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Abstract: Timely and accurate monitoring of the nitrogen levels in winter wheat can reveal its
nutritional status and facilitate informed field management decisions. Machine learning methods can
improve total nitrogen content (TNC) prediction accuracy by fusing spectral and texture features from
UAV-based image data. This study used four machine learning models, namely Gaussian Process
Regression (GPR), Random Forest Regression (RFR), Ridge Regression (RR), and Elastic Network
Regression (ENR), to fuse data and the stacking ensemble learning method to predict TNC during the
winter wheat heading period. Thirty wheat varieties were grown under three nitrogen treatments to
evaluate the predictive ability of multi-sensor (RGB and multispectral) spectral and texture features.
Results showed that adding texture features improved the accuracy of TNC prediction models
constructed based on spectral features, with higher accuracy observed with more features input
into the model. The GPR, RFR, RR, and ENR models yielded coefficient of determination (R2)
values ranging from 0.382 to 0.697 for TNC prediction accuracy. Among these models, the ensemble
learning approach produced the best TNC prediction performance (R2 = 0.726, RMSE = 3.203 mg·g−1,
MSE = 10.259 mg·g−1, RPD = 1.867, RPIQ = 2.827). Our findings suggest that accurate TNC prediction
based on UAV multi-sensor spectral and texture features can be achieved through data fusion and
ensemble learning, offering a high-throughput phenotyping approach valuable for future precision
agriculture research.

Keywords: RGB; multispectral; texture; ensemble learning; plant phenotyping

1. Introduction

Nitrogen is a critical nutrient for crop growth, influencing development, yield, and
quality [1]. TNC is a primary indicator of a crop’s nitrogen status [2]. Monitoring TNC can
provide valuable insights into a crop’s nutritional status and facilitate effective field man-
agement practices. Traditional nitrogen content determination methods involve destructive
sampling, which is a time-consuming and labour-intensive process requiring significant
resources [3]. While non-destructive methods such as chlorophyll meters have emerged to
estimate nitrogen content, they do not fully reflect the plant’s overall condition.

In several areas, quantitative remote sensing plays an important role [4–6]. With the
development of UAV remote sensing technology, several studies have been conducted in
the agricultural field using UAV-mounted sensors for soil and crop TNC monitoring in
a high throughput and non-destructive manner [7–9]. For example, Lopez-Calderon [8]
demonstrated the effectiveness of estimating the whole nitrogen content of forage maize
based on UAV multispectral imagery data, and Liu [10] demonstrated the effectiveness
of the inversion of the leaf nitrogen content of winter wheat based on UAV RGB imagery.
The commonly used RGB sensor provides information in three high-resolution bands,
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while the multispectral sensor has five bands with more sensitive band information [11].
These two sensors are widely used in agriculture because of their small size, low cost,
simple data processing, and easy disassembly and installation for portability [12,13]. Red,
near-red, and thermal infrared bands have been found to perform well for crop monitoring
using UAV remote sensing techniques [14]. However, the obtained spectral information
and vegetation indices may perform poorly due to soil information and large canopy
biomass [15]. Therefore, combinations of spectral features with varying sensitivities are
chosen to achieve highly accurate prediction data. Furthermore, most studies have used
only a single sensor to demonstrate the effectiveness of UAV remote sensing technology in
predicting nitrogen content. Nonetheless, there are a limited number of studies that have
explored the fusion of multi-source sensor data from UAV remote sensing to determine
total crop nitrogen content.

Texture information is an essential complement to remotely sensed imagery that helps
identify important features of objects or regions in an image. It is commonly used in image
classification [16,17]. Different nitrogen treatments can affect crop growth, resulting in plant
height differences, structural differences, and changes in leaf size and colour, ultimately
leading to changes in texture features in spectral imagery [18,19]. Texture features have
been used in vegetation identification and classification [20], nitrogen inversion [21] and
condition detection [22]. However, most of the previous studies have only analysed RGB
texture features. There are fewer studies that comprehensively assess nitrogen content
using both RGB and multispectral texture features.

