
Abstract Phenology is an important factor indicating environmental changes and regulates the variations 
of carbon, water, and energy exchange. However, phenology models exhibit large uncertainties due to limited 
understanding of its mechanisms. In this study, we modified deciduous phenology scheme based on the 
evaluation of different phenological models using long-term observations at Chinese Ecosystem Research 
Network with CLM4.5. The alternating leaf unfolding model and summer-influenced autumn leaf falling 
model that we proposed, performed best in simulating leaf-unfolding and leaf-falling. Compared with the 
observed and remote-sensed phenology, the modified model could better simulate the phenological dates at the 
site and regional scale. Moreover, the modified model improved the simulation of gross primary productivity 
(GPP) by decreasing the errors of modeled carbon uptake duration and amplitude. Furthermore, the advance 
in leaf-unfolding slowed down from 0.20 days/year during 1981–2015 to 0.11 days/year during 2016–2100 
under RCP4.5 because of the slowdown of climate warming, but the delay in leaf-falling changed little. By the 
last decade of the twenty-first century, the leaf-unfolding would advance (8 days) and leaf-falling would delay 
(16 days). The subtropical region had large interannual variation (IAV) in leaf-unfolding because of the high 
sensitivity to temperature. The phenological dates IAV in the cold temperate region increased due to enhanced 
temperature IAV. We suggest that the deciduous phenology models, especially the leaf-falling process, used in 
Community Land Model need to be improved to reduce the errors in predicting phenology and carbon flux in 
the future.

Plain Language Summary As an important factor indicating climate and environmental changes, 
phenology plays an important role in regulating the variation of carbon, water, and energy exchange. Due to 
limited understanding of phenology mechanisms, the simulation of phenology remains large uncertainties. 
In this study, we evaluated and modified the leaf unfolding and leaf falling models using the long-term 
phenological observations with the Community Land Model (CLM4.5), validated the modified leaf-unfolding 
and leaf-falling models by observed phenology and remote-sensing phenology data, examined the ability of 
CLM4.5 with modified deciduous phenology submodels in simulating gross primary productivity, and used the 
modified phenology models to predict the changes in phenological dates in the future. Our results suggest that 
the deciduous phenology models, especially the leaf-falling process, used in the CLM is urgent to be improved 
to reduce the errors in predicting growing season length and carbon fluxes in deciduous forests in the context of 
climate change.
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1. Introduction
Phenology plays an important role in regulating the ecosystem carbon uptake process (Abu-Asab et al., 2001; 
Bradley et al., 1999). Vegetation phenology, for example, leaf unfolding and falling, regulates many ecosystem 
processes, such as the carbon cycle, water evaporation, mineralization, and absorption of nutrients (Estiarte and 
Peñuelas, 2015; Piao et al., 2007). Especially prolonged growing season length due to earlier leaf unfolding dates 
and later leaf falling dates could increase the carbon assimilation time and result in accumulation of more organic 
matter (Richardson et al., 2009). Deciduous and mixed forests contain 30% of the forest ecosystems globally, 
which are one of the main contribution areas to the temporal variation of land carbon sink in Northern America 
(Shiga et al., 2018) and the globe (Huang and Xia, 2019). Nevertheless, the poor representation of deciduous 
phenology in current terrestrial biosphere models hinder their ability to simulate the carbon fluxes and responses 
to climate change in deciduous forests (Richardson et  al.,  2012). Therefore, accurate estimation of both leaf 
unfolding and leaf falling dates is of great importance in predicting the exchanges of carbon dioxide between 
deciduous ecosystems and the atmosphere and understanding the response of deciduous ecosystems to climate 
change (Churkina et al., 2005; Z. Fu et al., 2017; Piao et al., 2007).

The phenological model is a feasible and effective method for assessing relationships between phenology and 
climate and predicting phenological changes under varied climatic and anthropogenic scenarios (B. Li et al., 2015; 
Zhao et al., 2013). Underlying mechanistic processes governing phenological events are empirically represented 
via statistical relationships in the phenological model (Piao et  al.,  2019). The growth and dormant periods 
comprise the annual cycle of woody plants (Hänninen, 1996). Scholars indicated that the heat requirement could 
break the dormancy (Murray et al., 1989). This method has been widely used to predict the leaf unfolding dates in 
most terrestrial biosphere models, such as BIOME-BGC (White et al., 1997), CARAB (Horemans et al., 2017), 
CLASS 2.7 (Verseghy et al., 1993), Community Land Model (CLM) 4.5 (Oleson et al., 2013), DLEM (Tian 
et al., 2011), IBIS (Foley et al., 1996), LPJ-DGVM (Sitch et al., 2003), and ISAM (El Masri et al., 2015). These 
models predict earlier leaf unfolding dates in colder regions but later leaf unfolding dates in warmer regions (Chen 
et al., 2016; Chuine et al., 2010). Furthermore, the dormancy of wood plants has been distinguished into rest and 
quiescence phases (Kramer, 1994). Rest (i.e., endodormancy) means the growth-arresting conditions prevent the 
growth, even when external conditions are normally favorable. The growth-arresting conditions can be removed 
by chill accumulation for a prolonged period (Kramer et al., 2000). Quiescence (i.e., ecodormancy) means only 
unfavorable external conditions prevent the growth. When favorable temperature conditions arise, the wood plants 
are ready to grow (Lundell et al., 2020). Therefore, in addition to the heat requirement, a certain amount of chill-
ing is also needed to break dormancy (Sarvas, 1972). Based on the different relationship of rest and quiescence, 
there are three commonly-used types of two-phase models in simulating leaf unfolding dates, that is, the sequen-
tial model, parallel model, and alternating model (Ghelardini et al., 2010; Kramer, 1994; Lechowicz, 1984). The 
rest and quiescence phases are assumed to be strictly separate periods in the sequential model, with no response 
to warm temperatures before rest release (Sarvas, 1972, 1974). In the parallel model and alternating model, rest 
and quiescence coexist; even when the rest has not yet been attained, a response to warm temperatures is possible 
(Cannell & Smith, 1983; Landsberg, 1974). The difference between the parallel model and alternating model is 
whether chill accumulation and heat requirement occur simultaneously or alternately. The alternating model has 
been used in the simulation of phenology in ecosystem models, for example, ORCHIDEE (MacBean et al., 2015) 
and ELM (Meng et al., 2021). Compared with long-term measurements at forest sites, these models predicted 
earlier start of photosynthetic uptake with biases of −28 ± 21 days (Richardson et al., 2012).

Contrary to the enormous amount of research on leaf unfolding dates, we still have little understanding of 
the mechanism of leaf falling dates (Chuine et al., 2010; Y. H. Fu et al., 2022; M. Wang et al., 2022). Most 
models predicted the dates of leaf falling based on the fixed temperature threshold (Chuine et al., 2013; Krinner 
et al., 2005) as in CARAIB (Horemans et al., 2017), CLASS 2.7 (Verseghy et al., 1993), DLEM (Tian et al., 2011), 
IBIS (Foley et al., 1996), LPJ-DGVM (Sitch et al., 2003), and ORCHIDEE (MacBean et al., 2015), the fixed 
daylength threshold (White et al., 1997) as in CLM4.5 (Oleson et al., 2013; Verseghy et al., 1993), and both 
of them (Wareing, 1956) as in BIOME-BGC (White et al., 1997), CEVSA2 (F. Gu, 2007; White et al., 1997), 
CTEM (White et al., 1997), and ISAM (El Masri et al., 2015). The above methods exhibited large deviations 
up to 15 ± 17 days in simulated end of photosynthetic uptake (Richardson et al., 2012). Delpierre et al. (2009) 
supposed leaf falling dates to be the result of a daylength-sensitive cold-degree day summation procedure, which 
has been used in the modification of phenology in the ELM model and better simulated leaf falling dates in a 
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boreal peatland forest (Meng et al., 2021), but cannot be applied to temperature deciduous forest areas because of 
the assessment at limited sites (Delpierre et al., 2009).

Numerous studies have shown overall earlier leaf unfolding dates and later leaf falling dates in most parts of the 
world caused by global warming (Cong et al., 2013; Liu et al., 2016; Menzel et al., 2006; Richardson et al., 2010). 
But there were still large discrepancies in the reported temporal autumn phenology trends in different study 
areas and some areas even showed opposite trends (Y. H. Fu, Campioli, et al., 2014; Jeong et al., 2012) or no 
significant trends (X. Wang et al., 2019). As a sensitive and significant area impacted by global climate change, 
China has an average temperature rise rate (0.26°C/10 year) is significantly higher than the global average level 
(0.15°C/10 year) in the same period (1951–2020), and phenology in China appears to have a larger change than 
that in Europe and North America (Ge et al., 2015). According to the predictions of future global climate, China's 
air temperature would increase by 0.4–2.5°C around 2100 (D. Keenan, 2014), especially in the high latitude and 
high-altitude regions (Yang et al., 2021). In the context of global warming, the future changes and regional differ-
ences of phenological dates and their sensitivity to climate change of deciduous forests in China are not clear.

