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ABSTRACT

Soil organic carbon (SOC) in shrublands is an

important component of global carbon cycling.

However, there is a dearth of large-scale systematic

observations of SOC stocks at different soil depths,

and it remains uncertain whether and how the

relative importance of biotic and abiotic variables in

regulating SOC stocks changes with soil depth.

Here, we quantified large-scale patterns and con-

trolling factors of SOC storage per area (SOCD,

kg m-2) for both topsoils (0–30 cm) and subsoils

(30–100 cm) by taking full advantage of a consis-

tent stratified random sampling study of one-meter

soil profiles across 1211 sites in Chinese shrub-

lands. We found that subsoils stored about 53.30%

of total SOCD, falling into the range of previously

reported values for terrestrial ecosystems.

SoilGrids250m model-derived assessments overes-

timated SOCD by 13.72 and 65.49% for topsoils

and subsoils, respectively. The effects of climate

means and seasonality on SOCD were equally

strong in both topsoils and subsoils. The predomi-

nant effects of edaphic properties on SOCD were

more robust in subsoils than in topsoils. Below-

ground biomass of shrublands was the only signif-

icant predictor of topsoil SOCD, but it did not

predict subsoil SOCD accurately. These findings

have refined our understanding of the pivotal role

of shrublands in SOC storage and sequestration

potential and could serve as an ecologically valu-

able baseline for large-scale improvement and val-

idation of depth-dependent SOC dynamics for

multilayer SOC modules in Earth Systems Models.

Key words: soil carbon storage; subsoil layer;

climate-vegetation-soil relationships; climatic con-

trol; edaphic properties; vegetation attributes.

HIGHLIGHTS

� Shallow soil sampling of shrublands underesti-

mates carbon stocks by > 50%.
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� The importance of climate seasonality, and in

particular precipitation, should be taken into

account in subsoil carbon assessments.

� The effects of edaphic properties on organic

carbon stocks are more robust in the subsoil

than in the topsoil.

� Vegetation attributes predict organic carbon

much more accurately in topsoils than in sub-

soils.

INTRODUCTION

Soil organic carbon (SOC) makes up approximately

two-thirds of the terrestrial carbon pool, storing

more carbon than the atmosphere and plant bio-

mass combined, and consequently plays a key role

in regulating climate change (Jackson and others

2017; Billings and others 2021; Garcı́a-Palacios and

others 2021), Therefore, a well-developed under-

standing of large-scale patterns and drivers of SOC

stocks has important implications for predicting soil

carbon-climate feedbacks in current Earth System

Models and for the development of strategies for

SOC sequestration in response to climate change

(Scharlemann and others 2014; Rasmussen and

others 2018; Wiesmeier and others 2019).

Because SOC is so important to terrestrial

ecosystem carbon cycling, scholars have increas-

ingly been investigating the main determinants of

SOC storage. Existing studies have demonstrated

that SOC storage is primarily driven by C inputs

(such as aboveground litterfall and root turnover)

and by C protective mechanisms (such as litter

biochemical quality and environmental constraints

that affect SOC decomposition rates, as well as

interactions with minerals that together with bio-

chemical recalcitrance control microbial decompo-

sition of SOC) (Jackson and others 2017; Gaitán

and others 2019; Garcı́a-Palacios and others 2021).

Recent findings have demonstrated that climate,

edaphic and physiochemical properties, and vege-

tation attributes could all strongly control SOC

storage at different spatiotemporal scales. For

example, warmer and more humid conditions,

deeper soils, and soils with higher clay content are

usually associated with higher SOC storage (Wies-

meier and others 2019; Hartley and others 2021).

