
Soil Biology and Biochemistry 185 (2023) 109147

Available online 12 August 2023
0038-0717/© 2023 Elsevier Ltd. All rights reserved.

A new concept for modelling the moisture dependence of heterotrophic 
soil respiration 

Zhongdong Huang a, Yuan Liu a,*, Pengfei Huang a, Zhongyang Li a,b, Xiaoxian Zhang c 

a Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, Henan Province, China 
b National Research and Observation Station of Shangqiu Agro-ecology System, Shangqiu, 476000, China 
c Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK   

A R T I C L E  I N F O   

Keywords: 
Heterotrophic soil respiration 
Pore-scale substrate heterogeneity 
Macropores 
Modelling 
Oxygen dissolution and diffusion 
Moisture and temperature response 

A B S T R A C T   

The moisture dependence of heterotrophic soil respiration is a key factor affecting the uncertainty in predicting 
the response of soil organic carbon (SOC) to global warming. Considering that heterotrophic respiration from 
unsaturated soils is primarily driven by microbial reduction of oxygen (O2), we propose a new concept to model 
the respiration by tracking dissolution of gaseous O2 and its subsequent diffusion and microbial reduction at 
hydrated microsite in the pore space of soil. Total respiration from a soil sample is calculated by summing the O2 
reduced by all microbes in the soil. This allows us to separate physical processes and microbial activity occurring 
at microsites and incorporate pore-scale substrate heterogeneity, macropores and other factors explicitly into the 
model. We show that scaling up these microscopic physical processes over a soil sample makes soil moisture, 
temperature, and other factors inherently integrated in their influence on microbial respiration, and that a 
change in one of them affects the response of the respiration to the change in others. Comparison with experi-
mental data shows the model can reproduce the diverse moisture-respiration relationships observed from various 
experiments and predict the change in soil respiration with temperature. It is noteworthy to point out that 
previous studies had attributed the variations in the moisture and temperature sensitivity of heterotrophic soil 
respiration to microbial adaptation; herein we demonstrate that changes in soil structure and physical processes 
can also give rise to such variations. Distinguishing between physical and microbial effects in data analysis and 
modelling is therefore crucial, as mistaking physical effects for microbial adaptation would lead to errors in 
predicting the response of SOC to environmental changes.   

1. Introduction 

Soil water and temperature are the two most critical abiotic factors 
influencing biogeochemical processes and the sensitivity of soil organic 
carbon (SOC) to environmental changes in terrestrial ecosystems. While 
temperature primarily affects microbial metabolism, the impact of soil 
water is multifaceted and diverse (Moyano et al., 2013). In addition to 
keeping microbes hydrated, soil water also functions as a medium for 
exoenzymes and soluble substrates to move away and towards microbes. 
For respiration of aerobic microbes, soil water controls bioavailability of 
oxygen (O2), as O2 becomes bioavailable only after it dissolves at 
water-air interface and diffuses to regions in close proximity of microbes 
(Lee et al., 2003). These physical processes are modulated by soil 
structure and temperature, as temperature rise reduces O2 dissolution at 

water-air interface while a change in soil structure alters the water-air 
interface for O2 to dissolve and the distance between water-air inter-
face and microbes for dissolved O2 to move (Zhang et al., 2022). 
Correctly representing these physical processes in SOC models is critical 
to reliably projecting the response of SOC to global warming but chal-
lenging because of their complexity (Falloon et al., 2011). 

Most SOC models currently in use parameterize the soil water effect 
using a moisture function to scale back the heterotrophic respiration 
achieved at an optimal moisture content for microbial respiration (Bauer 
et al., 2008; Moyano et al., 2013). Since the mechanisms responsible for 
emergence of the optimal water content are diverse and difficult to 
quantify, most moisture functions are phenomenological and vary 
widely between SOC models (Bauer et al., 2008). Skopp et al. (1990) 
made the first effort to mechanistically describe the soil moisture effect 
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on respiration, and Yan et al. (2018) improved it. Although the models 
developed by them differ mathematically, their physical principles are 
comparable in that the variation in respiration with soil moisture is the 
compromise between gaseous O2 diffusion and aqueous O2 diffusion. 
They defined a critical moisture content when gaseous O2 diffusion and 
aqueous O2 diffusion are in balance. To derive the moisture function, it 
was assumed that when soil water content is lower than the critical 
value, the respiration is limited by aqueous O2 diffusion, while when soil 
water content is higher than the critical value, gaseous O2 diffusion is 
the limiting factor. This is an approximation, as the relative dominance 
of the gaseous and aqueous O2 diffusions in their influence on the 
respiration should undergo a transition rather than an abrupt change 
over the critical moisture, as demonstrated by theoretical analysis and 
experimental data (Zheng et al., 2022). 

Emission of CO2 from soils is the result of microbial metabolism. 
Although denitrification and fermentation in wet soils and oxidation of 
methane also produce CO2 (Tokida et al., 2011; Guilhen et al., 2020), in 
unsaturated soils, the main source of CO2 is microbial reduction of O2 
(Skopp et al., 1990; Yan et al., 2018; Zhang et al., 2022). Physically, 
atmospheric O2 moves into the soil first, and then dissolves and diffuses 
in water in the hydrated pore space before being microbially reduced at 
reactive sites. During these processes, O2 needs to overcome various 
resistances. Since gaseous O2 moves four-five orders of magnitude 
(depending on temperature and atmospheric pressure) faster than dis-
solved O2, O2 dissolution and its subsequent diffusion are the mecha-
nisms underlying the transition between anaerobic and aerobic 
environment in soils (Keiluweit et al., 2017; Harris et al., 2021). 
Assuming microbes reside on the wetted pore walls, Zhang et al. (2022) 
proposed a model showing that temperature and soil water are non-
linearly coupled in their influence on soil respiration. While the 
assumption is rational, some microbes in soils are not static but motile 
(Ebrahimi and Or, 2016). In this paper, we propose to calculate the ef-
fect of soil water on heterotrophic soil respiration by modelling diffusion 
of dissolved O2 and its microbial reduction in hydrated pore space as two 
random processes. The model for microbial respiration from a soil 
sample is derived from the mass balance that at equilibrium, the mass of 
O2 dissolved at water-air interface in the soil sample is the same as the 
O2 reduced by microbes in the soil. We compare the model with various 

experiments with both moisture and temperature gradients and discuss 
the importance of explicitly including these physical processes in data 
interpretation and modelling the response of SOC to environmental 
changes. 