The CLM is a state-of-the-art land surface model, which is the land component model in the Community Earth 
System Model (Oleson et  al.,  2013), and is also used in other earth system models such as CMCC-ESM2, 
CMCC-CM2-SR5, and NorESM-LM. The new version of CLM (CLM5) has the same seasonal deciduous phenol-
ogy submodel as CLM4.5 (Lawrence et al., 2019). Thus, in this study, we aimed to improve the deciduous phenol-
ogy scheme in the CLM4.5 model based on the evaluation of four leaf-unfolding models and four leaf-falling 
models using long-term observations at five sites of Chinese Ecosystem Research Network (CERN), and to 
investigate the temporal change and regional divergence in phenological dates of China's deciduous forests in the 
future. The four leaf-unfolding models included the spring warming model, parallel model, sequential model, and 
the alternating model. The four leaf-falling models were the temperature threshold model, photoperiod threshold 
model, cold-degree-day photoperiod-dependent model, and a new scheme called summer-influenced autumn 
(SummerIA) model proposed in this study. The scientific questions addressed in this study included: (a) Which 
kind of model has the best performance in simulating the leaf unfolding dates and leaf falling dates for deciduous 
forests? (b) Whether the modification of phenology models will improve the simulation of carbon uptake dura-
tion, amplitude, and gross primary productivity (GPP)? (c) How does the modified phenology model predict the 
changes of phenological dates of deciduous forests and its regional variations in response to climate warming in 
China during 2016–2100?

We first evaluated and modified the performance of four leaf-unfolding models and four leaf-falling models using 
observed phenology data during 2003–2015 at the five sites of CERN. The five forest sites included the Chang-
baishan temperate broad-leaved Korean pine mixed forest (CBF), Beijing warm temperate secondary deciduous 
broad-leaved forest (BJF), Maoxian subalpine coniferous forest (MXF), Shennongjia subtropical evergreen decid-
uous broad-leaved mixed forest (SNF), and Gonggashan coniferous broad-leaved mixed forest (GGF). Second, 
the best leaf-unfolding and leaf-falling models were also validated by observed phenology data at eight sites of 
Chinese Phenological Observation Network (CPON) (Ge et al., 2014, 2015; H. Wang et al., 2014, 2015), and 
GIMMS-derived phenology data in 1982–2014. Third, we examined the ability of CLM4.5 with modified decid-
uous phenology submodels in simulating GPP, carbon uptake duration, and carbon uptake amplitude at CBF and 
five forest sites from FLUXNET due to the limitation of flux observation for deciduous forests in CERN. Finally, 
we predicted phenology changes in China's deciduous forests during 2016–2100 using the modified phenology 
models.

2. Materials and Methods
2.1. Study Region

The study region covers all deciduous forests in China, including deciduous broad-leaved forests, deciduous 
needle-leaved forests, and mixed forests, which account for 14.72%, 2.90%, and 2.33% of China's forests, respec-
tively (Figure 1). The deciduous forest map was extracted from the China land cover data set (Wu et al., 2014), 
which was produced using Landsat TM/ETM and HJ-1 satellite data of 30 m resolution in 2010, combined with a 
large amount of data of field investigation. The deciduous forests are mainly located in the temperate climate zone 
with the percentage of 67%, followed by the subtropical climate zone (18%), and the cold temperate climate zone 
(15%), according to the China's climate zone data downloaded from the Resource and Environmental Science 
Data Center of the Chinese Academy of Sciences (http://www.resdc.cn/).
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2.2. Data

2.2.1. Climate Data

To compare the performance of four leaf-unfolding models and four leaf-falling models at the five sites of CERN, 
we collected observed hourly air temperature data during 2003–2015 (http://www.cnern.org.cn/) to drive the 
phenological models. Hourly meteorological data at each site were gap-filled using observations made from the 
CERN data set (http://www.cnern.org.cn/).

For the model evaluation at the eight CPON sites (i.e., Nenjiang, Dedu, Jiamusi, Haerbin, Changchun, Shenyang, 
Luoyangand Xian), daily air temperature data were collected from the neighboring meteorological stations of 
China Meteorological Administration (http://data.cma.cn) to drive the phenological models.

Hourly meteorological data were collected at CBF and five FLUXNET sites (i.e., BE-Bra, BE-Vie, US-PFa, 
IT-Ro2, and US-MMS) to drive CLM4.5 for investigating the improvement of phenology simulation on GPP 
modeling. Hourly meteorological data included the downwelling long-wave radiation (W/m 2), downwelling 
short-wave radiation (W/m 2), air temperature (K), precipitation (mm/s), relative humidity (%), surface pressure 
(Pa), and wind speed (m/s). The hourly meteorological data at CBF during 2003–2008 were obtained from CERN 
data set (http://www.cnern.org.cn/). We also collected the hourly meteorological data at five forest sites from 
FLUXNET due to the limited number of available sites in China's deciduous forests. The selection of the forest 
site from FLUXNET followed three criteria. The deciduous broadleaf forests have similar environmental condi-
tions to China's deciduous forests. The proportion of missing data of observed GPP is less than 20%. And these 
sites have 10 or more years of data. The brief descriptions of site characteristic are shown in Table 1.

Figure 1. Description of observation sites. Green: five forest sites of the Chinese Ecosystem Research Network (CERN), 
Blue: eight forest sites of the Chinese Phenological Observation Network (CPON), and Black: five forest sites of FLUXNET. 
Transverse stripe: the subtropical region, scatter: the temperature region, and diagonal stripe: the cold temperature region. 
Dark green: the deciduous broad-leaved forests, Brown: the deciduous needle-leaved forests, and Light green: the mixed 
forests.

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003655 by Institute O
f B

otany, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://www.cnern.org.cn/
http://www.cnern.org.cn/
http://data.cma.cn
http://www.cnern.org.cn/


Journal of Advances in Modeling Earth Systems

LV ET AL.

10.1029/2023MS003655

5 of 23

N
et

w
or

k
Si

te
D

om
in

an
t d

ec
id

uo
us

 tr
ee

La
tit

ud
e/

N
Lo

ng
itu

de
/E

El
ev

at
io

n/
m

A
nn

ua
l m

ea
n 

te
m

pe
ra

tu
re

/°
C

A
nn

ua
l t

ot
al

 
pr

ec
ip

ita
tio

n/
m

m
Pe

rio
d

C
ER

N
C

ha
ng

ba
is

ha
n 

(C
B

F)
Ac

er
 m

on
o

42
.4

0
12

8.
09

78
4

3.
62

 ±
 0

.6
5

71
2.

30
 ±

 2
2.

37
20

03
–2

01
5,

 2
00

3–
20

08
 a

B
ei

jin
g 

(B
JF

)
Q

ue
rc

us
 w

ut
ai

sh
an

ic
a

39
.9

6
11

5.
43

1,
26

3
5.

20
 ±

 0
.4

9
42

7.
88

 ±
 7

0.
66

20
03

–2
01

5

M
ao

xi
an

 (M
X

F)
Q

ue
rc

us
 a

lie
na

 v
ar

. A
cu

te
se

rr
at

a
31

.7
8

10
3.

88
1,

81
6

9.
47

 ±
 0

.4
1

71
6.

86
 ±

 1
05

.3
4

20
05

–2
01

5

Sh
en

no
ng

jia
 (S

N
F)

Q
ue

rc
us

 se
rr

at
a 

va
r. 

br
ev

ip
et

io
la

ta
31

.3
2

11
0.

5
1,

75
0

10
.3

2 
±

 0
.4

7
1,

15
0.

67
 ±

 9
8.

59
20

09
–2

01
5

G
on

gg
as

ha
n 

(G
G

F)
Be

tu
la

 u
til

is
29

.5
7

10
1.

99
3,

16
0

5.
22

 ±
 0

.4
4

1,
65

3.
00

 ±
 1

64
.3

6
20

05
–2

01
5

C
PO

N
N

en
jia

ng
 (N

J)
La

ri
x 

gm
el

in
ii,

 A
ce

r m
on

o
49

.2
5

12
5.

75
28

1
0.

40
 ±

 0
.7

0
55

0.
30

 ±
 9

1.
89

19
86

–1
99

1,
 1

99
3–

19
96

D
ed

u 
(D

D
)

La
ri

x 
gm

el
in

ii,
 A

ce
r n

eg
un

do
48

.7
12

6.
75

32
4

0.
50

 ±
 0

.6
2

56
2.

08
 ±

 9
7.

26
19

86
–1

99
1,

 1
99

3–
19

96

Jia
m

us
i (

JM
S)

Ac
er

 n
eg

un
do

46
.8

2
13

0.
28

80
3.