Despite extensive research, existing knowledge

of SOC dynamics remains inadequate in several

respects. Previous investigations have focused

strongly on the topsoil above 30 cm, with relatively

limited evidence from the subsoil. In fact, subsoil

below 30 cm could store more than 50% of total

SOC stocks (Jobbágy and Jackson 2000; Jackson

and others 2017; Luo and others 2019), sequester

up to 20% of new carbon globally (Balesdent and

others 2018), and differ considerably from topsoil,

with higher total volumes and bulk densities, lower

SOC concentrations, and longer SOC residence

times (Rumpel and Kögel-Knabner 2011; Shi and

others 2020; Jı́lková and others 2021). These dif-

ferent properties of subsoil SOC also raise questions

about whether and how the dominant drivers of

SOC storage could vary between topsoil and sub-

soil. Existing studies have demonstrated that SOC

stored in both top- and subsoils is strongly con-

trolled by climate, edaphic properties, and vegeta-

tion conditions. However, the relative importance

of these controlling factors remains largely un-

known and is incompletely represented in current

Earth System Models (Jackson and others 2017;

Garcı́a-Palacios and others 2021; von Fromm and

others 2021; Yu and others 2021). This uncertainty

has further resulted in a gap between the theoret-

ical understanding of depth-specific SOC dynamics

and our ability to improve terrestrial biogeochem-

ical projections. It is therefore imperative that we

better understand the distinct mechanisms con-

trolling SOC storage in top- and subsoils, as this will

help to develop unbiased strategies to effectively

enhance whole-soil vertical profile carbon seques-

tration.

Shrublands are among the most poorly repre-

sented biomes in terms of SOC stock (Kramer and

Chadwick 2018; Nie and others 2019) and could

sequester more SOC than previously thought, and

are thus an important potential carbon sink (Job-

bágy and Jackson 2000; Piao and others 2009; Nie

and others 2019). For example, shrublands have

stored the deepest organic carbon and contribute

greatly to inter-annual variability of the global

terrestrial carbon sink among terrestrial ecosystems

(Ahlström and others 2015; Terrer and others

2021). However, shrubland SOC storage has been

seriously biased in large-scale empirical and mod-

eling studies, while the high potential SOC

sequestration capacity of shrublands has been rec-

ognized (Jackson and others 2017; Tang and others

2018; Shi and others 2020). Large-scale observa-

tional data availability on SOC storage in these

shrublands remains insufficient, and shrubland

soils are less well-described in current soil digital

mapping (Tifafi and others 2018; Dai and others

2019). Most existing studies have not discriminated

shrublands from other ecosystems (Jackson and

others 2017; Luo and others 2021) and generally

use relatively small datasets with limited geo-

graphical coverage, focusing on the surface soil

layers (Wang and others 2004; Nie and others
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2019). These shortcomings have further hampered

firm conclusions on the quantitative relationships

between SOC stocks and their environmental dri-

vers and have restricted our robust understanding

of the potential role of shrublands in SOC seques-

tration under climate change (Billings and others

2021).

To close this knowledge gap, we quantified large-

scale patterns and controlling factors of SOC stor-

age per area (SOCD, kg m-2) for both topsoils (0–

30 cm) and subsoils (30–100 cm) by taking full

advantage of a consistent stratified random sam-

pling of extensive soil profiles down to one-meter

depth across 1211 shrubland sites in China.

Specifically, we aimed to: (1) quantify depth-de-

pendent SOCD, and (2) disentangle the relative

importance of climatic, edaphic, and vegetation

variables on SOCD stored in topsoil (0–30 cm) and

subsoil (30–100 cm) for Chinese shrublands.

MATERIALS AND METHODS

SOCD Observational Data for Chinese
Shrublands

Chinese shrublands cover 0.69 million km2,

accounting for nearly 7.3% of China’s total land

area, and are widely distributed across geographical

and environmental gradients (MEPPRC 2015).

Chinese shrublands thus provide an ideal system in

which to explore the geographical patterns and the

dominant drivers of SOC stocks in shrublands.

