources, which included SPAD values, 
TIR data, and MS data and different combinations of these data (Table 5, 
Fig. 5). The experimental results revealed that, for individual sensor 
data, MS data exhibited the most superior performance in estimating 
maize AGB. In the SVR, RFR, and CatBoost algorithms, MS data 
exhibited R2 values of 0.555, 0.776, and 0.776, with corresponding 
rRMSE values of 66.54%, 48.86%, and 47.89%. Further investigation 
into the impact of multi-source sensor data fusion (MS + TIR) on esti
mation performance was conducted. This combination notably 
enhanced the estimation accuracy across all machine learning models 
compared with solely using MS data. In the SVR, RFR, and CatBoost 
algorithms, this combination achieved higher R2 values of 0.608, 0.800, 
and 0.817, along with lower rRMSE values of 62.46%, 45.15%, and 

Table 3 
Ordered boosting pseudocode.  

Algorithm: ordered boosting 

Table 4 
Statistics for maize AGB (t/hm2) of training and testing datasets.  

Growth stage Data set Number of samples Maximum value Minimum value Average value Standard deviation 

Entire growth stage Training 576  13.232  0.020  2.866  2.361 
Testing 144  12.176  0.172  3.020  2.389 

Jointing stage Training 192  1.568  0.02  0.527  0.280 
Testing 48  1.232  0.096  0.488  0.290 

Trumpet stage Training 192  5.616  0.116  2.114  1.206 
Testing 48  5.784  0.236  2.103  1.303 

Big trumpet stage Training 192  13.232  0.880  5.972  2.831 
Testing 48  12.816  1.000  6.412  3.173  
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43.98%. Subsequently, by fusion of multi-source sensor data with SPAD 
values (MS + TIR + SPAD), this combination further elevated the per
formance of the estimation models compared with using MS + TIR. This 
combined approach not only exhibits the highest R2 values in the SVR, 
RFR, and CatBoost models, with values of 0.685, 0.862, and 0.872 
respectively, but also achieves the lowest rRMSE values, with values of 
56.22%, 36.92%, and 35.49% respectively. 

Fig. 6 presents scatter plots depicting the AGB estimations using 
traditional individual MS data, MS + SPAD, MS + TIR, and MS + TIR +
SPAD (Using the CatBoost algorithm as an example). Notably, when the 
measured AGB exceeds 6 t/hm2, significant scattering is observed in the 
scatter plots. This phenomenon can be attributed to the influence of two 
key factors: spectral data saturation and the limited number of samples 
with measured AGB surpassing 6 t/hm2. These factors may contribute to 
an increase in estimation errors within the models. Especially for sam
ples with high AGB levels, the saturation effect of spectral data might 
hinder the accurate reflection of measured AGB variations, consequently 
leading to greater scattering in the estimations. Simultaneously, due to 
the scarcity of samples with measured AGB exceeding 6 t/hm2, the 
model’s performance within this range might not be as precise as in 
other ranges, thereby intensifying estimation fluctuations. 

Fig. 7 further illustrates the results of a statistical involving the ab
solute value of residuals between the estimated AGB and the measured 
AGB for exceeding 6 t/hm2. It is noteworthy that the employment of MS 
+ SPAD, MS + TIR, and MS + TIR + SPAD yields a lower absolute value 
of residuals in comparison to using solely individual MS data. This 
observation robustly validates the potential of multi-source data fusion 
in overcoming the errors stemming from MS data saturation and 

insufficient data volume. Furthermore, it accentuates the fact that the 
fusion of multi-source data can significantly enhance the stability and 
precision of estimation models. 