10
 ±

 0
.6

1
60

2.
14

 ±
 1

07
.4

4
19

86
, 1

98
8–

19
96

H
ae

rb
in

 (H
EB

)
Be

tu
la

 p
la

ty
ph

yl
la

, A
ce

r g
in

na
la

,
45

.7
5

12
6.

67
14

6
4.

00
 ±

 0
.6

2
54

7.
99

 ±
 1

01
.9

1
19

86
–1

99
1,

 2
00

3–
20

08

La
ri

x 
gm

el
in

ii,
 Q

ue
rc

us
 a

cu
tis

si
m

a

C
ha

ng
ch

un
 (C

C
)

Be
tu

la
 p

la
ty

ph
yl

la
, A

ce
r g

in
na

la
,

43
.8

7
12

5.
33

21
5

5.
90

 ±
 0

.6
3

60
2.

49
 ±

 1
16

.1
0

19
86

–1
99

1,
 1

99
3–

19
94

, 
20

03
–2

00
8

La
ri

x 
gm

el
in

ii,
 Q

ue
rc

us
 m

on
go

lic
a,

 
Ac

er
 tr

un
ca

tu
m

Sh
en

ya
ng

 (S
Y

)
Be

tu
la

 p
la

ty
ph

yl
la

, A
ce

r g
in

na
la

,
42

.0
8

12
3.

00
53

8.
20

 ±
 1

.5
8

60
2.

51
 ±

 1
32

.5
9

20
03

–2
00

8,
 2

01
3–

20
14

La
ri

x 
gm

el
in

ii,
 A

ce
r t

ru
nc

at
um

Lu
oy

an
g 

(L
Y

)
Po

pu
lu

s t
om

en
to

sa
34

.6
7

11
2.

42
13

8
15

.4
0 

±
 0

.5
5

60
3.

64
 ±

 1
21

.3
1

19
86

, 1
98

8–
19

96

X
ia

n 
(X

A
)

Be
tu

la
 p

la
ty

ph
yl

la
,

34
.2

2
10

8.
97

43
6

13
.4

0 
±

 0
.6

2
64

2.
53

 ±
 1

12
.8

8
19

86
, 1

98
8,

 1
99

0,
 1

99
3–

19
94

, 
19

96
, 2

00
3–

20
08

Q
ue

rc
us

 v
ar

ia
bi

lis
, A

ce
r m

on
o

FL
U

X
N

ET
B

E-
B

ra
La

ri
x 

gm
el

in
ii 

(R
up

r.)
 K

uz
en

51
.3

0
4.

52
16

9.
80

 ±
 0

.7
4

75
0.

00
 ±

 1
41

.0
8

19
96

–2
01

4

B
E-

V
ie

D
ou

gl
as

 fi
r, 

Ps
eu

do
ts

ug
a 

si
ne

ns
is

50
.3

1
6.

00
49

3
7.

80
 ±

 0
.6

7
1,

06
2.

00
 ±

 1
95

.6
2

19
96

–2
01

4

U
S-

PF
a

Pi
nu

s k
or

ai
en

si
s, 

Pi
nu

s b
an

ks
ia

na
45

.9
5

−
90

.2
7

47
0

4.
33

 ±
 1

.3
2

82
3.

00
 ±

 1
32

.2
9

19
95

–2
01

4

IT
-R

o2
Q

ue
rc

us
 c

er
ri

s L
.

42
.3

9
11

.9
2

16
0

15
.1

5 
±

 0
.6

8
87

6.
00

 ±
 2

53
.2

7
20

02
–2

01
2

U
S-

M
M

S
Ac

er
 to

nk
in

en
se

 su
bs

p,
 F

ag
al

es
39

.3
2

−
86

.4
1

27
5

10
.8

5 
±

 0
.8

1
1,

03
2.

00
 ±

 1
88

.1
6

19
99

–2
01

4

 a R
ep

re
se

nt
s t

he
 p

er
io

d 
of

 G
PP

 d
at

a 
at

 C
B

F.

Ta
bl

e 
1 

Si
te

 C
ha

ra
ct

er
is

tic
s o

f F
iv

e 
Fo

re
st

 S
ite

s o
f C

hi
ne

se
 E

co
sy

ste
m

 R
es

ea
rc

h 
Ne

tw
or

k 
(C

ER
N

), 
Ei

gh
t F

or
es

t S
ite

s o
f C

hi
ne

se
 P

he
no

lo
gi

ca
l O

bs
er

va
tio

n 
Ne

tw
or

k 
(C

PO
N

), 
an

d 
Fi

ve
 F

or
es

t S
ite

s o
f 

FL
U

XN
ET

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003655 by Institute O
f B

otany, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

LV ET AL.

10.1029/2023MS003655

6 of 23

We also collected regional air temperature data to drive the phenological models for evaluat-
ing the modified phenology models at the regional scale in 1981–2015 and investigating the 
phenological changes in China's deciduous forest in the period of 2016–2100. The tempera-
ture data from 1981 to 2015 were collected from the China Meteorological Forcing Data set 
with a time resolution of 3 hr and a spatial resolution of 0.1° (He et al., 2020) and then were 
averaged to the daily scale. For the prediction in 2016–2100, we used daily temperature data 
in the RCP4.5 scenario, because the trend of emission, concentration, and radiation forcing 
time of the three major greenhouse gases in the RCP4.5 scenario are relatively consist-
ent with China's future economic development and suitable for China's national conditions 
(Gao et al., 2014). The daily temperature data in the RCP4.5 scenario were obtained from 
the Global Daily Downscaled Projections (NEX-GDDP-CMIP6), which was the ensemble 
mean value of 30 models (Table S4 in Supporting Information S1), with a time resolution 
of 1 day and a spatial resolution of 0.25° (Thrasher et al., 2022).

2.2.2. Phenology Data

Observed phenological data of the dominant deciduous trees at five sites in CERN (i.e., 
CBF, BJF, MXF, SNF, and GGF) during 2003–2015 (Song et al., 2017) were used to 
modify and validate the deciduous phenology models.

We also collected the phenological observations at the eight CPON forest sites (i.e., 
Nenjiang, Dedu, Jiamusi, Haerbin, Changchun, Shenyang, Luoyangand Xian) of CPON 
(Ge et al., 2014, 2015; H. Wang et al., 2014, 2015) to evaluate the deciduous phenology 
models with best performance. Observed phenological dates at eight typical deciduous 
forest sites of CPON were downloaded from the National Earth System Science Data 
Sharing Platform (http://www.geodata.cn). We averaged leaf unfolding and leaf falling 
dates for dominant species at each deciduous forest site in CPON.

At the regional scale, we used a GIMMS (global inventory modeling and mapping 
studies) Phenology data set in 1982–2014 produced by X. Wang et al. (2019) to evalu-
ate phenology predictions in China's deciduous forests estimated by modified phenol-
ogy models. The start and end of growing season dates were estimated from the time 
series of GIMMS NDVI (Normalized Difference Vegetation Index) using the inflection 
point detection method (X. Wang et al., 2017). Specially, the start and end of growing 
season were determined as the date corresponding to the maxima (or minima) value in 
first-order derivative of the fitted double logistic curve of NDVI time series. We resam-
pled the GIMMS Phenology data set to 0.1°.

2.2.3. GPP Data Estimated by Eddy Covariance Measurements

Eddy-covariance fluxes were used to investigate the influence of phenology changes on 
carbon flux simulated with the CLM4.5 model. Among the five forest sites of CERN, 
eddy-covariance fluxes were simultaneously measured at the CBF site. The observed 
GPP at CBF during 2003–2008 were obtained from the ChinaFLUX data set (http://www.
chinaflux.org/). We also collected eddy-covariance data from the five sites in FLUXNET 
(i.e., BE-Bra, BE-Vie, US-PFa, IT-Ro2, and US-MMS), which were obtained from the 
FLUXNET database released in 2015 (Pastorello et al., 2020).

2.3. Models

2.3.1. Leaf Unfolding Models

We compared four leaf unfolding models (i.e., the spring warming model, sequential 
model, parallel model, and alternating model) to examine to what extent the involvement 
of cold temperature can improve the performance of leaf unfolding dates modeling and 
what kind of assumption on dormancy (i.e., the rest and quiescence exist sequential, 
parallel, or alternative) has the best performance (Table 2). Leaf unfolding is assumed to 
occur when heat requirement exceeds the threshold that is expressed by the function of M
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chill accumulation in the sequential model, parallel model, alternating model, and by that of mean air temperature 
in the spring warming model.

In the spring warming model, the rate of heat requirement follows a logistic function of temperature (Chuine 
et al., 1998; Hänninen, 1990). Leaf appears after a certain amount of accumulated heat requirement. This model 
is the simplest model of leaf unfolding prediction, which has been used in CLM4.5.