2. Model development 

2.1. Theoretical analysis 

Fig. 1A shows schematically the microscopic cross-section of a soil 
with water and air co-existing in its pore space. As water in soil is held by 
capillary pressure, water is in small pores and air in large pores. Gaseous 
O2 diffuses four-five orders of magnitude faster than dissolved O2, and 
the partial pressure of gaseous O2 in the soil sample can thus be assumed 
to be spatially uniform. Gaseous O2 dissolves at the water-air interface 
and then moves randomly in the hydrated pore space (Fig. 1B). If a 
gaseous O2 molecule dissolves at water-air interface at time t = 0, in the 
absence of biogeochemical reactions, the probability that it is still in 
water without being evaporated after time elapses to t is represented by 
g1(t). In literature, g1(t) is known as memory function (Haggerty and 
Gorelick, 1995; Li et al., 2018). When microbes are present and the 
reduction of O2 by microbes can be approximated by a first-order kinetic 
with the kinetic reaction rate represented by kc, the probability that the 
O2 molecule has not been respired by microbes at time t is g2(t) = exp 
(-kct) (Li et al., 2018). Because O2 movement and its microbial reduction 
are independent, under the combined impact of random movement and 
microbial reduction, a O2 molecule that dissolves at water-air interface 
and is still in water after a time period t is 

f (t) = g1(t) ⋅ g2(t)= g1(t)⋅exp(− kct) (1) 

Eq. (1) is for a single O2 molecule in the hydrated pore space. To scale 
it up to the soil sample with volume V and volumetric soil water content 
θ, we represent the number of dissolved O2 molecules at the water-air 
interface in the soil sample at time t by M(t). The number of dissolved 
O2 molecules in the hydrated pore space at time t is hence 

N(t)=
∫ t

0
M(τ)g1(t − τ)e− kc(t− τ)dτ, (2) 

Fig. 1. (A) In the pore space with co-existence of water and air, (B) gaseous oxygen (O2) dissolves at water (blue)-air (white) interface to become aqueous O2. It then 
diffuses in the water. At microsites with the presence of microbes and substrates, aqueous O2 is reduced. The reduction rate is kc and depends on local temperature 
and substrate concentration. Microbial reduction of O2 produces CO2 which flows into the air-filled pores and then emits out of the soil. 
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The water-air interfacial areas in the soil sample are represented by 
Awa(θ) when volumetric soil water content is θ, and the number of dis-
solved O2 molecules on the water-air interface is proportional to Awa(θ) 
and dissolved O2 concentration on the water-air interface, c0(t), that is 

M(t) = ξ⋅Awa(θ)⋅c0(t), (3)  

where ξ is a parameter to balance the unit of both sides of Eq. (3). As 
microbial reduction of O2 is a first-order kinetic, the respiration rate 
from the soil sample is hence 

Re(θ, t) = ξ ⋅ kc ⋅ Awa(θ) ⋅
∫ t

0
c0(τ) ⋅ g1(t − τ)⋅e− kc(t− τ)dτ, (4) 

The memory function g1(t) has been intensively studied in soil 
physics and subsurface hydrology (Coats and Smith, 1964; Haggerty and 
Gorelick, 1995; Chen and Wagenet, 1997; Hu et al., 2014; Zhang and 
Gao, 2016; Li et al., 2018). It can be directly calculated from soil 
structure (see Supplementary materials for details). To make the model 
analytical, it has been found that the following function, defined in its 
Laplace transform, can effectively describe the memory functions for 
different materials (Cvetkovic, 2012; Zhang and Gao, 2016): 

G1(s)=
∫ ∞

0
g1(t) ⋅ e− stdt=

[

1 +
(s

a

)b
]− β

, (5)  

where s is the Laplace transform variable, and a, β and b are soil pa-
rameters which depend on soil structure and soil water content. 

When c0(t) is a constant, O2 movement and its microbial reduction in 
the soil sample reach equilibrium as time elapses. As proven in the 
Appendix, at equilibrium, the respiration rate from the soil sample is 

R0(θ)= ξ ⋅ kc ⋅ Awa(θ) ⋅ c0⋅

[

1 +

(
kc

a

)b
]− β

, (6) 

To reduce the number of parameters, we simplify Eq. (6) with β = b 
= 1. Physically, this is the same as the mobile-immobile model to 
describe the mass exchange between inter-aggregate and intra- 
aggregate pores (Coats and Smith, 1964; Haggerty and Gorelick, 
1995), where g1(t) = a⋅exp(-at). This is a simplification but adequate to 
describe the impact of soil water on diffusion of dissolved O2 (Haggerty 
and Gorelick, 1995). As demonstrated in the Supplementary materials, 
the parameter a is large when soil is dry and small when soil is wet. To 
reduce the number of parameters, we simplify the change in a with soil 
water content as follows (Hu et al., 2014): 

a(θ)=
1
a1

θs − θ
θ

, (7)  

where θs is soil porosity and a1 is a soil structure parameter. 
The water-air interfacial area function Awa(θ) is a soil structure 

parameter and varies with soil water content. Since Awa(θ) is zero when 
soil is completely dried or fully saturated, Awa(θ) is a “bell” shape 
function. For most soils we studied previously (Hu et al., 2014; Li et al., 
2017) and the examples shown in the Supplementary materials 
(Figure S2), the change in Awa(θ) with θ can be described by the 
following general function: 

Aws(θ) = A0Θb1 (1 − Θ)
b2 ,

Θ = θ/θs
(8)  

where Θ is saturation, and A0, b1 and b2 are soil structure parameters. 