Here, all site-level SOC stock datasets consisted of

1211 soil profiles, sampled during fieldwork for the

‘‘Strategic Priority Research Program-Climate

Change: Carbon Budget and Relevant Issues’’ by

the Chinese Academy of Sciences, which aimed to

quantify the carbon budget of terrestrial ecosystems

in China in 2011–2015 (Fang and others 2018;

Tang and others 2018). Soil profile samples covered

major shrubland types, with a broad range of mean

annual temperature and precipitation (Table 1,

Appendix S1). Detailed sampling specifications,

analytical procedures, and data preprocessing can

be found in the Technical Manual Writing Group of

Ecosystem Sequestration Project (2015) and Xie

and others (2018).

Field investigation and sampling were conducted

in the 2011–2015 growing seasons according to a

standardized sampling protocol. Sampling sites for

shrubland types were selected based on geographic

distribution and representativeness of Chinese

shrublands following the guidance of Vegetation of

China. Shrubland sampling sites ranged from

18.26� to 52.37�N latitude, from 75.60� to 131.70�E

longitude, and from 153 to 4634 m in elevation

(Table 1). Soil profiles for each site were collected

from three plots of 5 9 5 m (10 9 10 m in some

cases). For each plot, three one-meter soil pits (or

to bedrock for some sampling sites) were excavated

along the diagonal line of each plot to measure soil

physical and chemical properties. Soil samples were

collected along the profile at depths (D) of 0–10,

10–20, 20–30, 30–50, 50–70, and 70–100 cm for

each plot. A soil sample with an estimated dry

weight of 100 g was collected and fully mixed with

a small scraper from the same soil depth for each

plot. Soil samples for each soil depth were used to

determine soil bulk density (SBD), soil organic

carbon concentration (SOCC), the coarse fragment

content (particle diameter > 2 mm; CF, volume

percentage), soil nitrogen concentration (TN), soil

phosphorus concentration (TP), and pH (Technical

Manual Writing Group of Ecosystem Sequestration

Project 2015).

Soil organic carbon concentration was deter-

mined by colorimetry after oxidation with a mix-

ture of potassium dichromate and sulfuric acid. Soil

TN was measured with an elemental analyzer

(Vario MACRO cube, Elementar, Hanau, Ger-

many), and soil TP was measured using the

molybdate/ascorbic acid method after H2SO4–H2O2

digestion (See Tang and others (2018) for more

details). Other chemical properties and detailed

analytical procedures can be found in the Technical

Manual Writing Group of Ecosystem Carbon

Sequestration Project (2015).

Current studies have demonstrated that SOC

stocks can be calculated using fixed-depth or

equivalent soil mass methods (von Haden and

others 2020). We selected the former method to

quantify SOCD because this method is commonly

used in SOC stock inventories and we had deter-

mined the SBD and CF for each soil depth. There-

fore, following previous empirical studies (Doetterl

and others 2015; Tifafi and others 2018), we cal-

culated soil organic carbon density (SOCD, SOC

stock per area, g/m2) for each depth for each site:

SOCD = SOCC 9 SBD 9 D 9 (1-CF). See Appen-

dix S4 for more details on the depth-specific dis-

tribution of SOCD.

For these plots, we also investigated vegetation

characteristics, including species composition,

dominant species, and above- and below-ground

biomass. In brief, before biomass collection, a sur-

vey of species composition was completed for each

plot. The shrub layer was surveyed throughout the

plot and the herb layer was investigated in four

quadrants (1 9 1 m) located at the four corners of

the plot. Shrub layer biomass was then estimated
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by taking samples of clipped plants for each plot or

by applying allometric equations for each species.

For the herb layer, all herbaceous biomass was

harvested and oven-dried. We then calculated the

root to shoot ratio (RS) for each site. Further details

on vegetation characterization and soil surveys can

be found in the Technical Manual Writing Group of

Ecosystem Sequestration Project (2015) and Xie

and others (2018).