FU1 =
∑𝑡𝑡pheno

𝑡𝑡0

⎧⎪⎨⎪⎩

28.4

1+𝑒𝑒(3.4-0.185⋅𝑇𝑇 )
𝑇𝑇 𝑇 0

0 𝑇𝑇 ≤ 0
 (1)

where FU1 is the rate of heat requirement, and T is mean temperature (°C) in each time step. The dates of t0 and 
tpheno are winter solstice of the previous year and leaf unfolding date, respectively. The critical threshold (FUcirt) 
of forcing accumulation required for leaf unfolding is as follows.

FUcirt ≥ 𝑒𝑒
𝑎𝑎+𝑏𝑏⋅𝑇𝑇ann (2)

where Tann is the annual average temperature in the previous year. Estimated coefficients a and b are 4.8 and 0.13, 
respectively, in original deciduous phenological submodel in CLM4.5 (Oleson et al., 2013).

The sequential model assumes that rest and quiescence are two strictly separate periods, with no response to 
warm temperatures before rest release (Sarvas, 1972, 1974). Heat requirement is not active as long as chill accu-
mulation is not reached. The most commonly used temperature threshold of 5°C (Cannell & Smith, 1983; Y. H. 
Fu et al., 2015) is applied in CU1.

CU1 =
∑𝑡𝑡1

𝑡𝑡0

⎧⎪⎨⎪⎩

1 𝑇𝑇 ≤ 5

0 𝑇𝑇 𝑇 5
 (3)

FU1 =
∑𝑡𝑡pheno

𝑡𝑡1

⎧⎪⎨⎪⎩

28.4

1+𝑒𝑒(3.4-0.185⋅𝑇𝑇 )
𝑇𝑇 𝑇 0

0 𝑇𝑇 ≤ 0
 (4)

where CU1 is the rate of chill accumulation, FU1 is the rate of heat requirement, and T is mean temperature (°C) 
in each time step. The dates of t0, t1, and tpheno are 1 November of the previous year, 1 February, and leaf unfolding 
date, respectively.

In the parallel model, rest and quiescence occur simultaneously; even when the rest has not yet been attained, a 
response to warm temperatures must be possible (Landsberg, 1974). Heat requirement can be active concomitant 
with the time spent for chill accumulation.

CU1 =
∑𝑡𝑡pheno

𝑡𝑡0

⎧⎪⎨⎪⎩

1 𝑇𝑇 ≤ 5

0 𝑇𝑇 𝑇 5
 (5)

FU1 =
∑𝑡𝑡pheno

𝑡𝑡0

⎧⎪⎨⎪⎩

28.4

1+𝑒𝑒(3.4-0.185⋅𝑇𝑇 )
𝑇𝑇 𝑇 0

0 𝑇𝑇 ≤ 0
 (6)

where CU1 is the rate of chill accumulation, FU1 is the rate of heat requirement, and T is mean temperature (°C) in 
each time step. The dates of t0 and tpheno are 1 November of the previous year and leaf unfolding date, respectively.

In the alternating model, the rest and quiescence exist alternately, and chill accumulation and heat requirement 
take turns from a start date relative to a base temperature (Cannell & Smith, 1983). There is only one temper-
ature threshold of heat requirement and chill accumulation in the alternating model. When the temperature is 
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lower  than the temperature threshold, chill accumulation occurs as Equation 5. Otherwise, heat requirement starts 
to accumulate as Equation 7.

FU1 =
∑𝑡𝑡pheno

𝑡𝑡0

⎧⎪⎨⎪⎩

28.4

1+𝑒𝑒(3.4-0.185⋅𝑇𝑇 )
𝑇𝑇 𝑇 5

0 𝑇𝑇 ≤ 5
 (7)

where FU1 is the rate of heat requirement, and T is mean temperature (°C) in each time step. The dates of t0 and 
tpheno are 1 November of the previous year and leaf unfolding date, respectively.

The other two expressions of chill accumulation (i.e., CU2 and CU3) and another expression of heat requirement 
(FU2) were also compared in different leaf unfolding dates models to estimate the effects of different expression 
of chill accumulation and heat requirement on model performance. The calculation of chilling accumulation in 
CU2 was the same as that in CU1 but with different specific temperature thresholds. In CU2, it is assumed that 
freezing temperatures do not contribute to winter chill accumulation (Y. H. Fu et al., 2015; Peaucelle et al., 2019), 
and 0–5°C is regarded as the effective temperature range for chill accumulation.

CU2 =
∑⎧⎪⎨⎪⎩

1 0 ≤ 𝑇𝑇 ≤ 5

0 𝑇𝑇 𝑇 0, or 𝑇𝑇 𝑇 5
 (8)

In model CU3, the chill accumulation is expressed by a triangular form, which is fitted by Hänninen (1990) using 
previous experimental results for Finnish birch seedlings. The effective temperature range for chill accumulation 
in CU3 is −3.4 to 10.4°C.

CU3 =
∑

⎧
⎪⎪⎨⎪⎪⎩

0 𝑇𝑇 ≥ 10.4 or 𝑇𝑇 ≤ −3.4

𝑇𝑇+3.4

6.9
− 3.4 < 𝑇𝑇 < 3.5

𝑇𝑇−10.4

(−6.9)
3.5 < 𝑇𝑇 < 10.4

 (9)

In the other forcing model FU2, the heat requirement is accumulated when it is above a particular threshold (i.e., 
0°C) as in previous studies (Basler & Koerner, 2012; Heide, 1993; Piao et al., 2015).

FU2 =
∑⎧⎪⎨⎪⎩

𝑇𝑇 𝑇𝑇 𝑇 0

0 𝑇𝑇 ≤ 0
 (10)

where FU2 is the rate of forcing, and T is the mean temperature (°C) in each time step.

Leaf unfolding dates occur when heat requirement exceeds the threshold that is expressed by the function of chill 
accumulation in the sequential model, parallel model, and alternating model.

FUcrit ≥

⎧⎪⎨⎪⎩

𝑎𝑎 + 𝑏𝑏 ⋅ 𝑒𝑒
𝑐𝑐⋅CU CU1

𝑒𝑒
(𝑎𝑎+𝑏𝑏⋅CU) CU2,3

 (11)

Constant coefficients (i.e., a, b, and c) for calculating the threshold of leaf unfolding dates in Equation 11 were 
estimated by the least square method using the observed phenological data across the five CERN sites in 2005–
2012 (30 site years) (Figure 2).

2.3.2. Leaf Falling Models

Four leaf falling models were compared in this study, including the temperature threshold model, photoperiod 
threshold model, cold-degree-day photoperiod-dependent model (CDD/P) and SummerIA model hereinafter 
referred to as T, PT, CDD/P, and SummerIA, respectively (Table 3).
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In the T model, the leaves fall when the temperature is less than 5°C after the summer solstice (Chuine et al., 2013). 
In the PT model, the leaves fall when the photoperiod is less than 39,300 s (10.91 hr) after the summer solstice 
as in CLM4.5 (White et al., 1997).

The CDD/P model was originally used to simulate the discoloration of the blade and was further applied to the 
simulation of blade senescence. Leaves fall is postulated to be the result of continuous senescence processes after 
the summer solstice (Archetti et al., 2013; Delpierre et al., 2009; Vitasse et al., 2011). We defined aging state 
(Ssen) of each day less than the photoperiod threshold Pstart (Equation 12), represented by the daylength-sensitive 
cold-degree day summation (Equations 13 and 14). The accumulation of aging state varies with latitude accord-
ing to the photoperiod parameter Pstart. When Ssen reached the threshold (Ycrit) the leaves began to fall.

Figure 2. Relationship between chill accumulation and heat requirement for leaf unfolding dates across five Chinese Ecosystem Research Network (CERN) forest 
sites. Green: Shennongjia subtropical evergreen deciduous broad-leaved mixed forest (SNF), Red: Maoxian subalpine coniferous forest (MXF), Black: Gonggashan 
coniferous broad-leaved mixed forest (GGF), Dark blue: Beijing warm temperate secondary deciduous broad-leaved forest (BJF), and Light blue: Changbaishan 
temperate broad-leaved Korean pine mixed forest (CBF).

Models Tbase (°C) Pbase (hr) Aging state threshold The start day of aging state The end day of aging state

T model T < 5 – – – –

PT model – P < 10.91 –

CDD/P model T < 14.5 P < 14.5 414.84 The summer solstice Leaf falling date

SummerIA model T < 14.5 P < 14.5 The function of summer temperature

Note. T is the mean temperature (°C) in each time step. Tbase is the base temperature (°C). Pbase is the base photoperiod (hr).