In recent years, the use of machine-learning methods to automatically detect patterns
from data and make predictions about unknown data has become increasingly common in
data-intensive fields [23]. These algorithms can effectively solve multivariate non-linear
agricultural problems with good results [24]. For example, Li [25] demonstrated that a
hyper-spectral inversion model based on the random forest algorithm was interpretable,
generalisable, required few samples, did not overfit, and had high accuracy (validation area
test accuracy R2 = 0.73) for estimating rice canopy nitrogen content. Berger [26] combined
machine learning regression to estimate crop nitrogen content and found that the Gaussian
process regression model accurately simulated aboveground nitrogen. Zhang [27] demon-
strated the applicability of ridge regression in the field by introducing ridge regression
analysis to spectral detection methods for crop nitrogen nutrient monitoring. Mahajan [28]
demonstrated the feasibility of ENR in estimating the nutrient status of mango leaves
through machine learning modelling. These studies provide ample evidence that RFR,
GPR, RR, and ENR have good accuracy in agricultural monitoring. Compared to individual
machine learning models, ensemble learning models have better accuracy. As one of these
models, stacking regression combines multiple weak learning models to obtain a more com-
prehensive model that performs well in datasets with different sample sizes [29]. Stacking
regression is an ensemble learning model that improves accuracy by combining multiple
individual learners and capturing their best features [30]. The variety and adequacy of
individual learner selection ensure that the information between learners complements
each other, which is crucial to obtaining correct results [31]. Stacking regression methods
are widely used in agriculture, for example, to estimate chlorophyll content in potatoes [32],
to evaluate nitrogen content in citrus leaves [33], and to estimate alfalfa yield [30], where
accuracies higher than those of individual machine learning models were obtained. In
particular, for understanding the spatial distribution of soil organic carbon (SOC) con-
tent in different climatic regions, the stacking method outperforms the single machine
learning model for estimating nitrogen content [34]. This method can compensate for the
deficiencies of the basic learning model effectively. Although the interpretability of the
stacking method may decrease when using multiple basic stacking tools, the increase in
model prediction accuracy is significant, so further research on the performance of the
stacking model is needed. To date, there are no studies on predicting winter wheat nitrogen
content using ensemble learning methods with stacked spectral and texture features from
multiple sources.
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In summary, this study aims to achieve two main objectives: (1) to assess the efficacy
of spectral and texture features obtained from multi-source sensors mounted on UAVs,
through data fusion, for predicting TNC during the heading stage of winter wheat, and
(2) to develop ensemble learning models that can enhance the accuracy of TNC prediction
compared to individual machine learning models.

2. Materials and Methods
2.1. Experimental Area and Design

This study was conducted at Qiliying Comprehensive Experimental Base of the
Chinese Academy of Agricultural Sciences, located in Xinxiang City, Henan Province
(113◦45’38”E, 35◦8’10”N) (Figure 1), from 2020 to 2021. The study site has a temperate con-
tinental monsoon climate. Figure 2 illustrates the variations in average daily temperature,
rainfall, and radiation during the winter wheat growing season. As depicted in the figure,
the highest temperature and radiation intensity are observed in May, whereas the highest
rainfall occurs in March. The lowest temperature is recorded in January, and the radiation
intensity is lowest in November but increases as the winter wheat grows. Rainfall is mainly
concentrated in November and March, followed by December, April, and May.
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The trial area consisted of 180 plots with three treatments, N1 (300 kg·hm−2), N2
(180 kg·hm−2), and N3 (60 kg·hm−2), applied at two fertility stages: the jointing and the
heading stage (Table 1). The total fertiliser application for each plot was proportionally
divided into three parts: two at the jointing stage and one at the heading stage. Each
nitrogen treatment comprised 60 plots arranged in rows 20 cm apart, with a size of 3 m
long and 1.5 m wide, totalling an area of 4.5 m2. To ensure objectivity, thirty wheat varieties
were selected for this trial, with two replications in each treatment. Pesticide, fertiliser,
and irrigation amounts were based on local management practice standards in the field
experiment. The TNC data were obtained from collected wheat samples at the heading
stage on 23 April 2021. Six representative wheat plants were taken from each plot of
uniform growth as wheat samples, leaving only the aboveground parts with a scissor
treatment, resulting in 180 wheat samples. The wheat samples were dried and weighed
at 80 ◦C. The sample plants were ground and sieved, and the TNC of the wheat samples
was obtained using concentrated sulphuric acid with hydrogen peroxide digestion and a
Kjeldahl nitrogen analyser.

Table 1. Information about the fertiliser.

Treatments Jointing Stage
(kg·hm−2)