Environmental and Vegetation Attribute
Data

All environmental and vegetation attribute datasets

mentioned in this study were acquired from pub-

lished databases with a consistent spatial resolution

of 30 arcsec (approximately 1 km2 at the equator)

except for soil data, for which a 250 m-resolution

dataset was used. See more details on data sources

in Appendix S2. This method is common practice in

previous large-scale SOC studies. In brief, most

climate data were obtained from CHELSA-Clima-

tologies at high resolution for the Earth land sur-

face areas (Version 1.2), which is comparable in

accuracy to other temperature data but superior for

precipitation data. We also obtained climate data,

including solar radiation (SR), for each site from

Worldclim2 (Fick and Hijmans 2017). Using the

Digital Elevation Model (Yamazaki and others

2017), we obtained the topographic wetness index

(TWI), which is an important index of potential soil

moisture conditions (Wiesmeier and others 2019).

We also included additional edaphic properties

and vegetation attributes to account for geographic

variation beyond the above-mentioned climatic

variables. Data on soil texture for each site was

obtained from the SoilGrids250 dataset (Hengl and

others 2017). We used this high-resolution soil

dataset based on the following aspects. First, we

compared the model results with the SoilGrid250m

(a 250 m resolution) (Hengl and others 2017) and

SoilGrids1km ((a 1 km resolution) (Hengl and

others 2014) datasets and found qualitatively sim-

ilar results in our preliminary statistical analyses.

Second, we also considered the importance of

edaphic properties and easy comparison with pre-

vious studies. Furthermore, we also used this fine-

scale extracted SOCD to facilitate comparison with

our observational data and reduce the mismatch in

scale (Sanderman and others 2017). For each

quantitative soil variable, we calculated the depth-

weighted averages from 0–30 and 30–100 cm. We

also extracted modeled SOCD from SoilGrids250m

using the corresponding geographic locations of

observational SOCD.

To complement the statistical analysis of SOCD-

plant relationships beyond the vegetation biomass

we measured, we also extracted growing season

Table 1. Basic Statistics of Above-selected Climate, Edaphic and Vegetation Attributes Used in our Statistical
Models across Chinese Shrublands

Type Variable Mean SD Median Min Max

Climate Solar radiation (SR) KJ/m2 1489 142 1488 1090 1816

Mean annual temperature (MAT) �C 12.0 6.72 13.1 - 6.9 25.3

Temperature Seasonality (TS) 8095 2464 7784 2803 15,728

Mean annual Precipitation (MAP) mm 899 538 834 10 2347

Precipitation Seasonality (PS) 82.1 23.4 81 33 160

Topographic wetness index (TWI) 87.2 16.3 85 54 133

Edaphic Topsoil N % 0.17 0.16 0.12 0.01 1.58

Topsoil P mg g-1 0.58 0.41 0.5 0.05 3.72

Topsoil pH 6.92 1.76 6.85 3.94 10.3

Topsoil clay % 22.2 7.21 23.3 1 38.3

Topsoil sand % 41.6 12.2 38.3 21.7 97

Subsoil N % 0.08 0.07 0.06 0.00 0.56

Subsoil P mg g-1 0.48 0.33 0.42 0.04 4.16

Subsoil pH 7.09 1.84 7.06 3.94 10.2

Subsoil clay % 23.9 8.33 25 0.33 42.7

Subsoil sand % 41.2 12.8 38 22 97.7

Vegetation Aboveground biomass (AB) kg m-2 1.21 2.09 0.66 0.01 28.8

Belowground biomass (BB) kg m-2 0.93 1.3 0.51 0.00 12.9

Growing season length (GSL) day 188 77.8 186 5 365

Values of solar radiation have been divided by 10.
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length (GSL) index values for each site from the

previous datasets during the field sampling period.

Vegetation information was obtained from the

Resources and Environmental Science Data Center

of the Chinese Academy of Sciences (http://www.

resdc.cn/). These datasets generally represent the

most accurate, current, globally, and regionally

comprehensive, and the finest resolution data

available for each study site (Duarte-Guardia and

others 2019).