Table 3 
Descriptions of the Four Leaf Falling Models
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𝑆𝑆sen(𝑑𝑑) =

⎧⎪⎨⎪⎩

0, 𝑃𝑃 (𝑑𝑑) ≥ 𝑃𝑃start

𝑆𝑆sen(𝑑𝑑 − 1) + 𝑅𝑅sen(𝑑𝑑), 𝑃𝑃 (𝑑𝑑) < 𝑃𝑃start

 (12)

𝑅𝑅sen(𝑑𝑑) =

⎧⎪⎨⎪⎩

[𝑇𝑇𝑏𝑏 − 𝑇𝑇 (𝑑𝑑)]
𝑥𝑥
⋅ 𝑓𝑓 [𝑃𝑃 (𝑑𝑑)]

𝑦𝑦
, 𝑇𝑇 (𝑑𝑑) < 𝑇𝑇𝑏𝑏

0, 𝑇𝑇 (𝑑𝑑) ≥ 𝑇𝑇𝑏𝑏

 (13)

The calculation function of the effect of photoperiod on leaf falling dates is:

𝑓𝑓 [𝑃𝑃 (𝑑𝑑)] =
𝑃𝑃 (𝑑𝑑)

𝑃𝑃start

 (14)

The threshold is calculated as:

𝑆𝑆sen(𝑑𝑑) ≥ 𝑌𝑌crit (15)

where P(d) is the photoperiod, Pstart is the photoperiod when the blade 
begins to age (14.5 hr), Tb is the temperature at which the blade begins to age 
(14.5°C), and f[P(d)] is the photoperiod function. The parameters x and y are 
2, and the threshold Ycrit is 414.84.

Since leaf falling dates were found to be affected by the temperature over a 
few months prior to the leaf falling dates ago (Estrella and Menzel, 2006), we 
analyzed the relationship between observed aging state and average temper-
ature in summer across the five CERN forest sites. We used the observed 

temperature, photoperiod, and leaf falling dates in the five CERN forest sites to calculate the observed aging state. 
Our results show that the observed aging state significantly decreased with the average temperature from June 
to August (Figure 3). Thus, we developed a SummerIA model in this study based on the CDD/P model using a 
nonlinear function of threshold instead of a constant value.

𝑆𝑆sen(𝑑𝑑) ≥ 𝑌𝑌crit = 𝑎𝑎 ⋅ 𝑇𝑇summer ⋅ 𝑇𝑇summer + 𝑏𝑏 ⋅ 𝑇𝑇summer + 𝑐𝑐 (16)

where Tsummer is the average temperature from June to August. a, b, and c are 13.98, −528.62, and 5,264.90, 
respectively. Constant coefficients for calculating the threshold of leaf falling dates in Equation 14 were estimated 
by the least square method using the observed phenological data across five CERN sites in 2005–2012 (30 site 
years).

2.3.3. CLM4.5

The CLM4.5 model simulates biogeophysical and bio-geochemical processes in the atmosphere—vegetation—
soil continuum (Oleson et al., 2013). In the past few years, the CLM4.5 model has been evaluated and well appli-
cated in China (Jia et al., 2018; P. Li et al., 2018; Lv et al., 2023; Xue et al., 2021; Zhang et al., 2016). Based on 
the evaluation of different deciduous phenological models, the deciduous submodel in CLM4.5 were modified 
using the alternating CU1 model and SummerIA model to simulate the spring leaf-out and autumn leaf fall, 
respectively. We then simulated the phenological dates and carbon fluxes using CLM4.5 with original phenolog-
ical models and modified phenological models in our study at CBF from 2003 to 2008, at BE-Bra in 1996–2014, 
at BE-Vie in 1996–2014, at US-PFa in 1995–2014, at IT-Ro2 in 2002–2012, and at US-MMS in 1999–2014. We 
ran CLM4.5 at hourly time steps.

2.4. Statistic Analysis

2.4.1. Model Assessment

The observed phenological data during 2013–2015 across the five CERN sites (15 site years) were used to evalu-
ate phenological models. The observed phenological data across the eight typical deciduous forest sites of CPON 
during 1981–2008 (78 site years) were also used to evaluate phenological models. Here, we used the correlation 

Figure 3. Relationship between observed aging state and mean temperature 
from June to August across five Chinese Ecosystem Research Network 
(CERN) forest sites. Green: Shennongjia subtropical evergreen deciduous 
broad-leaved mixed forest (SNF), Red: Maoxian subalpine coniferous forest 
(MXF), Black: Gonggashan coniferous broad-leaved mixed forest (GGF), Dark 
blue: Beijing warm temperate secondary deciduous broad-leaved forest (BJF), 
Light blue: Changbaishan temperate broad-leaved Korean pine mixed forest 
(CBF).
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coefficient (R), root Mean Squared Error (RMSE), mean bias error (MBE), 
relative error (MRE), and Akaike information criterion (corrected for small 
samples, AICc) to evaluate the model's behaviors. AICc was used to evaluate 
the trade-offs between different methods in model simplicity and goodness 
of fit (Burnham & Anderson, 2002). The formula for AICc is as follows:

AIC𝑐𝑐 = ln

(
sse

𝑛𝑛

)
+

(𝑛𝑛 + 𝑘𝑘)

(𝑛𝑛 − 𝑘𝑘 − 2)
 (17)

where k is the number of parameters, n is the sample size, and sse is the sum 
of squared residuals. The smaller the AICc value is, the better the interpre-
tation of the data is.

2.4.2. Calculation of Carbon Uptake Duration and Carbon Uptake 
Amplitude

Based on the daily GPP data in eight forest sites (e.g., CBF, DK-Sor, BE-Bra, 
DE-Hai, BE-Vie, US-PFa, IT-Ro2, and US-MMS), we used the method put 
forward by L. Gu et al. (2009) to determinate the carbon uptake duration. The 
starting date and ending date of carbon uptake can be located by calculating 
the radius of curvature of daily photosynthetic rates. For a given point on a 
curve, the radius of curvature is the radius of the circle that fits the curve at 

that point. The starting date of carbon uptake was the date when canopy photosynthesis development starts to 
accelerate in response to the rapid improvement in meteorological conditions for plant growth, while the ending 
date of carbon uptake was the date when canopy photosynthesis enters into a period of quick decline in response 
to the deterioration in meteorological conditions for plant growth. The carbon uptake duration was the number of 
days between the starting date and ending date of carbon uptake. The carbon uptake amplitude is the maximum 
value of the monthly land carbon sink (Xia et al., 2015).

2.4.3. Temperature Sensitivity of Leaf Unfolding and Leaf Falling Dates

The detrended anomaly has been widely used to analyze the variation and to calculate the sensitivity of a variable 
to temperature, precipitation, and other environmental factors (Piao et al., 2013; H. Wang et al., 2015; Zhang 
et al., 2019), because detrending can remove the trend of data. Here we conducted a linear regression analysis 
between detrended anomaly of leaf unfolding or leaf falling dates and detrended anomaly of mean air tempera-
ture. The regression coefficient was defined as the temperature sensitivity of leaf unfolding or leaf falling dates. 
The detrended anomaly was the difference between the values of a variable and the predicted values from the 
regression model between the variable and time (i.e., year) in this study (Equations S1 and S2 in Supporting 
Information S1).

3. Results
3.1. Evaluation of Deciduous Phenological Models Against Observations at CERN Sites

Compared with observations, the parallel model and alternating model had better performance in simulating 
leaf unfolding dates than the spring warming model and the sequential model. Pearson's correlation coefficients 
between modeled and observed values of leaf unfolding dates across the five CERN forest sites in the parallel 
model and alternating model ranged from 0.72 to 0.82, larger than that in the spring warming model (0.62) and 
sequential model (0.58–0.65). MRE values of the parallel model and alternating model (−3.39% to −1.10%) were 
less than those of the sequential model (1.76%–5.14%) and spring warming model (4.51%) (Table 4). Table 4 
provides a summary of the best-fit leaf unfolding dates models and their relative performance given the forcing 
model FU1. When using the forcing model FU2, modeled leaf unfolding dates based on FU2 were highly corre-
lated with those based on FU1 (Table S2 in Supporting Information S1), and the results on performance of these 
above leaf unfolding date models were consistent with those with FU1 (Table S3 in Supporting Information S1).

Among the three chilling models, CU1 performed the best with the lowest values of RMSE, MBE, and AICc in 
the sequential model, parallel model, and alternating model (Table 4). The parallel CU1 model and alternating 
CU1 model showed comparatively good performance across the five CERN forest sites. Further evaluation on 

R
RMSE 
(day)

MBE 
(day) MRE (%) AICc

Spring warming model 0.62 8 9 4.51 6.07

Sequential CU1 model 0.65 8 6 5.14 5.86

Sequential CU2 model 0.58 11 9 1.76 6.21

Sequential CU3 model 0.58 11 9 2.21 6.16

Parallel CU1 model 0.80 6 6 2.79 5.40

Parallel CU2 model 0.80 13 10 −3.39 6.55

Parallel CU3 model 0.82 12 10 −2.27 6.29

Alternating CU1 model 0.81 7 6 −1.10 5.23

Alternating CU2 model 0.77 13 10 −2.93 6.51

Alternating CU3 model 0.72 12 8 −2.43 6.03

Table 4 
Comparison of Simulation Results Among Different Combinations of Three 
Chilling Models and the FU1 Model and Spring Warming Model Across the 
Five Chinese Ecosystem Research Network (CERN) Forest Sites
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modeled leaf unfolding dates between these two CU1 models at each forest 
site was shown in Table 5. The alternating CU1 model had higher consist-
ency with the observed leaf unfolding dates with lower RMSE (1–4 days), 
MBE (3–6 days), and MRE (−2.48% to 4.60%) than the parallel CU1 model 
at CBF, BJF, GGF, and MXF. But the alternating CU1 model showed poor 
behavior in simulating leaf unfolding dates at SNF.