3.2. AGB estimation for different growth stage 

In addition to exploring the entire growth stage for AGB estimation, 
this study also delved into the impact of different growth stages on AGB 
estimation. The estimated AGB results for different growth stages of 
maize are presented in Table 6 and Fig. 8. The results revealed varying 
accuracy in the estimation of AGB for different growth stages. For the 
jointing stage, the R2 values for AGB estimation ranged from 0.305 to 
0.726, with rRMSE ranging from 29.68% to 49.84%. For the trumpet 
stage, the R2 values improved to a range from 0.452 to 0.866, with 
rRMSE values reducing from 26.65% to 49.12%. Notably, the highest 
accuracy was achieved for the big trumpet stage, where the R2 values 
further increased to a range from 0.721 to 0.901, accompanied by 
rRMSE values of 18.72% to 34.97%. This progression underscores the 
influence of the different growth stages on the accuracy of AGB esti
mation. As the maize growth stage progresses, the estimation accuracy 
shows an increasing trend, reaching its highest during the big trumpet 
stage. The study further delved into the impact of fusing multi-source 
sensor data with SPAD values on maize AGB estimation across 
different growth stages, as illustrated in Fig. 9. It was observed that the 
fusion of multi-source data continued to enhance the accuracy of AGB 
estimation during different growth stages. This improvement was 
consistent with the trends observed in the entire growth stage (Table 5 
and Fig. 5). These findings underscore the robustness of the multi-source 
sensor data and SPAD value fusion technique in enhancing AGB esti
mation accuracy, not only over the entire growth stage but also during 
each single growth stage. 

3.3. AGB estimation for different machine learning algorithms 

Fig. 10, combining Tables 5 and 6, illustrates the accuracy of 
different machine learning algorithms in estimating mazie AGB across 
the entire growth stage as well as during single growth stages. The result 
of the study revealed distinct performances of the employed machine 
learning algorithms in estimating maize AGB. The SVR algorithm 
exhibited R2 ranged from 0.305 to 0.824, with rRMSE ranging from 
25.18% to 73.83%. For the RFR algorithm, the R2 ranges from 0.368 to 
0.881, with rRMSE ranging from 19.76% to 74.69%. For the CatBoost 

Table 5 
Statistics on the accuracy of AGB estimation for different data combinations, and 
different algorithms.  

Data 
combination 

SVR RFR CatBoost 

R2 rRMSE 
(%) 

R2 rRMSE 
(%) 

R2 rRMSE 
(%) 

SPAD  0.453  73.83  0.458  74.69  0.560  65.83 
TIR  0.514  69.95  0.753  49.31  0.725  52.02 
MS  0.555  66.54  0.766  48.86  0.776  47.89 
TIR + SPAD  0.677  57.07  0.773  47.17  0.788  45.61 
MS + TIR  0.608  62.46  0.800  45.15  0.817  43.98 
MS + SPAD  0.607  62.67  0.823  41.81  0.836  40.09 
MS + TIR +

SPAD  
0.685  56.22  0.862  36.92  0.872  35.49  

Fig. 5. Accuracy of AGB estimation for different data combinations, and different algorithms. (a) R2, (b) rRMSE.  

W. Zhai et al.                                                                                                                                                                                                                                    



Computers and Electronics in Agriculture 214 (2023) 108306

8

algorithm, the R2 ranges from 0.451 to 0.901, with rRMSE ranging from 
18.72% to 65.83%. The results underscore the CatBoost algorithm 
exhibited superior performance compared to both RFR and SVR, indi
cating its ability to produce more accurate and precise AGB estimates. 

3.4. Spatial and temporal distribution of AGB 

By using the fusion of multi-sensor data with SPAD values (MS + TIR 
+ SPAD) combined with the CatBoost algorithm, this study achieved the 

optimal estimation model for maize AGB. Fig. 11 displays the statistical 
of estimation errors for this model across different growth stages of 
maize in the years 2022 and 2023. In 2022, during the jointing, trumpet, 
and big trumpet stages, the estimation errors were primarily distributed 
within the ranges of ±0.2 t/hm2, ±0.4 t/hm2, and ±1.0 t/hm2, respec
tively. Similarly, in 2023, during the same growth stages, the estimation 
errors were primarily distributed within the ranges of ±0.4 t/hm2, ±1.0 
t/hm2, and ±2.0 t/hm2, respectively. It is noteworthy that the estima
tion errors varied across different growth stages and years, primarily 

Fig. 6. Scatter plot of AGB estimation using CatBoost algorithm. (a) MS, (b) MS + SPAD, (c) MS + TIR, (d) MS + TIR + SPAD.  