2.2. Model for respiration from soil sample 

From the mass balance, the mass of O2 respired by microorganisms in 
a soil sample is balanced by the mass of O2 dissolved at water-air 
interface in the soil when the system is at equilibrium. The O2 dissolu-
tion at the water-air interface is a first-order kinetic (Zhang and Gao, 

2016): 

q = κ
(
Ceq − c0

)
(9)  

where Ceq is the saturated dissolved O2 concentration calculated from 
Henry’s law, and κ is the dissolution rate coefficient. When soil water 
content is θ, the mass of O2 dissolved at the water-air interface is the 
same as the mass of O2 respired by microbes in the soil, that is, 

κ⋅Awa(θ)⋅
(
Ceq − c0

)
= ξ⋅kc⋅Awa(θ)⋅c0⋅Er(θ, kc)

Er(θ, kc) =

[

1 +

(
kc

a(θ)

)]− 1 (10)  

where the right-hand side in the first equation is equal to R0(θ) in Eq. (6). 
Solving for c0 gives 

c0 =
κ⋅Ceq

ξ⋅kc⋅Er(θ, kc) + κ
(11) 

Substituting Eq. (11) into Eq. (6) yields 

R0(θ)= kc ⋅ Ceq ⋅ ξ⋅Awa(θ)
[

1
Er(θ, kc)

+
ξ⋅kc

κ

]− 1

(12) 

The first term inside the square bracket on the right-hand side rep-
resents the effect of O2 diffusion in water and the second one is the 
impact of O2 dissolution rate at the water-air interface. If O2 dissolution 
rate is significantly faster than microbial reduction, that is, ξ⋅kc/κ→0, 
the second term in the square bracket reduces to zero. This is an 
assumption used in modelling oxygen reduction in hydrogen fuel cells 
(Sun et al., 2005; Zhang et al., 2014). As O2 reduction in hydrogen fuel 
cells is far faster than microbial reduction of O2 in soil, it is safe to as-
sume ξ⋅kc/κ→0 for soils. 

2.3. Moisture-temperature coupling and substrate accessibility 

The parameter kc in the above equations represents microbial 
reduction rate of O2. It is a collective representation of other factors, 
including temperature, which affect microbial respiration. Its depen-
dence on temperature is described by the Arrhenius equation (Davidson 
and Janssens, 2006): 

kc = λ(S)exp
(

−
Ea

RT

)

(13)  

where λ is the pre-exponential factor depending on substrate (repre-
sented by S) and substrate accessibility, Ea is the activation energy of the 
substrates, T is temperature and R is the gas constant. In comparison 
with experimental data in the next section, the substrates and other 
factors are collectively represented by the parameter λ. 

Experimental observation revealed that substrates and their acces-
sibility vary with pore sizes in that substrate accessibility in small pores 
is less than that in large pores (Bailey et al., 2017; Kravchenko et al., 
2019a, 2019b). When soil water content is low, water and dissolved 
substrates are in small pores. Some of these pores, especially in clay-rich 
soils, might be smaller than microbes. Because of water viscosity and 
van der Waals force, substrates in these pores diffuse slowly and they are 
hence difficult for microbes to access. When soil water content is high, 
water and substrates are in both large and small pores and more 
accessible to microbes. To describe such pore-scale variations of sub-
strate accessibility, we use water content as a proxy for pore size and 
allow λ to vary with soil saturation as follows: 

λ= λ0(S)
[
Θ(α1 + Θ)

− 1]γ1
, (14)  

where α1 and γ1 are parameters controlling the accessibility of substrates 
in different pores. Their respective impact on substrate accessibility is 
shown in the supplementary materials (Figure S4). For repacked sandy 
soils, where pores are large and substrates are spatially uniform over 
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pore space, the parameters α1 and γ1 are both zero. 

2.4. Macropores 

Some field and incubation experiments show significant CO2 emis-
sions even when soils approach saturation. Although some researchers 
have attributed this to denitrification and fermentation (Tang and Riley, 
2019), the presence of macropores, such as cracks and bio-pores, also 
plays a critical role. These pores remain air-filled and provide pathways 
for atmospheric O2 to enter the soil even when the surrounding matrix is 
saturated. Furthermore, even in incubation experiments where the 
macropores are eliminated, O2 still dissolves at the soil surface and 
moves into soil water when soil is under fully saturated condition. To 
account for the effects of these factors, we modify the water-air interface 
function as follows, so that when soil matrix is saturated, there are still 
water-air interfaces for O2 to dissolve and move into soil: 

Awa(Θ)=A0⋅Θb1 (1 + ε − Θ)
b2 , (15)  

where ε is a parameter representing the effects of macropores and the 
soil surface. 

2.5. The model and comparison with experiments 

The model for CO2 emission from a soil sample is summarised as 
follows: 

R0(Θ,T) = kc(T,Θ)⋅A(Θ)⋅Ceq⋅Er(Θ,T),

A(Θ) = ξ⋅A0⋅Θb1 (1 + ε − Θ)
b2 ,

Er(Θ,T) =
[
1 + a1⋅kc

Θ
1 − Θ

]− 1
,

kc(T,Θ) = λ0(S)
[
Θ(α1 + Θ)

− 1 ]γ1 exp
(

−
Ea

RT

)

,

(16) 

Eq. (16) demonstrates that the influence of temperature, soil water 
content and other factors (represented by λ0) on soil respiration are 
nonlinearly integrated in that a change in one of them will affect the 
response of soil respiration to the change in others. This paper assumed 
substrate is not a limiting factor and λ0(S) in each example is constant. 

The model involves a number of parameters, each having its physical 
interpretations as explained above. Since ξ, A0, a1 are soil parameters 
and are constants for a given soil, to reduce the number of parameters, 
we combine them by rewriting Eq. (16) as follows: 

R0(Θ,T) = k’(T,Θ)⋅A’(Θ)⋅Ceq⋅Er(Θ,T),

A′(Θ) = Θb1 (1 + ε − Θ)
b2 ,

Er(Θ,T) =
[
1 + a’⋅k’

Θ
1 − Θ

]− 1
,

k’(T,Θ) = λ’(S, T)
[
Θ(α1 + Θ)

− 1]γ1
,

λ’(S, T) = ξ⋅A0⋅λ0(S)⋅exp
(
− Ea⋅R− 1⋅T − 1); a’ = a1⋅ξ− 1⋅A− 1

0 .