Among the four leaf falling models, the SummerIA model showed the best 
performance in simulating leaf falling date at the five CERN forest sites. 
The PT model had a relatively low Pearson's correlation coefficient of 
0.57 and the largest MBE of 28 days. The commonly used T model had a 
high Pearson's correlation coefficient of 0.93 but a relatively large MBE of 
18 days. Although the CDD/P model considers the effects of both photo-
period and temperature, it still had a large MBE of 19 days (Table 6). The 
SummerIA model showed the lowest AICc value of 6.98 across the five 
CERN forest sites. Compared with the other three models, the SummerIA 
model also had the lowest RMSE, MBE, and MRE at three of the five forest 
sites (i.e., CBF, BJF, and GGF; Table 7).

3.2. Evaluation of Modified Phenological Model Against Observations From CPON and GIMMS Data

Compared with original CLM4.5 (referred as to CLM4.5_old), modified CLM4.5 (referred as to CLM4.5_new) 
had a better performance in simulating the leaf unfolding dates and leaf falling dates. Specifically, the MBE values 
of modeled leaf unfolding dates were reduced by 5 days in CLM4.5_new except for the LY site, when compared 
with CLM4.5_old (Figure 4a). For the leaf falling dates, CLM4.5_new had lower MRE values (−2.46% to 7.26%) 
than CLM4.5_old (−2.72% to 10.66%) except for the XA site (Figure 4b).

Based on the GIMMS-derived leaf unfolding and leaf falling dates, CLM4.5_new showed a better ability to simu-
late the spatial pattern and temporal variation in leaf unfolding and leaf falling dates than CLM4.5_old (Figure 5). 
Both CLM4.5_old and CLM4.5_new could reproduce the regional variation in leaf unfolding dates, leaf falling 
dates, and growing season length compared to GIMMS-derived phenology (Figure 5). However, CLM4.5_new 
showed better consistency in phenology with GIMMS-NDVI3g than CLM4.5_old (Figure 6a). The bias of mean 
leaf unfolding dates and leaf falling dates were reduced from −14 and 21 days in CLM4.5_old to −3 and 9 days 
in CLM4.5_new, respectively.

Moreover, the trend of leaf unfolding predictions from CLM4.5_new (−0.20 days/year) was more consistent with 
GIMMS-derived trend (−0.17 days/year) than that from CLM4.5_old (−0.12 days/year; Figure 6b). In contrast 
to CLM4.5_old with constant leaf falling dates or no trend, CLM4.5_new agreed with GIMMS-NDVI3g in the 
delayed trend of leaf falling date during 1982–2014 (Figure 6b). Consequently, CLM4.5_new well presents the 
temporal changes of growing season length in China's deciduous forests (Figure 6b). The trend difference in 
growing season length between GIMMS-NDVI 3g and model decreased from 0.24 days/year in CLM4.5_old to 
0.08 days/year in CLM4.5_new.

Across all China's deciduous forests, CLM4.5_new also well simulated 
the coefficient of variation (CV) of leaf falling and growing season length 
(Figure 6c). The CV of leaf falling dates (0.91%) for CLM4.5_new was close 
to that (1.23%) for GIMMS-NDVI3g. The differences between predicted and 
GIMMS-derived growing season length CV for CLM4.5_new (1.41%) was 
lower than that for CLM4.5_old (2.36%).

3.3. Effects of Phenology Improvement on GPP Simulation

The results showed that the modification of phenology models increased 
the prediction accuracy of annual GPP and its interannual variation (IAV). 
Compared with CLM4.5_old, MRE values of annual GPP simulated by 

Parallel CU1 model Alternating CU1 model

RMSE 
(day)

MBE 
(day) MRE (%)

RMSE 
(day)

MBE 
(day)

MRE 
(%)

CBF 5 5 2.59 4 4 −2.32

BJF 4 10 8.83 4 5 4.60

GGF 2 2 −1.12 1 3 −2.48

MXF 2 8 7.37 1 6 3.29

SNF 1 4 −3.73 2 10 −8.59

Table 5 
Assessment of Two CU1 Models (i.e., the Parallel CU1 Model and 
Alternating CU1 Model) at the Five Forest Sites of the Chinese Ecosystem 
Research Network (CERN)

R RMSE (day) MBE (day) MRE (%) AICc

T model 0.93 6 18 5.51 7.43

PT model 0.57 5 28 6.72 8.14

CDD/P model 0.53 20 19 0.37 7.67

SummerIA model 0.92 6 14 −1.75 6.98

Table 6 
Comparison of Simulation Results Among Different Leaf Falling Dates 
Models Across the Five Chinese Ecosystem Research Network (CERN) 
Forest Sites
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CLM4.5_new were reduced from −25% to 26% to −14% to 11% across the six sites (Figure 7a). Meanwhile, 
the  CV of annual GPP reproduced by CLM4.5_new was well consistent with observed values at BE-Bra, BE-Vie, 
IT-Ro2, and CBF (Figure 7b).

The improvement of modeled annual GPP due to the modification of phenology was mainly caused by better 
prediction on the carbon uptake duration and carbon uptake amplitude (Figures 7c and 7d). The reduction of 
annual GPP bias modeled by CLM4.5_new at BE-Bra and CBF was mainly associated with the diminished over-
estimation of carbon uptake duration by 6–19 days. Consequently, modeled GPP from the date of carbon uptake 
amplitude to the end of carbon uptake duration at CBF decreased by 13.31%, when compared with CLM4.5_
old. Modeled GPP from the start of carbon uptake amplitude to the date of carbon uptake duration at BE-Bra 
decreased by 15.16% comparing to CLM4.5_old. CLM4.5_new reduced the bias of leaf falling dates by 11 days 
at US-PFa. For the BE-Vie and US-MMS sites, CLM4.5_new reduced the bias of leaf unfolding dates by 7 and 
22 days, respectively. Simultaneously, the bias of modeled carbon uptake amplitude was reduced from −3.92 
and −6.33 gC/m 2/day in CLM4.5_old to 0.14 and −3.28 gC/m 2/day in CLM4.5_new at BE-Vie and US-MMS, 
respectively. Estimated GPP from the start of carbon uptake duration to the date of carbon uptake amplitude at 
BE-Vie and US-MMS increased by 24.67% and 26.77%, respectively, for CLM4.5_new than for CLM4.5_old. 
The improvement in both carbon uptake duration and carbon uptake amplitude caused a total reduction in GPP 
bias at BE-Vie, US-PFa, and US-MMS, respectively.

3.4. Prediction of Phenology in China's Deciduous Forests in the Future

CLM4.5_new suggested a larger extension of growing season length (0.22 days/year) in 2016–2100, because 
of a greater advance rate in leaf unfolding dates (−0.11 days/year) and a delay in leaf falling dates (0.11 days/
year) as shown in Figures 8a–8c. Most areas (95.11%) of China's deciduous forests experienced a substantial 
advance in leaf unfolding dates (Figure  8a), particularly in the subtropical region, where the temporal trend 

T model PT model CDD/P model SummerIA model

RMSE 
(day)

MBE 
(day)

MRE 
(%)

RMSE 
(day)

MBE 
(day)

MRE 
(%)

RMSE 
(day)

MBE 
(day)

MRE 
(%)

RMSE 
(day)

MBE 
(day)

MRE 
(%)

CBF 1 22 8.30 – 31 11.82 2 9 3.49 1 3 1.12

BJF 2 31 12.19 – 36 13.98 3 38 14.74 9 14 −4.61

GGF 7 21 7.80 – 40 14.91 – 19 −10.48 2 8 −0.75

MXF 7 8 −2.33 – 18 −5.39 – 17 −5.23 4 24 −7.51

SNF 7 5 1.61 – 5 −1.69 5 13 −4.26 3 20 −6.27

Table 7 
Assessment of Modeled Leaf Falling Dates at the Five Forest Sites Within Chinese Ecosystem Research Network (CERN)

Figure 4. Evaluation of modeled leaf unfolding dates and leaf falling dates at eight sites of Chinese Phenological Observation Network (CPON). Orange: original 
CLM4.5 model, Green: modified CLM4.5 model. Square: Nenjiang (NJ), Circle: Dedu (DD), Triangle: Jiamusi (JMS), Diamond: Haerbin (HEB), Hexagon: Changchun 
(CC), Cross (+): Shenyang (SY), Cross (x): Luoyang (LY), Star: Xian (XA).
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Figure 5. Spatial patterns of leaf unfolding dates, leaf falling dates, and growing season length in China's deciduous forests during 1982–2014. (a, b, c) spatial patterns 
of leaf unfolding dates, leaf falling dates, and growing season length derived from GIMMS NDVI3g. (d, e, f) spatial patterns of leaf unfolding dates, leaf falling dates, 
and growing season length modeled by the original CLM4.5 model. (g, h, i) spatial patterns of leaf unfolding dates, leaf falling dates, and growing season length 
modeled by the modified CLM4.5 model.