Fig. 7. Statistics of absolute values of residuals between estimated AGB and measured AGB in exceeding 6 t/hm2.  
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Table 6 
Comparison of AGB estimation accuracy for different maize growth stages and algorithms.  

Growth stage Data combination SVR RFR CatBoost 

R2 rRMSE(%) R2 rRMSE(%) R2 rRMSE(%) 

Jointing stage SPAD  0.305  49.84  0.368  43.28  0.457  38.50  
TIR  0.446  43.49  0.38  41.20  0.451  38.53  
MS  0.446  39.94  0.458  38.41  0.461  38.72  
TIR + SPAD  0.527  36.28  0.460  39.86  0.556  34.75  
MS + TIR  0.47  39.42  0.556  34.82  0.604  33.75  
MS + SPAD  0.492  37.19  0.581  34.34  0.600  32.87  
MS + TIR + SPAD  0.567  35.12  0.712  29.68  0.726  30.41 

Trumpet stage SPAD  0.452  49.12  0.751  34.81  0.778  33.13  
TIR  0.681  39.84  0.81  30.86  0.781  33.00  
MS  0.732  35.68  0.833  29.58  0.838  28.69  
TIR + SPAD  0.788  30.83  0.829  30.42  0.841  26.65  
MS + TIR  0.742  35.19  0.847  27.60  0.851  27.16  
MS + SPAD  0.817  30.24  0.845  27.48  0.860  27.52  
MS + TIR + SPAD  0.824  28.78  0.851  26.77  0.866  26.77 

Big trumpet stage SPAD  0.721  34.97  0.733  30.23  0.784  27.65  
TIR  0.768  30.36  0.777  27.33  0.777  27.27  
MS  0.786  32.60  0.798  26.50  0.823  24.37  
TIR + SPAD  0.820  25.39  0.811  25.12  0.839  23.07  
MS + TIR  0.815  25.76  0.866  21.27  0.859  21.32  
MS + SPAD  0.815  25.65  0.872  20.94  0.871  20.44  
MS + TIR + SPAD  0.822  25.18  0.881  19.76  0.901  18.72  

Fig. 8. Statistics on the accuracy of AGB estimation for different growth stages. (a) R2, (b) rRMSE.  

Fig. 9. Statistics on the accuracy of AGB estimation for different combinations of features at different growth stages. (a) R2, (b) rRMSE.  
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influenced by the different measured AGB data. However, overall, these 
errors remained within relatively small ranges. 

Fig. 12 displays the spatial distribution of estimated maize AGB from 
the jointing stage to the big trumpet stage in both 2022 and 2023. This 
study’s findings indicate a gradual increase in AGB as the maize growth 
stages progress. This observation aligns with the measured AGB shown 
in Fig. 3. Regarding the distribution of AGB in 2022, among the four 
fertilization treatments, N1 and N2 treatments exhibit higher AGB 
levels, indicating better growth trends. However, AGB in the N3 treat
ment is notably lower. This discrepancy could stem from the fact that the 
N3 plot was previously used for apple tree cultivation before maize 
planting. This prior land use might have led to an excessive depletion of 
soil nutrients. Despite applying the highest nitrogen fertilizer level in the 
N3 treatment, the AGB remains lower than that in the N1 and N2 
treatments. In practical applications, timely additional fertilization or 
irrigation should be considered for this plot to improve crop growth 
conditions. For the distribution of AGB in 2023, an increasing trend in 
AGB is evident with rising fertilizer levels, notably reaching the highest 

AGB in the N3 treatment. In summary, the methodology employed in 
this study facilitates rapid and non-destructive estimation of maize AGB. 
This enables decision-makers to promptly adjust fertilizer application 
strategies to accommodate the changing nutrient demands of crops 
during different growth stages. 