Heading Stage
(kg·hm−2) Fertiliser Types

N1 200 100 Urea
N2 120 60 Urea
N3 40 20 Urea

2.2. Acquisition and Processing of Spectral Data

This experiment used an M210 (DJI Technology Co., Ltd., Shenzhen, China) UAV
with a Red-Edge MX multispectral sensor and a Phantom 4 Pro (DJI Technology Co.,
Ltd., Shenzhen, China) UAV with an RGB sensor to obtain UAV multi-sensor image data
collection (Figure 3).
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The DJI M210 is a quadcopter drone with a maximum take-off weight of 6.14 kg and
an average flight endurance of about 30 min. It has a full horizontal flight speed of 18 m/s
and is equipped with a Red-Edge MX multispectral sensor that has five channels: red,
green, blue, NIR, and red edge. These channels have centre wavelengths of 668 nm, 560 nm,
475 nm, 840 nm, and 717 nm, respectively, with bandwidths of 10 nm, 20 nm, 20 nm, 40 nm,
and 10 nm. Each channel has a resolution of 1280 × 960 and a field of view of 47.2◦. To
convert the DN value of the multispectral sensor into reflectance, a calibration plate is
required to calibrate the sensor before and after the mission during post-image processing.
The DJI Phantom 4 Pro is a quadrotor drone with a maximum take-off weight of 1.38 kg, a
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full horizontal flight speed of 20 m/s, a full ascent speed of 6 m/s, and a flight endurance
of approximately 30 min. Mounted on this drone is an RGB sensor with a resolution of
3000 × 4000 and a 94◦FOV of lens. Both UAV missions took place on 23 April 2021 between
11:00 and 14:00, a period of clear and cloudless weather that allowed the avoidance of
shadows as much as possible. The missions were flown at an altitude of 30 m, with a
heading overlap of 85% and a collateral overlap of 80%. Each sensor uses GNSS (Global
Navigation Satellite System) with millimetre accuracy to accurately record the set ground
control points (GCPs) location for later geo-correction. The sensor uses a photo mode with
equal intervals of vertical ground photography.

2.3. Pre-Processing of UAV Images

In this study, separately acquired UAV multispectral and RGB images during the same
heading period were imported into Pix4DMapper Pro software (Pix4D SA, Switzerland)
and aligned using a feature point matching algorithm. Firstly, a sparse point cloud of the
flight area was generated based on UAV image and position data. Then, a spatial grid
was created based on the sparse point cloud, and the spatial coordinate information of
the ground control points (GCPs) was added. Thirdly, a sparse point cloud with precise
positions was generated, and the surface geometry and spatial texture information of the
flight area were created. Finally, high-definition digital orthophotos (DOM) and digital
surface models (DSM) of the flight area were generated, and the processed images were
exported as TIFF images. For RGB images, histogram equalisation was used to enhance
the contrast and brightness, and noise was removed and sharpening was used to enhance
detail and clarity. For multispectral images, radiometric calibration images with known
reflectance were used to correct the images for radiometric calibration, and DN values were
converted to reflectance. Illumination differences between different bands were corrected
to improve data quality. ArcMap 10.5 (Environmental Systems Research Institute, Inc.,
RedLands, CA, USA) was used to divide the high-definition digital orthophotos into plots,
create shapefile files, and divide them into 180 areas with IDs to separately obtain spectral
information for the corresponding ID areas. The raster calculator in ArcMap 10.5 was used
to calculate the corresponding spectral index according to the band information of RGB and
multispectral, respectively. The vegetation index of the corresponding cell was extracted
according to the ID areas. To minimise edge effects on the image, the shapefile was created
to omit the image edge areas and cropped to obtain the required image for the experiment,
which was then imported into ENVI 5.3 (Exelis Visual Information Solutions, Inc., Boulder,
CO, USA) for texture feature extraction. The mean of all feature pixel values extracted
according to the ID was used as the corresponding feature.

2.4. Spectral and Textural Features

Texture information of the multispectral and RGB images was extracted using the
widely used greyscale co-occurrence matrix (GLCM), based on the wavelength information
of the spectral images. ENVI 5.3 software was utilised to extract texture information for
both types of images, which included mean (ME), variance (VA), homogeneity (HO), con-
trast (CO), dissimilarity (DI), entropy (EN), second moment (SE), and correlation (COR).
Additionally, 21 TNC-sensitive vegetation indices were calculated from the spectral re-
flectance of the multispectral images. The average DN values of the digital images’ three
channels were normalised, and the three channels of red, green, and blue were labelled as
R, G, and B. Subsequently, the variables r, g, and b were obtained by normalising the DN
values of the digital images’ three channels, and six more TNC-sensitive vegetation indices
were calculated based on these three digital image variables. Table 2 shows the spectral
and textural characteristics of the RGB images, while Table 3 presents the corresponding
characteristics for the multispectral images.
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Table 2. Spectral and textural features of the RGB sensor.

Data Type Feature Formula Source

RGB

r r = R/(R + G + B) /
g g = G/(R + G + B) /
b b = B/(R + G + B) /

Visible atmospherically
resistant index VARI = (g − r)/(g + r + b) [35]

Ground-level image index GLA = (2 × g − r + b)/(2 × g + r + b) [36]
Green, red vegetation index GRVI = (g − r)/(g + r) [37]

Excess red index EXR = 2 × g − r − b [38]
Normalised difference index NDI = (r + g)/(r + g + 0.01) [39]

g/r g/r = g/r [40]
r/b r/b = r/b [40]

Grey-level co-occurrence
matrix ME, HO, DI, EN, SE, VA, CO, COR [41]

/ empirical visible vegetation index, ME mean, HO homogeneity, DI dissimilarity, EN entropy, SE second moment,
VA variance, CO contrast, COR correlation.

Table 3. Spectral and textural features of multispectral sensor.