(17) 

We use the law of scaling to compare the model and experiments in 
that a scaled respiration calculated from Eq. (18) is the same as the 
experimental respiration scaled by the same method (Ebrahimi and Or, 
2016). For experiments that have only moisture gradient and the tem-
perature is constant (represented by T0), the law of scaling is 

R′(Θ,T0)=

[
Θ(α1 + Θ)

− 1]γ1 ⋅A′(Θ)⋅Er(Θ,T0)
[
Θ∗(α1 + Θ∗)

− 1]γ1 ⋅A′(Θ∗)⋅Er(Θ∗,T0)
≈

RE(Θ,T0)

Ω(Θ∗,T0)
, (18)  

where ϴ* is the saturation at which [Θ(α1 + Θ)
− 1
]
γ1 ⋅A′(Θ)⋅Er(Θ,T) peaks, 

RE(Θ,T0) is the measured respiraitonin in experimemnts, and Ω(Θ∗,T0)

is the respiration when the saturation is Θ∗ in the experiments. 
Depending on the experiments, we either directly compared the scaled 
respiration calculated from Eq. (18) with experimental data, or multi-
plied the scaled respiration calculated from Eq. (18) by the scalar Ω(Θ∗,

T0), to account for the size effect in the experiments, i.e., RE(Θ,T0) =

Ω(Θ∗,T0)⋅R′(Θ,T0). There are seven parameters in Eq. (18): α1, γ1, b1, b2, 
ε, a’ and λ(S,T0). To reduce the number of parameters, b1 and b2 were 
assumed to be the same in all experiments; their values are the averages 
of the results we calculated for different soil samples. This is an 
approximation but captures the change in water-air interfacial area with 
soil water content, as well as its impact on respiration. 

In the experiment with both temperature and moisture gradients, we 
first used the data measured from different soil water contents and under 
the same temperature (represented by T0) to estimate the soil structure 
parameters and the scalar Ω(T0) using Eq. (18) and the procedures dis-
cussed above. We then predicted the change in respiration with tem-
perature without introducing extra parameters. From Eq. (17), the 
parameter λ′(Θ,T) associated with temperature T is calculated from λ’(Θ,

T) = exp[EaR− 1(T− 1
0 − T− 1)]⋅λ’(Θ, T0); the value of Ea took the value 

recommended in the literature (Davidson, 2020); to account for the 
change of O2 dissolution with temperature, the scalar factor associated 
with temperature T is calculated from Ω(T) = Ω(T0)Ceq(T)/Ceq(T0)

because the respiration is proportional to Ceq (Eq. (16)), where Ceq(T)
and Ceq(T0) are the values of Ceq at temperature T and T0 respectively. 

The functions in Eq. (18) are simple and we used the curve fitting 
toolbox in the Matlab to fit the model to the experimental data. 

3. Results 

3.1. Impact of substrate heterogeneity and macropores 

The impact of substrate heterogeneity and soil structure on soil 
respiration is represented by several characteristic parameters. 
Although the variation in water-air interfacial areas with soil water 
content is a soil structure parameter, herein we focus on pore-scale 
substrate heterogeneity and macropores. To emphasise the importance 
of these soil parameters in influencing the moisture-respiration rela-
tionship, the temperature and substrate parameters are not limiting 
factors, that is, the parameter λ′(S,T) in Eq. (17) is constant. The mois-
ture sensitivity is calculated from Eq. (18), which is equivalent to the 
moisture functions used in SOC models (Bauer et al., 2008). The two 
parameters characterising water-air interfacial areas took b1 = 1.3 and 
b2 = 0.8 in all examples. This is an approximation but rational as it 
captures the change in water-air interfacial areas with soil water. 

We first demonstrate the effect of the two parameters, α1 and γ1, 
characterising the pore-scale substrate heterogeneity; their impact on 
pore-scale substrate is shown in Fig. S4. When α1 = 0, λ is a constant and 
the substrate accessibility is independent of pore size and is spatially 
uniform. With γ1 increasing, substrate accessibility in small pores de-
creases faster while those in large pores increases faster. Fig. 2A shows 
the change in the moisture-respiration relationship when α1 is changed 
from 0.2 to 20 with other parameters kept the same. With α1 increasing, 
the accessibility of substrates in small pores decreases and those in larges 
increases. As a result, respiration from small pores decreases while that 
from large pores increases, the moisture-respiration curve shifts to the 
right. Fig. 2B shows the change in the moisture-respiration relationship 
when the parameter γ1 is increased from 0.5 to 3.0 with other parame-
ters remaining the same. As shown in Fig. S4, with γ1 increasing, the 
increase in substrate accessibility with pore size changes from “concave- 
down” increase (when γ1 < 1) to “concave-up” increase (when γ1 < 1). 
As a result, with γ1 increasing, the increase in the respiration with soil 
water becomes increasingly “concave-up” at the dry end, and the 
moisture-respiration curve shifts to the right. Fig. 2C shows the impact 
of macropores on the moisture-respiration relationship when other pa-
rameters are the same. Increasing macropores means that O2 still dis-
solves and moves into the water when the matrix is fully saturated. 
Therefore, increasing macroporosity affects the respiration on the wet 
end more profoundly than on the dry end. 
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3.2. Comparison with experimental data 

We compare the model with five experiments, four with moisture 
gradient only and one with both temperature and moisture gradients. 
We use these examples to demonstrate: i) the model captures the 
fundamental mechanisms governing the response of respiration to soil 
water change, ii) temperature and soil water are nonlinearly coupled in 
their influence on soil respiration, iii) the model correctly describes this 
nonlinear integration. The change in respiration with soil water and 
temperature is mediated by various factors and for each example, we 
made rational simplifications (described in each experiment) in order to 
reduce the number of parameters. The values of the parameters and the 

associated Akaike Information Criterion (AIC) for each experiment are 
given in Table 1. 

3.2.1. Moisture response 
There was no temperature gradient in these examples and the 

parameter λ’(T, S) in Eq. (17) is hence constant. The respiration in all 
examples is calculated by Eq. (18), with the calculated results converted 
or not converted to real respiration (see details for each example). 

The first example is an incubation experiment using a sandy soil 
(Skopp et al., 1990), where the respiration rates measured at different 
soil water contents were normalized by the maximum respiration rate at 
the optimal moisture content. Sieving helped homogenise the substrates, 

Fig. 2. Effect of pore-scale substrate accessibility on the moisture response of the respiration. (A) Effect of the parameter α1 which controls substrate heterogeneity 
(ξA0 = 1.0, λ0exp(-Ea/RT) = 1.0, ε = 0, α0 = 1.0, γ1 = 1.0). (B) Effect of the parameter γ1 which controls the skewness of the pore-scale substrate distribution (ξA0 = 1, 
λ0exp(-Ea/RT) = 1, ε = 0, α0 = 1.0, α1 = 1.0). (C) Effect of the porosity of macropore ε (ξA0 = 1, λ0exp(-Ea/RT) = 0.01, α0 = 1.0, γ1 = 1.0, α1 = 0.1). 