4. Discussion 

4.1. Effect of AGB estimation throughout fusion of multi-source sensor 
data with SPAD values 

A comparison of multi-source sensor data fusion (MS + TIR) with 
single sensor data (MS or TIR) shows that multi-source sensor data 
fusion always results in better estimation in the entire growth stage and 
different growth stages (Table 5, Fig. 5, and Fig. 9). In addition, this 
approach can address the estimation error caused by spectral saturation 
in areas of high vegetation and limited sample size (Fig. 7). This is 
mainly because different sensors can represent different aspects in 

Fig. 10. Statistics on the accuracy of AGB estimation for different algorithms. (a) R2, (b) rRMSE.  

Fig. 11. AGB estimation errors of the fusion of multi-source sensor data with SPAD values based on CatBoost. (a) 2022 jointing stage, (b) 2022 trumpet stage, (c) 
2022 big trumpet stage, (d) 2023 jointing stage,(e) 2023 trumpet stage, (f) 2023 big trumpet stage. 
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relation to AGB (Maimaitijiang et al., 2020). The vegetation index of MS 
data consists of a combination of spectral reflectance of different bands, 
which is an important parameter for crop growth analysis. The canopy 
temperature included TIR data is the results of the joint action of crop 
genetic characteristics and environmental conditions, which are not 
only closely related to the functional phase and transpiration rate of 
leaves but also influence the growth of dry organs and starch synthesis of 
crops (Fei et al., 2022). There is heterogeneity between MS data and TIR 
data. Combining the two can form complementary information, which is 
conducive to improving the AGB estimation accuracy. 

In addition, the stability of sensors can be affected by many external 
environmental factors, such as crop growth status and soil conditions (Li 
et al., 2020b). The interaction of these factors can have an impact on 
AGB estimates, making it necessary to include remote sensing auxiliary 
data to address sensor bias. SPAD values, as an indicator of plant growth 
and development and leaf nitrogen content, provide a good reflection of 
the nutritional status and senescence process of the crop and help to 
reduce sensor bias. In this study, the combination of SPAD values and 
sensor data further improved the accuracy of AGB estimation compared 

to using sensor data only (Tables 5 and 6, Figs. 5 and 9). This is because 
SPAD values are closely related to the strength of crop photosynthesis, 
which can explain changes in crop AGB and yield (Peng, 2000; Yoshida 
and Horie, 2009). Compared with other remote sensing auxiliary data 
such as crop moisture content, crop nitrogen content, and soil factor, 
SPAD values are easily obtained in field experiments using the SPAD- 
502 plus, and have the advantages of low price, simple operation, and 
non-destructive sampling. It has a broad application scenario for crop 
parameter inversion. 

4.2. Effects of different growth stages on AGB estimation 

There were differences in the effectiveness for estimating AGB across 
different growth stages, with an overall upward trend from jointing 
satge to big trumpet stage (Table 6 and Fig. 8). This is because the spatial 
heterogeneity of the ground changes with the growth and development 
of the crop, leading to different correlations between features and AGB 
at different growth stages (Qiao et al., 2022b). The maize jointing stage 
is dominated by nutritional growth and the various types of features 

Fig. 12. Spatiotemporal distribution for estimated AGB of the fusion of multi-source sensor data with SPAD values based on CatBoost. (a) 2022 jointing stage, (b) 
2022 trumpet stage, (c) 2022 big trumpet stage, (d) 2023 jointing stage, (e) 2023 trumpet stage, (f) 2023 big trumpet stage. 
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from this stage do not reflect the process of organ dry matter accumu
lation. As maize growth enters the big trumpet stage, the dry matter 
mass of maize organs increases rapidly due to the growth of canopy 
leaves and the accumulation of nutrients, and the chlorophyll content of 
leaves rises (Qiao et al., 2022a). At this time maize AGB correlates well 
with MS data, TIR data, and SPAD values, so the accuracy of the model 
increases. 