Data
Type Feature Formula Source

MS

Chlorophyll vegetation index CVI = (NIR × R)/G2 [42]
Colouration index CI = (R − B)/R [43]

Canopy chlorophyll content index CCCI = (NIR − RE)/(NIR + RE)/(NIR −
R)/(NIR + R) [44]

Chlorophyll index
Red-edge CIRE = (NIR/RE)− 1 [45]

Green difference vegetation index GDVI = NIR − G [46]
Normalised difference vegetation index NDVI = (NIR − R)/(NIR + R) [47]

Green NDVI GNDVI = (NIR − G)/(NIR + G) [48]
Normalised difference red-edge NDRE = (NIR − RE)/(NIR + RE) [49]

Green soil adjusted vegetation index GSAVI = 1.5 × (NIR − G)/(NIR + G + 0.5) [50]
Green optimised soil adjusted

vegetation index GOSAVI = (NIR − G)/(NIR + G + 0.16) [51]

Nitrogen reflectance index NRI = (G − R)/(G + R) [52]
Green ratio vegetation index GRVI = NIR/G [53]
Normalised red-edge index NREI = RE/(NIR + RE + G) [54]

Normalised NIR index NNI = NIR/(NIR + RE + G) [55]
Modified normalised difference index MNDI = (NIR − RE)/(NIR − G) [54]

Difference vegetation index DVI = NIR − R [37]
Renormalised difference vegetation index RDVI = (NIR − R)/SQRT(NIR + R) [56]

Soil-adjusted vegetation index SAVI = 1.5 × (NIR − R)/(NIR + R + 0.16) [57]
Optimised SAVI OSAVI = 1.16 × (NIR − R)/(NIR + R + 0.16) [58]

MERIS terrestrial chlorophyll index MTCI = (NIR − RE)/(RE − R) [59]
ModifiedNon-linear index NLI = 1.5 × (NIR2 − R)/(NIR2 + R + 0.5) [60]

Grey-level co-occurrence matrix ME, HO, DI, EN, SE, VA, CO, COR [41]

MS Multi-spectral, ME mean, HO homogeneity, DI dissimilarity, EN entropy, SE second moment, VA variance,
CO contrast, COR correlation.

2.5. Model Framework

To improve the TNC prediction accuracy of ensemble models based on multiple
source sensors, this study proposes a stacking-based approach which involves two steps.
First, four individual machine learning TNC prediction models were constructed based
on multiple source sensor data trained separately: Gaussian Process Regression (GPR),
Random Forest Regression (RFR), Ridge Regression (RR), and Elastic Network Regression
(ENR). Second, multiple predictions were stacked by an RR learner. These four machine
learning models have been evaluated for their applicability in many studies, can be used
for TNC prediction, and can be supplemented with more useful information by multiple
machine learning models for outcome prediction, which is essential for the construction
of ensemble machine learning models. The four individual machine-learning models are
briefly described below. GPR is a supervised learning process that estimates the parameters
of a regression model by sample learning. It can theoretically approximate any continuous
function in a tight space and can be used to solve a variety of engineering problems [61].
RFR is a machine-learning model that contains multiple decision trees and can simulate the
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relationship between dependent and independent variables based on decision rules. It can
handle large numbers of input variables, assess the importance of variables when deciding
on categories, produce higher accuracy, balance errors, and mine data quickly [62]. RR is a
biased estimation regression method that yields more realistic and better fitting results at
the expense of losing some information and reducing accuracy [63]. ENR is a combination
of Ridge and Lasso regression, an iterative method that maintains the canonical nature
of Ridge, produces reasonable solutions, and does not produce cross-paths [64]. In this
study, the grid search method was used to optimise the hyperparameters. The model’s best
performance was achieved by exhaustively searching a set of predefined hyperparameter
value combinations.

The stacking regression model is an ensemble learning approach that utilises ensemble
methods to learn different data features for improved prediction results [31]. Figure 4
depicts the construction of the stacking ensemble learning model. This study employed a
5-fold cross-validation method to partition the datasets into five random and equal parts
80 times. The same division method was applied to different input features, with each one
serving as the validation set, while the remaining four parts were the training set. This
process was repeated five times, and all the data obtained were utilised as training and
validation samples. After constructing predictions for the base machine learning models
based on the initial dataset, 5 sets of validation data corresponding to the 5 training sets
were generated. These 5 sets of validation data were stacked vertically to obtain the test
set prediction matrix, which was further utilised as the test set for the secondary machine
learning models. The results of the validation set predictions were averaged to obtain the
prediction accuracy of each base machine learning model. The RR model served as an
ensemble machine learning model to blend the predictive power of each machine learning
model, and a 5-fold cross-validation method was employed to train the RR model. Five
validation results were obtained based on the test set prediction matrix, and their mean
value was utilised to obtain the final prediction accuracy. Dividing the dataset multiple
times in line with the 5-fold cross-validation method facilitates the interpretation of the
prediction accuracy of different models and improves the reliability of the predictions.
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2.6. Parameters for Model Accuracy Evaluation