Z. Huang et al.                                                                                                                                                                                                                                  



Soil Biology and Biochemistry 185 (2023) 109147

6

and we hence assume pore-scale substrate distribution is uniform with 
the parameters α1 and γ1 in Eq. (14) being zero. Also, macropores were 
unlikely to develop in repacked sandy soil and the parameter ε in Eq. 
(13) is zero. Therefore, there are only two parameters, λ′(T, S) and a’. We 
adjusted them to fit the experimental data; the modelled results and the 
experimental data are compared in Fig. 3A; they agree well with R2 =

0.91 and p = 1.3 × 10− 7. 
The second example is also an incubation experiment using a silty 

clay loam (Linn and Doran, 1984), where CO2 production was measured 
when soil saturation was increased from 10% to 95%. We adjusted the 
values of other parameters to reproduce the measured data; the 
modelled and measured respiration rates (normalized) are compared in 
Fig. 3B. The model captures the variation in respiration well when soil 
water content is lower than the optimum, but there is a discrepancy 
between them when soil water content exceeds the optimum. Overall, 
they agree reasonably well with R2 = 0.75 and p = 0.0026. 

The third example is an incubation experiment using an undisturbed 
luvisol soil (Herbst et al., 2016), where the respiration rate increased 
approximately linearly with soil water content. The driver behind this 
moisture-respiration relationship is likely due to the presence of mac-
ropores, because the undisturbed luvisol is a structured soil and the 
pore-scale substrate distribution in it is likely to be heterogeneous. The 
increase in respiration with soil water content at the dry end is 
concave-downward, meaning that the value of the parameter γ1 in Eq. 
(14) is less than 1 as demonstrated in Fig. 3C. We reproduced the 
experimental data by adjusting these parameters, and the comparison 
between the measured and calculated respiration rates is shown in 
Fig. 3C. They agree well with R2 = 0.94 and p = 1.3 × 10− 6. 

The fourth example is respiration measured under different soil 
water contents from a loamy soil at an oak savanna field site (Curiel 
Yuste et al., 2007). Macropores due to fauna and root activity were likely 
to have developed in such fields, manifested by the continuous increase 
in respiration when the soil approached saturation (Curiel Yuste et al., 
2007). Also, substrates and microbial communities are likely to vary 
with pore sizes in undisturbed field soil. Incorporating these processes 
needs more parameters, but it can reproduce the response of respiration 
to soil moisture change more accurately as shown in Fig. 3D (R2 = 0.88 
and p = 1.9 × 10− 5), especially at the dry end where the model correctly 
captures the sigmoid-type increase in respiration as soil water content 
increases. 

3.2.2. Moisture-temperature coupling 
The last example is an incubation experiment with both moisture and 

temperature gradients (Zhou et al., 2014). We first estimated the 
soil-structure parameters based on the respiration rates measured from 
different saturations under temperature 31 ◦C, and then predicted the 
change in respiration as temperature was increased. Based on Davidson 
(2020), the activation energy of substrates in the soil took Ea = 55 kJ 

mol− 1. Also, the soil was sieved and mixed; pore-scale substrate distri-
bution was hence assumed to be uniform (α1 and γ1 in Eq. (18) were both 
zero) and the porosity of macropores was zero. We calibrated other 
parameters to reproduce the respiration rates measured under different 
saturations at 31 ◦C; the modelled and measured respiration rates are 
compared in Fig. 4A (R2 = 0.93 and p = 0.009). 

Table 1 
Parameters and their values for each of the five experimental examples we 
compared. The symbol "-" means that the associated parameter was zero and not 
calibrated in the comparison. The parameters b1 and b2 are the same for all 
examples.  

Parameter Example 

1 2 3 4 5 

b1 1.3* 1.3* 1.3* 1.3* 1.3* 
b2 0.8* 0.8* 0.8* 0.8* 0.8* 
a1 (s) 0.9 10.0 0.06 0.02 0.3 
ε – – 0.65 0.25 0.08 
λ0 (s− 1) 0.3 2.3 0.04 5.0 2.8 
α1 – 1.0 0.15 0.2 1.2 
γ1 – 4.3 0.51 1.31 1.1 
Ω – – 0.015 (μg g− 1 

s− 1) 
5.5 (μg m− 2 

s− 1) 
1.8 (μg g− 1 

h− 1) 
AIC − 21.6 7.11 − 102 35.1 8.08  

Fig. 3. Comparison between calculated respiration rates under different soil 
saturations with those measured from various experiments. (A) Incubation 
using a sieved sandy soil (Skopp et al., 1990); (B) incubation using a sieved silty 
clay loam; (C) incubation using an undisturbed luvisol soil (Herbst et al., 2016); 
(D) a field experiment on a loamy soil at an oak savanna site (Curiel Yuste 
et al., 2007). 
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Using these soil structure parameters and the estimated parameter 
λ’(T, S) at 31 ◦C, we predicted the change in respiration when temper-
ature was increased from 10 to 38 ◦C with soil saturation kept at 20 or 
60%, respectively. Fig. 4B compares the predicted and measured change 
in respiration rates when temperature was increased from 10 to 38 ◦C. It 
is manifest that the model predicts the increase in respiration with 
temperature reasonably well at both saturations, with R2 and p of the 
prediction being 0.88 and 0.018 for saturation 20%, and 0.98 and 0.002 
for saturation 60%, respectively. 