Another reason is that early maize plants were shorter and had less 
canopy cover, and soil pixels were more heavily represented in the im
ages. In spite of the fact that the plant-soil separation process was carried 
out according to strict standards, some of the soil pixels were not 
completely removed. The information extracted was affected by the 
mixed pixels, making the obtained data not fully express the relationship 
with the AGB. As the maize grows, the canopy gradually thickens and 
the proportion of soil pixels in the image decreases significantly. The 
influence of the mixed pixels is reduced when performing the vegetation 
separation process and feature extraction (Liu et al., 2021). Compared 
with the previous growth stage, the estimation accuracy is higher. 

4.3. Effect of CatBoost algorithms on maize AGB estimation 

In addition to the use of multi-source data fusion to improve esti
mation accuracy, developments in computer science have provided new 
methods for the estimation of crop parameters. The emergence of 
ensemble learning methods has effectively addressed the problem of the 
weak generalization ability of single learners. The two ensemble 
learning models, RFR and CatBoost, showed superior estimation results 
in this study, which outperformed the single learner SVR (Fig. 10). 
Previous scholars have successfully applied RFR to crop parameters 
estimation studies and have estimated it with higher accuracy than 
Ridge Regression, SVR, and ANN (Han et al., 2019; Zhai et al., 2023b). 
This is because each base learner in ensemble learning has a different 
hypothesis space. Integrating these base learners can expand the hy
pothesis space, thus improving the robustness of the ensemble model to 
unknown distributed data. RFR was less effective in estimation in this 
study compared to CatBoost. Most likely because RFR is not able to make 
predictions beyond the scope of the training set data, resulting in poorer 
performance when validating on certain specific noisy data. CatBoost, a 
new machine Learning algorithm, has proven its performance in studies 
of plant water demand prediction in wet areas of China, with significant 
improvements in accuracy and stability compared to RFR (Huang et al., 
2019). CatBoost in this study showed optimal AGB estimation for 
different stages, the model was highly generalizable. This is because 
CatBoost can improve the accuracy of the model by continuously cor
recting and updating the sample weights and controlling the error by 
learning the features of the training set. It is more adaptable to the data, 
with strong mapping ability and resistance to interference. In addition, 
CatBoost optimizes the traditional gradient boosting decision tree 
approach to gradient estimation employing ordered boosting. This al
lows it to obtain an unbiased estimate of the gradient, which in turn 
reduces the effect of gradient estimation bias and the model has a 
stronger generalization capability (Prokhorenkova et al., 2018). There
fore, it is still highly adaptive and noise-resistant under the small 
training set of this experiment, with optimal estimation results. 

4.4. Significance and constraints of the study 

This study demonstrated the efficacy of fusing multi-source sensor 
data with SPAD values to enhance maize AGB estimation accuracy holds 
substantial promise for modern farming practices, and bears significant 
implications for both agricultural management and crop phenotypic 
parameters estimation. The capability to accurately monitor crop AGB 
across different growth stages empowers farmers and agronomists to 
make well-informed decisions about resource allocation, irrigation, and 
fertilization. This directly translates into improved resource efficiency, 
cost reduction, and a decreased environmental impact. Moreover, the 

superiority of the CatBoost algorithm over RFR and SVR highlights the 
crucial role of algorithm selection in precision agriculture. In an 
evolving artificial intelligence technology, the integration of advanced 
machine-learning techniques can notably elevate the accuracy of AGB 
estimation. As observed in this study, CatBoost has a clear superiority 
and therefore these advanced algorithms should be adopted more 
resolutely in practical agricultural management. This endorses practi
tioners with a reliable framework that yields dependable and high- 
accuracy estimation outcomes. Furthermore, the identified influence 
of different growth stages on estimation accuracy provides actionable 
insights for crop precision management. With a clearer understanding of 
the varying impacts of different growth stages, practitioners can adjust 
their data collection efforts and interventions to specific growth stages. 
This temporal precision in decision-making supports targeted in
terventions such as timely pest management, nutrient application, and 
harvest planning. This study also utilized UAV sensor data and SPAD 
values from 2022 as a training set to construct an AGB estimation model 
using the CatBoost algorithm. The model was then tested using UAV 
sensor data and SPAD values from 2023 to estimate the AGB for that 
year, as shown in Fig. 13. It is evident that with the incorporation of 
different data sources, the accuracy of estimation gradually improves. 
Notably, the combination of MS + TIR + SPAD maintains the highest 
estimation accuracy. This result strongly validates the efficacy of the 
proposed method in estimating maize AGB for future years. Addition
ally, the study using multi-source sensor data with SPAD values fusion 
estimate maize yield for the year 2022, as depicted in Fig. 14. It is 
evident that the fusion of multi-source sensor data continues to yield 
higher estimation accuracy compared to using a single sensor. More
over, the addition of SPAD values on top of the multi-source sensor data 
further enhances estimation accuracy. This affirms the method’s 
adaptability across various scenarios. From a practical perspective, the 
high-throughput crop phenotyping method proposed in this study pro
vides valuable insights for precision agriculture management. 