Figure 6. Comparisons of CLM4.5 modeled mean (a), trend (b), and coefficient of variation (c) of leaf unfolding dates, leaf falling dates, and growing season length 
with GIMMS phenology data over the period 1982–2014. The error bars represent one standard deviation.
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of leaf unfolding dates was −0.31  days/year (Figure  8g) with the highest increasing rate of mean preseason 
temperature (0.046°C/year, Figure S2e in Supporting Information S1). For the leaf falling dates, it delayed in 
most of China's deciduous forests (81.16%) because of remarkable temperature rise (0.037°C/year, Figure S2f 
in Supporting Information S1), especially in the temperate region with significant increasing trend of 0.16 days/
year (Figure 8h).

In contrast with the present, CLM4.5_new found the weaker advancement of leaf unfolding dates and the similar 
dependent of leaf falling dates under the RCP4.5 scenario in China's deciduous forests (Figures 8a, 8b, and 8d). 
With the trends of mean preseason temperature decreased from 0.028°C/year during 1981–2015 to 0.023°C/year 
during 2016–2100 in RCP4.5 (Figures S2a and S2d in Supporting Information S1), the decrease of chill accumu-
lation and the increase of heat requirement slowed down, while the former changed more, of which trends were 
reduced from −0.21 in 1981–2015 to −0.091 in 2016–2100 (Figures S3a and S3c in Supporting Information S1). 
To a certain extent, the reduction of chill accumulation increased the threshold of heat requirement and weakened 
the advance of leaf unfolding dates caused by climate warming. Although the delayed trend in leaf falling dates 
during 2016–2100 was similar to that during 1981–2015, but there was difference in three climatic regions. The 
delayed trend in leaf falling dates in the subtropical and temperate regions would reduce from 0.23 days/year and 
0.10 days/year in 1981–2015 to 0.11 days/year and 0.11 days/year in 2016–2100 with the slowdown of warming 
in the future under the RCP4.5 scenario (Figure 8h, Figures S2b and S2d in Supporting Information S1). Moreo-
ver, the increasing rate in leaf falling dates in the cold temperate region was more substantial in 2016–2100 than 
in 1981–2015 (Figure 8h). The leaf unfolding and leaf falling dates in the last decade of the twenty-first century 
would be 8 days ahead of the current decade and 16 days later than the current decade modeled by CLM4.5_new, 
which lead to the 21 days extension of the growing season length. The difference in leaf falling dates' trend caused 
the difference in growing season length's trend over the periods 1981–2015 and 2016–2100. Consequently, the 
changing rates of growing season length from CLM4.5_new in the subtropical and temperate regions were only 

Figure 7. Comparison of annual Gross Primary Productivity (GPP) (a), interannual variation of GPP (b), carbon uptake duration (c), and carbon uptake amplitude 
(d) between original CLM4.5 (referred as to CLM4.5_old) and modified CLM4.5 (referred as to CLM4.5_new) at a forest site (CBF) of Chinese Ecosystem Research 
Network (CERN) and five forest sites of FLUXNET. The error bars in panels (a), (c), and (d) represent one standard deviation.
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about half of the current stage (Figure 8i). But the cold temperate region had a greater increasing trend in growing 
season length than that in 1981–2015 (Figure 8i).

The IAV was defined as detrended anomaly phenological dates in China's deciduous forests simulated by modi-
fied phenological models. The IAV in growing season length varied from −10.0 to 10.7 days during 2016–2100 
under the RCP4.5 scenario in China's deciduous forests due to the IAV in leaf unfolding dates and leaf falling 
dates varying from −7.5 to 6.8 days and −6.2 to 6.8 days, respectively (Figures 9d–9f, Table S5 in Supporting 
Information S1). When compared with the other climatic regions, the subtropical region had a larger IAV in leaf 
unfolding dates (Table S5 in Supporting Information S1) because of the higher sensitivity of leaf unfolding dates 
to mean preseason temperature (−0.71 days/°C, Table S6 in Supporting Information S1). The cold temperature 
region had a large IAV in leaf falling dates due to the large IAV of mean temperature before leaf falling dates 
(Table S5 in Supporting Information S1).

Compared with the current period, the IAV in phenological dates was similar in magnitude during 2016–2100 
under the RCP4.5 scenario in China's deciduous forests on average (Table S5 in Supporting Information S1). 
Nevertheless, the IAV in phenological dates varied in different regions. The IAV of leaf unfolding dates in the 
subtropical and cold temperate regions during 2016–2100 more than doubled in comparison to the period of 1981–
2015 due to the enhanced preseason temperature IAV (Figure S4 and Table S5 in Supporting Information S1). 

Figure 8. Trend of leaf unfolding dates (a, d, g), leaf falling dates (b, e, h), and growing season length (c, f, i) in China's deciduous forests during 1981–2015 (a, b, c) 
and 2016–2100 (d, e, f) under the RCP4.5 scenario modeled by modified CLM4.5. The error bars represent one standard deviation. * means P < 0.05, which is obtained 
by the statistical test using ANOVA.
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Further, the increase in IAV of heat requirement and chill accumulation led to strengthening IAV of leaf unfolding 
dates in the subtropical region (Figure S5 and Table S5 in Supporting Information S1). However, the enhanced 
IAV of leaf unfolding dates in the cold temperature region was mainly caused by the marked increase in IAV 
of heat requirement (from −45.82 and 35.95°C to −109.45 and 125.04°C) rather than a slight increase in chill 
accumulation (from −6.82 and 7.11°C to −9.04 and 11.44°C). In addition, the IAV of leaf falling dates in the 
cold temperate region increased by 50%, which was mainly caused by the enhanced preseason temperature IAV 
(Figure S4 in Supporting Information S1). In contrast, the decrease of cold-degree day summation induced the 
reduction in IAV of leaf falling dates in the subtropical and temperate regions (Figure S5 and Table S5 in Support-
ing Information S1). These results showed an increase in the IAV in growing season length driven by the increase 
in the IAV of preseason temperature, especially in the cold temperature region.

4. Discussion
Our results highlight the importance of modification on deciduous phenology simulation methods, especially 
the leaf-falling date, used in the CLM and most terrestrial biosphere models. Specifically, the low temperature 
threshold used in many models simulates the leaf falling with a high correlation but with a large deviation, and  the 
daylength threshold method in CLM4.5 cannot reproduce the IAV of leaf falling dates and have remarkable bias 
(Table 6). The CDD/P model showed very good agreement with mean annual dates of leaf falling dates in France 
(Delpierre et al., 2009) and northern Minnesota of the U.S.A. (Meng et al., 2021), but it shows a large bias of leaf 
falling dates in this study (Table 6). Besides of low temperature and daylength, our study considered the effect 
of summer temperature on leaf falling (Lu and Keenan, 2022) in the new SummerIA model, which reduced the 
bias and RMSE of simulated leaf falling dates at the five CERN forest sites and was well consistent with remote 
sensed phenology at the national scale. Considering the two clusters of data in Figure 3, we removed the cold 
site (i.e., GGF) to examine the robust of the relationship between the average temperature from June to August 
and the aging state. The result show that exclusion of the data at GGF did not change this negative relation-
ship and would not influence the simulation of leaf falling dates at these CERN sites (Table S1 in Supporting 

Figure 9. Interannual variations of leaf unfolding dates, leaf falling dates, and growing season length in China's deciduous forests during 1981–2015 (a, b, c) and 
during 2016–2100 under the RCP4.5 scenario (d, e, f) modeled by modified CLM4.5.
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Information S1). Moreover, the consideration of preseason precipitation as documented in Liu et al. (2016) might 
improve the new model performance at MXF and SNF sites. Based on the relationship between precipitation in 
summer and the residual of observed and fitted aging state across four CERN forest sites (Figure S6 in Supporting 
Information S1), we expressed the threshold of the aging state at MXF and SNF sites as a function of precipita-
tion sum from June to August. This update reduced the differences between observed and simulated leaf falling 
dates at MXF and SNF by 9 and 11 days, respectively. Underlying mechanisms of plant physiological processes 
(Bonan, 2015; Gepstein and Thimann, 1980) related to plant hormones and signal transduction (e.g., abscisic 
acid), and the role of source-sink feedbacks (Zani et al., 2020) are necessary to be considered in models in the 
future.