4. Discussion 

In unsaturated soils, O2 is the main electron acceptor for microbial 
respiration. Although O2 had been included as a limiting factor previ-
ously to model respiration measured from incubation experiments with 
controlled O2 supply (Davidson et al., 2012; Sierra et al., 2017; Azi-
zi-Rad et al., 2022), in soils, bioavailable O2 is not an independent 
variable but mediated by soil water as atmospheric O2 must dissolve at 
the water-air interface and diffuse into the regions proximal to microbes 
first before becoming bioavailable. Therefore, soil water and bioavail-
able O2 cannot be represented as two independent variables. Further-
more, bioavailable O2 is also affected by temperature in different ways. 
Physically, increasing temperature reduces O2 dissolution at water-air 
interface. Biologically, increasing temperature boosts microbial 

activity at the reactive sites and increases their demand for O2; this 
depletes O2 in the proximity of the microbes and steepens the concen-
tration gradient between water-air interface and the microbes. These 
processes occur in hydrated pore space but regulate the moisture 
response of respiration from soil samples (Chakrawal et al., 2020; Wil-
son and Gerber, 2021). Eq. (16) indicates that all factors which influence 
microbial reduction of O2 are nonlinearly integrated in their impacts on 
soil respiration. Microbial respiration involves a myriad of interdepen-
dent biotic and biotic processes and its modelling for large scale needs to 
be parsimonious. To make the model analytical, we approximate mi-
crobial reduction of O2 at reactive sites in the hydrated pore spaces as a 
first-order kinetic process. However, this differs from the first-order ki-
netic models used by others (Fang and Moncrieff, 2001), which use bulk 
soil properties. In the proposed model, though microbial reduction of O2 
at microsites is a first-order kinetic process, summing all microsites in a 
soil sample makes the total respiration from the soil no longer propor-
tional to the kinetic reaction rate (Eq. (16) and Eq. (17)). 

4.1. Improvement of the proposed model 

Most SOC models use a soil moisture function to describe the mois-
ture effect (Liu et al., 2009; Moyano et al., 2013; Manzoni et al., 2016; 
Bailey et al., 2019; Liang et al., 2022). Although the moisture functions 
used by different models vary, they use one or two soil water contents to 

Fig. 4. (A) Comparison between measured and modelled respiration rates at different soil saturations under 31 ◦C for a sandy soil using Ea = 55 kJ mol− 1. (B) 
Comparison between the measured and predicted respiration rates when the temperature was increased from 10 to 38 ◦C at saturation of 20 and 60%, respectively. 
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cut the moisture-respiration curve into two or three portions (Skopp 
et al., 1990; Bauer et al., 2008; Yan et al., 2018). The experimental data, 
however, do not show existence of such cut-offs (Figs. 2 and 3). 
Considering that the diffusion coefficient of gaseous O2 is in the order of 
10− 1(cm2 s− 1), while the diffusion coefficient of dissolved O2 is in the 
order of 10− 5 (cm2 s− 1). We hence argue that it is the dissolution and 
diffusion of O2 in water, both varying with soil water content, that 
control the response of respiration to soil water content change. Our 
model is developed from this principle, and it captures the smooth and 
diverse variation of respiration with soil water content. 

A critical issue in moisture functions currently in use is that they do 
not account for the variation of substrate over pore space and 

macropores, which impact the moisture response of respiration 
(Franklin et al., 2021; Zheng et al., 2022). We include these and 
demonstrate that a small change in them could lead to a substantial shift 
in the moisture-respiration relationship (Fig. 2). It is worth to point out 
that the parabolic function is often used as an empirical model to 
describe the moisture effect (Zheng et al., 2022), and our results show 
that this appears to apply to sieved sandy soils where substrate distri-
bution is homogenised and macropores are destroyed (Fig. 3A and B, 
Fig. 4A); it is not appropriate for field or intact soils where pore-scale 
substrate distribution is heterogeneous and macropores exist (Fig. 3C 
and D). Also, Reichstein et al. (2003) used a Michaelis-Menten type 
function to describe the moisture-respiration data measured from 17 

Fig. 5. (A) Change in the moisture-respiration 
(normalized by the maximum respiration rate) rela-
tionship when temperature is increased from 5 to 
30 ◦C, with other parameters being the same. (B) The 
impact of soil saturation on the temperature sensi-
tivity of the respiration (for each Θ, the respiration 
rate at temperature T, R0(Θ, T), is normalized by the 
respiration rate at 5 ◦C). (C) Comparison of the tem-
perature sensitivity of the respiration calculated with 
(solid lines) and without (broken lines) considering 
the temperature-dependent O2 dissolution.   
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different forest and shrubland sites in Europe and North America, which 
is similar to Figs. 2C and 3C, whose underlying mechanisms are sub-
strate heterogeneity and macropores. As our model can produce the 
diverse moisture-respiration relationships measured from various ex-
periments, it captures the key mechanisms governing the response of 
respiration to soil water change. 

4.2. Moisture-temperature coupling and its implications 

We chose to work on O2 because the factors and processes which 
affect the bioavailability of O2 are physical and their mechanistic 
modelling has been well established in other areas (Zhang and Gao, 
2016; Li et al., 2018). This enables us to differentiate the physical pro-
cesses and microbial activities. We show that soil water, temperature 
and other factors are nonlinearly integrated in their impact on respira-
tion from soil samples. The close agreement between the measured and 
modelled variations of the respiration with temperature and soil water 
indicates that they are indeed nonlinearly interconnected in their in-
fluence on the respiration (Fig. 4). 

The nonlinear coupling between soil water and temperature means 
that a change in one affects the response of the respiration to the other 
one, and that their combined effect is not multiplicative as commonly 
presumed in most SOC models (Falloon et al., 2011; Li et al., 2023). This 
could be partly responsible for the variation in the predicted response of 
SOC to temperature rise when using different moisture functions (Fal-
loon et al., 2011; Sierra et al., 2015). To demonstrate the implications of 
moisture-temperature coupling, Fig. 5A shows the change in the 
moisture-respiration relationship calculated using Eq. (18) when tem-
perature is increased from 5 to 30 ◦C when other soil structure and 
substrate parameters are the same. The increased microbial metabolism 
due to temperature rise boosts microbial consumption of O2, thereby 
reducing the O2 concentration in the regions proximal to microbes and 
making the regions more anoxic. As a result, the optimal moisture 
content for aerobic microbes shifts to the left. Equally, a change in soil 
water content also affects the response of the respiration to temperature 
rise; Fig. 5B shows that the temperature sensitivity of the respiration 
decreases as soil saturation increases because of the increased attenua-
tion on diffusion of dissolved O2. This is consistent with the general view 
that SOC in tropical regions (characterised by high rainfall and hence 
high soil water content) is less sensitive to warming (Davidson, 2020). 
Haff et al. (2021) showed that, globally, Q10 in the latitude from 40◦S to 
40◦N is significantly lower than that in other regions. While there are 
other biotic and abiotic mechanisms behind this phenomenon, 
moisture-temperature coupling might also play a role, as it attenuates 
the temperature sensitivity of the respiration, with the attenuation 
increasing with temperature (Zhang et al., 2022). Another mechanism is 
O2 dissolution, which decreases with temperature rising (Figure S5). 
Fig. 5C shows that not considering the temperature-dependent O2 
dissolution exaggerates the temperature sensitivity of the respiration, 
and that the exaggeration increases with temperature. 