This study divided the initial data set into training and validation sets 80 times, using
a 5-fold cross-validation approach to train the model. Four hundred test results were
obtained after 80 divisions, and the mean values of these test results were used as model
accuracy evaluation parameters, including coefficient of determination (R2), root mean
square error (RMSE), mean square error (MSE), ratio of performance to deviation (RPD)
and ratio of performance to quartile distance (RPIQ). The larger the R2, RPD and RPIQ and
the smaller the RMSE of a predictive model, the better the predictive ability of the model.
The equations for the above four model accuracy assessment parameters are as follows:

R2 = 1 − ∑n
i = 1 (

_
y i − yi)

2

∑n
i = 1 (yi − y)2 (1)

RMSE =

√
∑n

i = 1 (yi − ŷi)
2

N
(2)

MSE =
∑n

i = 1 (yi − ŷi)
2

N
(3)

RPD =
SD

RMSE
(4)

RPIQ =
Q3 − Q1

RMSE
(5)

where yi is the observed value, ŷi is the predicted value,
−
y is the mean of the measured

values, N is the sample size, SD is the standard deviation of the measured values of the
prediction set, is the lower limit of the third quartile, and is the upper limit of the first
quartile [65].

In this study, the importance of each basic learning model in the ensemble model
was calculated using the importance function. Each basic learning model was assigned a
percentage representing its contribution to the explanatory power of the ensemble learning
model. The higher the importance percentage, the greater the contribution of the basic
learning model.

3. Results
3.1. Sampling Statistics

Table 4 shows the TNC values for all test plots and plots under the three nitrogen
treatments in the experiment. The mean TNC value for all test plots sampled in this
experiment was 20.07 mg·g−1. The mean TNC value of the three nitrogen treatments
differed, with the N1 treatment having a significantly higher TNC value than the N2 and
N3 treatments, at 23.66 mg·g−1, while the N3 treatment had the lowest TNC value at
15.28 mg·g−1. The range, standard deviation (SD), quantile statistics, and coefficient of
variation (CV) for all plots and plots under each N treatment showed significant differences
in TNC among the N treatments, and good data separation.

Table 4. Statistics on the characteristics of TNC in samples from each plot at the heading stage (mg·g−1).

Category Observations Min Max Mean SD Q25 Q50 Q75 CV

All
datasets 180 8.26 31.63 20.07 5.70 16.12 19.28 24.74 0.28

N1 dataset 60 15.33 31.63 23.66 4.38 20.44 24.50 26.97 0.19
N2 dataset 60 12.20 30.72 21.28 5.00 17.40 20.68 25.47 0.23
N3 dataset 60 8.26 26.34 15.28 4.07 11.66 15.56 18.01 0.27

SD standard deviation, Q25 lower quartile, Q50 median quartile, Q75 upper quartile, CV coefficient of variation.
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3.2. Analysis of TNC Prediction Accuracy

This study employed four individual machine-learning methods and one ensemble
machine-learning method to predict TNC based on RGB and multispectral images of the
winter wheat heading stage. The prediction results are presented in Table 5. Among the
individual machine learning models, GPR performed the best when spectral indices of
RGB were used as input features (R2 = 0.493, RMSE = 4.273 mg·g−1, MSE = 18.259 mg·g−1,
RPD = 1.386, RPIQ = 2.083), and GPR also performed the best when spectral features
of multiple spectra were used as input variables (R2 = 0.541, RMSE = 4.013 mg·g−1,
MSE = 16.104 mg·g−1, RPD = 1.468, RPIQ = 2.194). To explore the effect of adding texture
information on improving the model’s prediction accuracy, we added texture information
of RGB images and multispectral images, respectively. As seen from Table 4, adding texture
features to the input variables improved the accuracy for all four individual machine
learning models, with the most significant improvement seen for the RFR model, where
R2 improved from 0.382 to 0.531. Adding multispectral texture features also improved the
accuracy for all four individual machine learning models, with RFR performing the best,
and R2 improved from 0.465 to 0.65. In this study, the spectral and texture features of RGB
images and multispectral images were used again as input variables, and all four individual
machine learning models performed best when based on the spectral and texture features
of multispectral images and texture features of RGB images. The RFR and ENR models had
the largest R2 of 0.675, and the RFR model had the smallest RMSE and MSE at 3.404 mg·g−1