Whether the two-phase leaf unfolding models outperform the spring warming model remains controversial 
(Piao et al., 2019). Our results suggest that the alternating and parallel models had better performance in simu-
lating leaf unfolding dates than using an individual heat requirement, as reported in previous studies (Harrington 
and Gould, 2015; Martínez-Lüscher et al., 2017). In addition, the performance of both alternating and paral-
lel models depends on the expression of chill accumulation that largely affects the relationship between chill 
accumulation and the threshold of heat requirement (Figure 2). The variation in expression of chill accumula-
tion results from different assumptions about the effectiveness of various temperatures for dormancy release 
(Harrington et al., 2010). Some studies have suggested that calculating the number of hours or days with temper-
atures less than 5°C were more effective than the other cold temperature thresholds (Cannell & Smith, 1983; Y. 
H. Fu et al., 2015). Models with a negative correlation based on CU1 gave a better result than those with a posi-
tive correlation based on CU2 or CU3. Experiments under a controlled environment indicated that additional 
chill accumulation before leaf unfolding dates may decrease the heat requirement (Couvillon and Erez, 1985; 
H. Wang et al., 2020). Therefore, the involvement of such a negative relationship between heat requirement and 
chill accumulation was regarded to be more reasonable and can improve model performance in simulating leaf 
unfolding dates (Chuine et al., 1999; Darbyshire et al., 2016; Y. H. Fu, Piao, et al., 2014; Y. H. Fu et al., 2015; 
B. Li et al., 2015). The alternating CU1 model remains a large deviation in some subtropical forests, possibly 
because those species have a small chilling requirement, which would lead to an earlier leaf unfolding date and 
might be at greater risk from early frost damage (Murray et al., 1989). It should be noted that the coefficients 
for calculating the threshold of leaf unfolding dates in different phenology models were fitted in our study. The 
model parameters may of course vary between species and locations. In a global change context, where the 
aim is the phenology modeling of populations, data concerning only some tree species would probably lead 
to deviated estimates (Chuine et  al.,  1998,  1999). Furthermore, more efforts on long-term species-specific 
phenology observations and digital photography monitoring for vegetation phenology (Melaas et  al.,  2016; 
Richardson et al., 2012) are also needed for evaluating and improving the model parameters and simulation of 
leaf phenology.

Introducing a new representation of the deciduous forests' phenology greatly improves the model's simulation of 
the variations of phenological dates and carbon cycles. Earlier spring leaf unfolding has been broadly observed 
but the amplitude of advancement varies with region and period (Piao et al., 2019). Using original and modified 
CLM4.5, our results all showed that deciduous trees in the subtropical region experienced the most significant 
trend of advanced leaf unfolding and delayed leaf falling when compared with those in the other two regions. 
This is consistent with the result from the phenological records in CPON that the greater advance in leaf unfold-
ing dates in subtropical region than temperature region due to the higher sensitivity of leaf unfolding dates to 
spring temperature (H. Wang et al., 2015). Moreover, we found a weaker advancement of leaf unfolding dates 
during 2016–2100 under the RCP4.5 scenario in China's deciduous forests when compared with the period of 
1981–2015. Since the leaf unfolding dates were affected by the tradeoff between heat requirement and chill accu-
mulation (Gauzere et al., 2019), the advancement amplitude of leaf unfolding dates relies on both the change in 
threshold of heat requirement due to reduction of chill accumulation and the heat accumulation due to climate 
warming. Considering the chill accumulation, modified CLM4.5 made considerably more accurate leaf unfolding 
date predictions than the original CLM4.5. By contrast, the predicted delayed trend in leaf falling dates during 
2016–2100 was similar to that during 1981–2015, except for the earlier leaf fall in the cold temperature region. 
This positive correlation between leaf falling dates and leaf unfolding dates has also been found in some records 
on the Qinghai—Tibetan Plateau (Lang et al., 2019), Europe (Y. H. Fu, Zhang, et al., 2014; Zani et al., 2020), and 
eastern United States (T. F. Keenan and Richardson, 2015). It is essential to consider such a relationship between 
leaf unfolding dates and leaf falling dates in earth system models.
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Early spring phenology usually makes an increase in carbon uptake. For example, in the Northern Hemisphere, 
1 day ahead of leaf unfolding dates results in an increase in GPP of approximately 0.2–8.4 gC/m 2/day (Falge 
et al., 2002; Jeong et al., 2012; T. F. Keenan et al., 2014; Richardson et al., 2009). However, the delay of leaf fall-
ing dates may enhance the respiration (Richardson et al., 2009). In addition, extending the growing season length 
can increase the exposure to frost, which will damage leaves and reduce photosynthesis capacity and growth (Liu 
et al., 2018). The potential effects of future climate warming on the land carbon sink due to the change in phenol-
ogy for deciduous forests in China needs further investigation.

More attention needs to be paid to the IAV of phenological dates, which is one of the important reasons for 
the uncertainty of the IAV of terrestrial carbon sink (T. F. Keenan et al., 2012a, 2012b). Compared with eddy 
covariance measurements, the ecosystem models underestimate the contribution of carbon uptake amplitude and 
overestimate the contribution of carbon uptake duration to the IAV of carbon sink, especially in forest ecosys-
tems (Z. Fu et al., 2019). Our results suggest that the modification of phenology processes shows better behavior 
in predicting GPP and its IAV through improved estimation of both carbon uptake duration and carbon uptake 
amplitude (Figure 7 and Figure S1 in Supporting Information S1). The modified CLM4.5 outperforms the orig-
inal CLM4.5 in terms of better accuracy of growing season length IAV due to the consideration of leaf falling 
dates IAV. In contrast with the current period, we found the enhanced IAV of leaf unfolding dates in subtropical 
region and the enhanced IAV of leaf falling dates in cold temperature region during 2016–2100 under the RCP4.5 
scenario in China's deciduous forests due to the increased IAV of preseason temperature. These results require 
further examination against long-term phenological observations in the subtropical and cold temperate regions 
of China.

5. Conclusions
We evaluated and modified the leaf unfolding and leaf falling models in deciduous trees using long-term pheno-
logical observations, and used the modified deciduous phenology models to quantify the changes in phenolog-
ical dates and their regional differences. For the simulation of leaf unfolding dates, the parallel and alternating 
models performed better than the spring warming and sequential models, and their performance depends on the 
expression of chill accumulation. The new SummerIA model had better behavior in simulating the leaf falling 
dates than commonly-used models because of considering the relationship between summer temperature and 
aging state threshold. The modified phenology processes could improve the accuracy of the mean value and IAV 
of GPP because of the improvement of carbon uptake duration and amplitude. When compared with the original 
CLM4.5, modified CLM4.5 performs better in simulating spatial and temporal variations of phenological dates. 
The advance in leaf unfolding dates slowed down during 2016–2100 under the RCP4.5 scenario due to the reduc-
tion of climate warming compared to those during 1981–2015. By contrast, the delayed trend in leaf falling dates 
in the subtropical and temperate regions was reduced, while the trend in leaf falling dates in the cold temperate 
region switched from advance to delay. The subtropical region had a larger IAV in the leaf unfolding dates than 
the other two regions because of the highest sensitivity of phenological dates to preseason temperature. The IAV 
of leaf unfolding dates and leaf falling dates in the cold temperate region increased due to the enhanced preseason 
temperature IAV, in spite of the similar IAV of phenological dates in China's deciduous forests during the two 
periods. Our results highlight the urgency of modification of deciduous phenology simulation methods in CLM 
and the vital role of long-term phenology observations and mechanisms about the effects of plant hormones and 
signal transduction on leaf phenology for further improving phenology models.

Data Availability Statement
Long-term observed phenological data (CERN, 2020; Song et al., 2017) and hourly air temperature data (Chin-
aFLUX,  2021b) at five sites in Chinese Ecosystem Research Network (CERN) can be found in the Chinese 
Ecosystem Science Data Center. The phenological observations at eight sites in Chinese Phenological Observa-
tion Network (CPON) can be downloaded from the National Earth System Science Data Sharing Platform (Ge 
et al., 2014, 2015; H. Wang et al., 2014, 2015). Air temperature data at eight CPON sites were collected from the 
neighboring meteorological stations of China Meteorological Administration (2023). The ChinaFLUX data set 
is available at ChinaFlux (2021a). The FLUXNET data set is available at Pastorello et al., 2020. The temperature 
data from 1981 to 2015 were collected from the China Meteorological Forcing Data set (He et al., 2020). The 
daily temperature data in the RCP4.5 scenario were obtained from the NEX Global Daily Downscaled Climate 

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S003655 by Institute O
f B

otany, W
iley O

nline L
ibrary on [05/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

LV ET AL.

10.1029/2023MS003655

20 of 23

Projections (Thrasher et al., 2022). GIMMS Phenology data set was downloaded from X. Wang et al. (2019). 
Relevant data and code can be found at https://figshare.com/s/741e0fb058fb81b6f07d.
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