4.3. Oxygen diffusion and substrate accessibility 

Microbial respiration in unsaturated soils is modulated by O2 and 
substrate accessibility. After its dissolution at the water-air interface, O2 
movement is controlled by its molecular diffusion coefficient and dis-
tribution of water in the pore space (Fig. 1). Their combined effect is 
represented by the parameter a1 in Eq. (7). The unit of a1 is time, and a1 
is related to molecular diffusion coefficient of dissolved O2 (D) and a 
length parameter (τ) which characterises the average distance between 
water-air interface and where the microbes reside (Fig. 1); their rela-
tionship is a1∝τ2/D (Hu et al., 2014). Previous work showed that τ de-
pends on soil texture and that its value for repacked rounded sands is 
smaller than that for aggregated soils (Coats and Smith, 1964; Haggerty 
and Gorelick, 1995; Zoia et al., 2010; Hu et al., 2014; Li et al., 2017). 

Clay is an important factor in soil aggregation and is often used as a soil 
texture indicator in some SOC models (Tang and Riley, 2019; Zheng 
et al., 2022). It is hence rational to assume that a1 increases with clay 
content (Sc) in a1 = η0Sc/(Kc + Sc), or a1 = η0S′

c/(1 + S′
c), where S′

c =

Sc/Kc, and η0 and Kc are parameters. That is, increasing clay content 
creates more small pores and small aggregates, thereby increasing the 
distance between water-air interface and wetted pore walls (Figure S6). 

The increase in small pores due to the increase in clay content makes 
substrates in them less accessible, as microbes can only access, directly, 
substrates in the pores that the microbes can get through. This increases 
the pore-scale heterogeneity of bioavailable substrates. In the meantime, 
increasing clay content enhances soil aggregation and formation of 
macropores (Beven and Germann, 2013; Bacq-Labreuil et al., 2018). We 
can modify the parameters in Eqs. (14) and (15) as follows α1 =

α0Sc/(Kc + Sc), γ1 = γ0Sc/(Kc +Sc) and ε = ε0Sc/(Kc +Sc) to account for 
the effects of clay content on these processes: with the increase in clay 
content, α1 and γ1 increase and substrates in small pores become 
increasingly less accessible compared to substrates in large pores 
(Figure S4). Fig. 6A demonstrates how an increase in relative clay 
content (Sc/Kc) shifts the moisture-respiration curve towards to the 
right. This is consistent with the theoretical analysis (Yan et al., 2016; 
Tang and Riley, 2019; Zheng et al., 2022) and experimental results 
(Franzluebbers, 1999). Interestingly, because of its nonlinear coupling 
with temperature (Eq. (16)), Fig. 6B shows that a change in clay content 
also affects the temperature response of the respiration. 

4.4. Importance to distinguish between physical factors and biological 
factors 

Microbial respiration is complex, influenced by many biotic and 
abiotic factors. Different factors might have similar effects on the 
changes in respiration with soil water and/or temperature. Previous 
work had attributed these changes as biological consequences such as 
microbial adaptation (Hawkes et al., 2017). Microbial adaptation does 
exist, but our studies demonstrate the importance of physical factors 
which have been neglected. For example, the presence of a small frac-
tion of macropores can significantly change the moisture response of 
respiration at the wet end (Figs. 2C and 3C, D). In the field, especially in 
fine textured soils, periodic drying-rewetting is common, which results 
in soil cracking (Beven and Germann, 2013). In fact, de Nijs et al. (2019) 
indeed found that repeated drying-wetting changed the 
moisture-respiration relationship. Though the authors attributed this 
change as a consequence of microbial processes (de Nijs et al., 2019), 
herein we show that change in soil structure could lead to the same 
phenomena. In another example, Hawkes et al. (2017) studied the 
variation in moisture-respiration relationship over a region with pre-
cipitation gradient; they found that, in the dry end, the respiration 
increased with soil water content in a concave-upward way for clay-rich 
soils, while for clay-poor soils, the increase was concave-down. Again, 
the authors attributed such respiration variations with soil texture as a 
consequence of microbial adaptation; our analysis shows that the 
reduced accessibility of substrates in small pores due to the increased 
clay content in clay-rich soils can also give rise to such phenomena 
(Fig. 6A). Microbial adaptation is important, but physical factors and 
processes are also crucial. Neglecting them in data analysis would result 
in their effects being mistaken for microbial adaptation, thereby over-
estimating the role of microbial acclimation in predicting the response of 
SOC to warming. 

Similar to the microbial dimension as addressed recently by Schimel 
(2023), soil structure and physical processes are equally important and 
should be included in modelling ecosystem carbon dynamics. Including 
them inevitably increases the number of parameters, but this is a price 
probably worth paying in order to improve the predictability of SOC 
models. Future work should focus on reducing the number of parameters 
without compromising the representation of soil-structure and physical 
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processes in SOC models. For the model we developed, the water-air 
interfacial parameters can be directly measured (Faisal Anwar et al., 
2000). For ecosystem modelling, however, these parameters need to be 
estimated using easy-to-measure soil properties via pedo-transfer 
functions. 

4.5. Potential link to soil organic carbon modelling 

Our primary purpose is to propose a new concept to model the 
moisture and temperature response of the respiration. We hence 
simplified the microbes and substrates by describing them collectively 
using a single parameter λ (Eqs. (13) and (14)). The concept, however, 
can be used to model SOC dynamics as microbial reduction of O2 at each 
microsite depends on cell numbers and substrate abundance. For 
example, if the substrate effect is described by the Michaelis-Menten 
equation (Davidson et al., 2012), and microbial reduction of O2 is pro-
portional to cell numbers (Tang and Riley, 2019), the kinetic rate kc in 
Eq. (16) can be modified to account for the substrates and microbes: 

kc = η0 ⋅ n ⋅
S

KS + S
⋅
[
Θ(α1 + Θ)

− 1]γ1 exp
(

−
Ea

RT

)

(19)  

where n and S are average cell numbers and substrate abundance at each 
reactive site, respectively, and KS is the affinity parameter for the sub-
strates. Because of the nonlinearity of Eq. (17), changes in cell numbers 
and substrate abundance also affect the moisture and temperature 
response of the respiration. We do not delve into this further as the focus 
of this paper is to present the new conceptual model and its implications. 