and 11.587 mg·g−1, respectively, indicating that the RFR model performed the best. In this
study, the spectral and texture features based on RGB and multispectral images were used
as input variables again, and the results showed that all four individual machine-learning
models had the highest accuracy, and the RR model was the best TNC prediction model
with an R2 of 0.7, RMSE of 3.352 mg·g−1, MSE of 11.236 mg·g−1, RPD of 1.822, and RPIQ
of 2.724. Furthermore, the prediction results of individual machine learning models were
used to build an ensemble machine learning model using the Stacking (RR) method. As
shown in Figure 5, the ensemble machine learning models were more accurate than the
four individual machine learning models when constructed with the same input features.
Among the ensemble machine learning models, the model constructed based on the spectral
and texture features of RGB and multispectral images had the highest accuracy (R2 = 0.726,
RMSE = 3.203 mg·g−1, MSE = 10.259 mg·g−1, RPD = 1.867, RPIQ = 2.827) and was the best
TNC prediction model. The distribution of the degree of importance of the results of the
four individual machine learning models corresponding to an ensemble machine learning
RR model when constructed based on the seven input features is shown in Figure 6. The
results of the RFR model had the highest weight in all seven ensemble machine learning
models, indicating the higher importance of individual machine learning models with
high accuracy when building ensemble machine learning models and highlighting the
close relationship between the performance of individual machine learning models and
ensemble machine learning models.

Table 5. TNC prediction accuracy based on different machine learning methods.

Sensor Type Feature Type Metrics GPR RFR RR ENR Stacking (RR)

RGB Spectral

R2 0.493 0.382 0.481 0.479 0.511
RMSE (mg·g−1) 4.273 4.591 4.303 4.401 4.216
MSE (mg·g−1) 18.259 21.077 18.516 19.369 17.775

RPD 1.386 1.279 1.374 1.342 1.384
RPIQ 2.083 1.962 2.069 2.026 2.125

MS Spectral

R2 0.541 0.465 0.515 0.505 0.551
RMSE (mg·g−1) 4.013 4.205 4.149 4.174 3.978
MSE (mg·g−1) 16.104 17.682 17.214 17.422 15.824

RPD 1.468 1.373 1.420 1.405 1.468
RPIQ 2.194 2.068 2.113 2.104 2.198
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Table 5. Cont.

Sensor Type Feature Type Metrics GPR RFR RR ENR Stacking (RR)

RGB + RGB Spectral +
textural

R2 0.494 0.531 0.509 0.507 0.562
RMSE (mg·g−1) 4.179 3.955 4.138 4.158 3.947
MSE (mg·g−1) 17.464 15.642 17.123 17.289 15.579

RPD 1.401 1.466 1.413 1.395 1.469
RPIQ 2.156 2.262 2.178 2.165 2.280

MS + MS Spectral +
textural

R2 0.625 0.650 0.630 0.625 0.672
RMSE (mg·g−1) 3.610 3.536 3.584 3.608 3.415
MSE (mg·g−1) 13.032 12.503 12.845 13.018 11.662

RPD 1.641 1.686 1.657 1.645 1.738
RPIQ 2.483 2.543 2.490 2.478 2.625

RGB + MS +
RGB

Spectral +
spectral +
textural

R2 0.570 0.554 0.554 0.546 0.597
RMSE (mg·g−1) 3.936 3.881 3.942 3.991 3.788
MSE (mg·g−1) 15.492 15.062 15.539 15.928 14.349

RPD 1.504 1.504 1.484 1.468 1.540
RPIQ 2.256 2.278 2.239 2.224 2.337

RGB + RGB +
MS

Spectral +
textural +
textural

R2 0.651 0.651 0.671 0.662 0.686
RMSE (mg·g−1) 3.599 3.553 3.468 3.495 3.386
MSE (mg·g−1) 12.953 12.624 12.027 12.215 11.465

RPD 1.689 1.680 1.742 1.719 1.765
RPIQ 2.508 2.494 2.576 2.544 2.628

RGB + MS + MS
Spectral +
spectral +
textural

R2 0.659 0.675 0.668 0.664 0.699
RMSE (mg·g−1) 3.487 3.466 3.433 3.438 3.300
MSE (mg·g−1) 12.159 12.013 11.785 11.820 10.890

RPD 1.720 1.714 1.745 1.734 1.802
RPIQ 2.568 2.534 2.579 2.562 2.668

MS + RGB + MS
Spectral +
textural +
textural

R2 0.666 0.675 0.671 0.675 0.710
RMSE (mg·g−1) 3.504 3.404 3.435 3.416 3.257
MSE (mg·g−1) 12.278 11.587 11.799 11.669 10.608

RPD 1.719 1.713 1.738 1.734 1.802
RPIQ 2.605 2.637 2.639 2.643 2.746

RGB + MS +
RGB + MS

Spectral +
spectral +
textural +
textural

R2 0.670 0.697 0.700 0.692 0.726
RMSE (mg·g−1) 3.456 3.365 3.352 3.362 3.203
MSE (mg·g−1) 11.944 11.323 11.236 11.303 10.259

RPD 1.735 1.769 1.822 1.798 1.867
RPIQ 2.647 2.731 2.724 2.708 2.827
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Figure 5. Statistical distribution of the prediction accuracy of individual machine learning models 
and ensemble learning models constructed based on spectral and texture features of UAV RGB and 
multispectral. RT RGB Texture Features, MS Multi-spectral spectral features, MT Multi-spectral tex-
ture features, ENR Elastic network regression, RFR Random Forest regression, GPR Gaussian pro-
cess regression, RR Ridge Regression, Stacking (RR) stacking regression using ridge regression as a 
secondary learning model. 