In practical situations with a limited number of plots, the combina
tion of SPAD data does indeed hold significant practical value. In such 
scenarios, the manual collection of SPAD data can be easily managed 
and can provide valuable information for model calibration and vali
dation. However, obtaining a large quantity of SPAD values extensively 
requires significant human and material resources, posing a challenge 
that needs to be addressed. To tackle this issue, this study proposes an 
improved approach. This study using UAV sensor data from 2022 as a 
training set, constructs a SPAD value estimation model (using the Cat
Boost algorithm). Subsequently, the 2023 UAV data was used as a testing 
set to estimate the 2023 SPAD values. (Fig. 15(a)). This method requires 
only a certain amount of SPAD value data to be modeled alongside UAV 
sensor data, while the rest of the SPAD data can be obtained from high- 
throughput UAV sensor data, reducing the labor required for manual 
ground-based SPAD data collection. To demonstrate the reliability of 
this approach, the measured SPAD values and UAV sensor data from 
2022 for training to construct an AGB estimation model, and the esti
mated SPAD values and UAV sensor data from 2023 for testing, in order 
to estimate the AGB of maize for 2023. Fig. 15(b) presents a scatter plot 
depicting the combination of UAV sensor data with estimated SPAD 
values from 2023 for 2023 AGB estimation. Notably, the AGB estimated 
by this method achieves an R2 value of 0.916 and an rRMSE value of 
24.98%, which is significantly superior in accuracy compared to the 
method shown in Fig. 13 that solely utilizes UAV sensor data for AGB 
estimation for 2023 (MS + TIR, R2 = 0.886, rRMSE = 29.19%). By 
introducing this improved approach, the challenge of expending 
excessive resources to acquire SPAD values in the real world is effec
tively addressed, providing a more reliable and efficient solution for 
estimating maize AGB. 

5. Conclusion 

This study explores the fusion of UAV multi-source sensor data with 
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Fig. 13. Effectiveness of fusion of multi-source sensor data with SPAD values for maize AGB estimation in future years (2023). (a) R2, (b) rRMSE.  

Fig. 14. Effectiveness of fusion of multi-source sensor data with SPAD values for maize yield estimation. (a) R2, (b) rRMSE.  

Fig. 15. Scatter plots of estimated SPAD values in 2023 (a) and the fusion of UAV multi-source sensor data with estimated SPAD values from 2023 to estimate 2023 
AGB (b). 
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SPAD values and the application of CatBoost to maize AGB estimation. 
The following conclusions were obtained:  

1. Whether for the entire growth stage or a single growth stage, the 
fusion of UAV multi-source sensor data can improve the estimation 
accuracy of individual sensors, and the integration of SPAD values 
with multi-source sensor data can further improve the estimation 
accuracy.  

2. The estimation accuracy varies across different growth stages, with 
an increasing trend in accuracy from the jointing stage to the big 
trumpet stage. 

3. CatBoost has achieved the best estimation results, which has signif
icant potential for crop phenotyping research. 

This study provides a new and effective tool for maize AGB estima
tion, which can meet the need for low-cost, large-scale, and repeated 
observations for crop growth monitoring. 
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