5. Conclusion 

We propose a new concept to model the moisture effect of the het-
erotrophic soil respiration by tracking dissolution, diffusion, and mi-
crobial reduction of O2 in hydrated reactive sites, and then summing the 
reduction of all O2 in a soil sample. The model for calculating total 
respiration from the soil sample was derived based on mass balance that 
the mass of O2 dissolved at the water-air interface in the soil sample is 
the same as the mass of O2 reduced by microbes in the soil. This allows 
us to include explicitly pore-scale substrate heterogeneity, macropores, 
temperature and other factors. Comparison with experimental data 
shows that the model can reproduce the diverse moisture-respiration 
relationships measured from various experiments, and that soil param-
eters calibrated from one temperature can predict the variation of the 
respiration after temperature changes. We also show that soil moisture, 
temperature, and clay content are nonlinearly integrated in their im-
pacts on soil respiration, and that a change in one of them alters the 
response of the respiration to the changes in others. In particular, we 
find that for a given substrate, the temperature response of microbial 
respiration is not constant but varies with soil water content and soil 
texture. Also, for a given soil, its moisture effect on heterotrophic 
respiration is not a single function but varies with other factors. All these 
suggest that developing SOC models in the future should consider these 
physical processes. 

Fig. 6. Increasing clay content shifts the moisture-respiration curve towards the wet end due to the increased small pores in which substrates are less accessible to 
microbes (A). Change in clay content also alters the temperature sensitivity of the respiration (B). 
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Appendix 

The Laplace transform of a function f(t) is defined by 

F(s) =
∫ ∞

0
f (t)exp

(

− st
)

dt, (A1) 

Applying the Laplace transform to Eq. (4) and using the convolution theorem, we have 

Re(θ, s)= ξ ⋅ kc ⋅ Awa(θ)⋅C0(s)⋅G1(s+ kc) (A2)  

where 

Re(θ, s) =
∫ ∞

0
Re(θ, t)exp(− st)dt,

C0

(s) =
∫ ∞

0
c0(t)exp(− st)dt,G1(s) =

∫ ∞

0
g1(t)exp(− st)dt, (A3)  

When c0(t) is a constant, C0(s) = c0/s. From Eq. (5) we thus have 

Re(θ, s)= ξ ⋅ kc ⋅ Awa(θ)⋅c0
1
s

[

1 +

(
s + kc

a

)b
]− β

, (A4) 

The system reaches a state of equilibrium as time elapses. At steady state, the respiration from a soil sample is calculated as follows: 

R0(θ)= Re
t→∞

(θ, t)=L− 1
s→0

[Re(θ, s)] = L− 1
s→0

{

ξ ⋅ kc ⋅ Awa(θ) ⋅ c0
1
s

[

1 +

(
s + kc

a

)b
]− β}

= ξ ⋅ kc ⋅ Awa(θ) ⋅ c0 ⋅

[

1 +

(
kc

a

)b
]− β

L− 1
s→0

(
1
s

)

= ξ ⋅ kc ⋅ Awa(θ) ⋅ c0 ⋅

[

1 +

(
kc

a

)b
]− β

(A5)  

where L− 1
s→0

[R(s)] represents taking inverse Laplace transform of R(s) when s→0. 

Nomenclature 

g1(t) Memory function: probability of a O2 molecule remaining in water at time t following its dissolution when there are no any biochemical reactions 
kc (s− 1) Kinetic reaction rate for the first-order microbial reduction of O2 at microsites 
N(t) (mg) Mass of dissolved O2 in hydrated pore space in a soil sample at time t 
Awa (θ) (cm2) Water-air interfacial area in a soil sample when soil water content is θ 
θ Volumetric soil water content 
c0(t) (mg L− 1) Dissolved O2 concentration on the water-air interface in a soil sample 
M(t) (mg) Mass of dissolved O2 on the water-air interface in a soil sample at time t 
ξ (cm) A dimension matching parameter 
Θ Soil saturation 
Re(t) (μg s− 1) Microbial reduction rate of dissolved O2 at time t from a soil sample 
s (s− 1) Laplace transform variable 
a (s− 1) Soil parameter characterising the memory function 
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β Soil parameter characterising the memory function 
b Soil parameter characterising the memory function 
R0(θ) (μg s− 1) Steady microbial respiration from a soil sample when soil water content is θ 
a1 (s) Soil parameter characterising the memory function 
θs Soil porosity 
A0 (cm2) Parameter characterising the change in water-air interfacial area with saturation 
b1 Parameter characterising the change in water-air interfacial area with saturation 
b2 Parameter characterising the change in water-air interfacial area with saturation 
q (μg cm− 2 s− 1) O2 dissolution rate over a unit area of the water-air interface 
κ (cm s− 1) O2 dissolution rate coefficient on over a unit area of the water-air interface 
Ceq (mg L− 1) Saturated dissolved O2 concentration calculated from Henry’s law 
Ea (k J mol− 1) Activation energy of soil substrates in the Arrhenius equation 
λ (s− 1) The pro-exponential factor in the Arrhenius equation (Respiration rate from a unit weight of soil) 
R (J K− 1 mol− 1) The gas constant 
T (K) Temperature 
λ0 (s− 1) The pro-exponential factor after being modified by soil water content (respiration rate from a unit weight of soil) 
α1 Soil parameter characterising pore-scale substrate accessibility 
γ1 Soil parameter characterising pore-scale substrate accessibility 
ε Porosity of macropores 
α0 (s) Soil parameter characterising the impact of clay on memory function 
Sc (mg mg− 1) Clay content 
η0 (μg s− 1) Potential respiration rate of each microbe 
Kc (mg mg− 1) Affinity parameter for impact of clay on pore-scale substrate accessibility 
γ0 Soil parameter for impact of clay on substrate accessibility 
ε0 Soil parameter for impact of clay on porosity of macropores 
n Average numbers of microbes at the micro-reactive sites 
S (mg L− 1) Substrate abundance 
KS (mg L− 1) Affinity parameter for substrates 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.soilbio.2023.109147. 
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