   

Figure 5. Statistical distribution of the prediction accuracy of individual machine learning models
and ensemble learning models constructed based on spectral and texture features of UAV RGB and
multispectral. RT RGB Texture Features, MS Multi-spectral spectral features, MT Multi-spectral
texture features, ENR Elastic network regression, RFR Random Forest regression, GPR Gaussian
process regression, RR Ridge Regression, Stacking (RR) stacking regression using ridge regression as
a secondary learning model.

3.3. Analysis of TNC Observations and Predictions

Figure 7 displays the observed and predicted values of the best TNC prediction model
constructed based on each of the seven input features. The R2 value was 0.511 when RGB
spectral features were used as input features, which improved to 0.562 with the addition of
RGB texture features. Similarly, the R2 value was 0.551 when multispectral spectral features
were used as input features, and it improved to 0.672 with the addition of multispectral
texture features. When three of the spectral and texture features of RGB and multispectral
were combined as model input features, it was discovered that the TNC prediction model
constructed based on multispectral spectral and texture features and RGB texture features
had the highest R2 value of 0.71. In contrast, the TNC prediction model built based on RGB
spectral and texture features and multispectral spectral features had the smallest R2 value
of 0.597. Notably, the TNC prediction model based on the spectral and textural features
of RGB and multispectral had the largest R2 value. Finally, the R2 value of the TNC yield
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prediction model based on all three feature combinations was higher than that of the TNC
yield prediction model based on a single feature or a combination of two features.
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Figure 6. The importance of individual machine learning models based on the seven input features
in stacking ensemble learning models. RT RGB Texture Features, MS Multi-spectral spectral features,
MT Multi-spectral texture features, GPR Gaussian process regression, RFR Random Forest regression,
RR Ridge Regression, ENR Elastic network regression.

This paper presents a comparative analysis of the accuracy of TNC prediction models
constructed based on multiple features, and it is found that the ensemble machine learning
model (RR) constructed based on spectral and texture features of RGB and multispectral
achieves the best TNC prediction accuracy. Therefore, the model was used to generate the
predicted TNC distribution, as shown in Figure 8. The t-test analysis of TNC between dif-
ferent N treatments is presented in Table 6, and all p-values were less than 0.001, indicating
significant differences in TNC between the three N treatments in the order of N1 > N2 >
N3. The predicted yields’ distribution showed that the TNC of the N1 treatment ranged
from 15 to 31 mg·g−1. Based on the measured TNC results, it was observed that the N1
treatment had the highest TNC, ranging between 15 and 32 mg·g−1, followed by the N2
and N3 treatments. These results are consistent with the predicted TNC distribution of the
ensemble machine learning model (RR), and demonstrate that the model can be used for
winter wheat TNC estimation.
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Table 6. t-test under different nitrogen treatments.

Feature t p-Value

N1 vs. N2 3.847 0.000
N1 vs. N3 9.416 0.000
N2 vs. N3 5.654 0.000

4. Discussion
4.1. Analysis Based on Multi-Source Spectral Features and Texture Features

In this study, four individual machine learning models (GPR, RFR, RR, and ENR) and a
stacking (RR) ensemble learning model were constructed for predicting TNC based on UAV
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RGB and multispectral image data. The results showed that prediction models constructed
based on multispectral spectral features had higher accuracy than those constructed based
on RGB spectral features. Similarly, models constructed based on multispectral spectral
and texture features had higher accuracy than those constructed based on RGB spectral and
texture features. This is because multispectral images have five bands and more near-red
and red-edge bands than RGB images [66], which provide richer data information and
higher accuracy, consistent with Furukawa’s findings [67]. Texture features were also
added to the spectral features in this study, and the accuracy of each model improved
with the addition of texture features, consistent with Wang’s findings [68]. Both RGB
spectral features and multispectral features, when combined with corresponding texture
features, outperformed TNC prediction models constructed using spectral features alone.
The improvement in accuracy was greater after adding multispectral texture features to
multispectral spectral features than after adding RGB texture features to RGB spectral
features. This may be because multispectral texture features extracted in this study based
on the grey-scale co-occurrence matrix consisted of texture information in five bands,
which contain more information sensitive to TNC. Additionally, Zhang and Liu [18,69]
found that texture features were unsuitable as independent remote sensing variables for
constructing prediction models, so texture features were combined with spectral features
in this study. This study also used a combination of three spectral and texture features
of RGB and multispectral as input variables for the prediction model, and found that the
accuracy of the model constructed based on the combination of all three features was higher
than the accuracy of the model constructed based on a single feature or a combination
of two of the three features, consistent with Fei’s findings [31]. The prediction model
based on the combination of multispectral spectral features and texture features and RGB
texture features had the highest accuracy. In contrast, the prediction model based on
the combination of RGB spectral features and texture features and multispectral texture
features had higher accuracy than the model based on the combination of RGB spectral
features and texture features and multispectral spectral features, indicating that texture
features can significantly improve model accuracy compared with spectral features [70].
Constructing these five models by combining all four of the RGB and multispectral spectral
features and texture features as input features showed the highest accuracy, demonstrating
that data fusion from multiple sensors can produce higher prediction accuracy due to the
fact that data acquired by different sensors all contribute to TNC prediction in unique and
complementary ways [71].

4.2. Potential for Ensemble Learning Models

The study used four individual machine learning models to predict TNC [72]. How-
ever, the calibration of these models required large sample sizes, and in cases of small
sample sizes the results obtained by machine learning models are often inconsistent [73].
To address this issue, this study used the Bootstrap method [74] to calculate the mean of
400 times the model prediction results as the accuracy of the machine learning model. This
not only solved the problem of the small sample size, but also improved the generalisation
ability of the model. As a single machine learning model cannot effectively perform with
multiple sources of data [31], this study constructed a Stacking (RR) ensemble learning
model by combining four individual learner models. The results showed that when pre-
diction models were constructed based on the seven input features selected for this study,
the ensemble learning models outperformed the individual models, with the highest R2

of the models improving to 0.726 and the lowest RMSE reaching 3.203 mg·g−1. To con-
struct ensemble models, individual models need to be selected based on their adequacy
and diversity [75]. The four individual learning models chosen for this study had good
predictive power and low similarity between models, which effectively complemented
information during the ensemble [76]. The study found that the ensemble learning model
could collect the advantages of several individual learning models, compensate for the
limitations and shortcomings of individual models, and produce results with better robust-
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ness and generalisation ability in regression prediction [77]. An ensemble learning model,
which combines different base models, can reduce the risk of overfitting of a single model,
avoid the impact of the curse of dimensionality, and improve the overall generalisation
ability of the ensemble model [33]. Overall, each basic learning model can be learned as an
independent model or a model of the same type with different parameters or subsets of data
for training [65]. After evaluating the contribution of four models (GPR, RFR, RR, and ENR)
in the ensemble model, it was found that RFR had the highest contribution to the ensemble
learning model among all the models constructed based on different input features. RFR
is one of the most commonly used and important machine learning methods in current
research. The model can utilise various input features to obtain optimal and balanced re-
sults, and has demonstrated good predictive performance in several studies [78,79], further
demonstrating the effectiveness of base model selection. While linear regression models
are often used as secondary learners in stacking models and have shown good accuracy
in most studies, Bayesian model averaging, decision layer fusion, and other secondary
learners have also been shown to be effective in various domains [80,81], improving model
accuracy. In this study, RR as a secondary learning model also showed good performance.

4.3. Implications and Reflections

In this study, we constructed a TNC prediction model based on spectral image data
acquired by UAV-carried RGB and multispectral sensors at the heading stage of the winter
wheat canopy. The model achieved reliable prediction accuracy, but there is still room for
improvement. To enhance the accuracy of TNC prediction, future studies could consider
fusing data from different sources such as thermal infrared and hyperspectral [31,82]. Ad-
ditionally, this study only used TNC data for winter wheat at the heading stage. Therefore,
including trial data for other fertility stages can test the stability and practicality of the
proposed method. Furthermore, we constructed a stacking (RR) ensemble learning model
based on four individual learning models in this study, which significantly improved the
prediction accuracy. The next step of the study should consider two things: (1) adopting
multiple ensemble learning models to predict TNC and comparing the accuracy and ap-
plicability of each model; (2) adding other well-performing individual learning models
as the base model of the ensemble learning model. Finally, this study was limited to 30
varieties of winter wheat from the Yellow and Huaihe River wheat regions, which had
certain regional variety limitations. Including winter wheat varieties from other areas as
research subjects could further demonstrate the applicability of the proposed method to
different regions and materials.

5. Conclusions

In this study, the spectral and textural features of RGB and multispectral data were
fused as input features using UAV remote sensing technology. The study investigated the
prediction accuracy of GPR, RFR, RR, and ENR models with different input features, as
well as the potential for an ensemble of the four base models in predicting winter wheat
TNC. The results indicated that the fusion of multi-source spectral and texture features,
along with the ensemble learning method, improved the prediction accuracy of winter
wheat TNC. The method successfully estimated the TNC of winter wheat at the heading
stage under different nitrogen treatments, providing a basis for future evaluations of winter
wheat TNC. Future studies should consider conducting trials at different fertility stages and
in various growth environments to improve the stability and practicality of the method.
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