Data Processing and Analysis

Here, we divided our soil profiles into two soil

layers and aggregated the SOC stocks for each soil

layer for each site: commonly-used depth intervals

for topsoil (0–30 cm) and subsoil (30–100 cm)

represent an arbitrarily-defined cutoff, but one that

is often used in SOC stock inventories and can al-

low for direct comparisons with previous studies

(Jackson and others 2017; Balesdent and others

2018). For example, 0–30 cm is the default soil

sampling depth considered in the Intergovern-

mental Panel on Climate Change (IPCC) Tier 1 type

greenhouse gas inventories (Balesdent and others

2018; Billings and others 2021). We acknowledged

that soil depth is not a nominal category consisting

only of topsoil versus subsoil, but a continuous

layer approach would have been a good alternative

to better quantify how the relative importance of

biotic vs. abiotic factors shifts along six sequential

soil layers. Such granularity could help to detect

some unseen trends and to generate more insight-

ful depth-specific conclusions when comparing the

importance of driving factors of SOC in topsoil

versus subsoil. We did not perform such an analysis

at this time due to financial constraints and the

mismatch with current soil databases.

We applied descriptive statistics to characterize

our datasets, including mean, minimum/maximum

values, and the coefficient of variation (CV) for

SOCD and corresponding environmental features

at each soil layer (Table 1). Data on SOCD for each

soil layer exhibited significant heteroscedasticity

and non-normality (Kolmogorov–Smirnov test,

p < 0.05). Therefore, these variables were trans-

formed using the natural logarithm for each soil

layer in the following statistical analyses.

We conducted multiple linear regression models

to identify the associations between SOCD and

climatic, edaphic, and vegetation variables. We

explored the integrative effects of climatic, edaphic,

and vegetation variables on SOCD using stepwise

multivariate regression with both forward and

backward methods. Subsequently, the Akaike

information criterion (AIC) was used to identify the

most efficient model. The best model was selected

as the one with the highest explanatory power (R2)

and fewest explanatory variables. The difference in

AIC values between the best and other competing

models was less than two (Zuur and others 2009;

Ge and others 2019; Smith and Waring 2019). All

explanatory variables entering the final models

were centered and scaled so those model coeffi-

cients could be directly compared.

Before performing these statistical analyses, we

pre-selected explanatory variables to represent

hypothesized ways in which environmental (cli-

matic and edaphic) variables and vegetation attri-

butes could affect SOCD. We examined potential

multicollinearity among these environmental and

vegetation variables by calculating the variance

inflation factor (VIF) (Dormann and others 2013).

We then selected these explanatory variables

according to the variance inflation factor (VIF). We

assessed collinearity within this set of explanatory

variables using pairwise correlations since

collinearity may reduce our ability to draw robust

conclusions. We also implemented principal com-

ponent analysis (PCA) to further select these vari-

ables. More detailed information on the selection of

climatic, edaphic, and vegetation variables can be

found in Appendix S3.

We further evaluated the relative importance of

all explanatory predictors as drivers of SOCD. To do

so, we compared the relative effects of the param-

eter estimates for each of the predictors with the

effect of all parameter estimates in the model

(Garcı́a-Palacios and others 2018). This method

parallels variance decomposition analysis since we

standardized all explanatory predictors before

analysis. We also examined the overall relative

contribution of climatic, edaphic, and vegetation

attributes using the same method. We conducted

all statistical analyses in R version 3.6.0 (R Core

Team 2019) with the basic statistical package, the

‘‘car’’ package (Fox and others 2019), and the

‘‘MuMin’’ package (Bartoń 2020) using a 95%

significance level when appropriate.

RESULTS

Statistics and Geographic Patterns
of Topsoil and Subsoil SOCD

We found high variability in SOCD stored in both

topsoil and subsoils. Topsoil SOCD averaged

4.84 kg m-2, ranging from 0.10 to 34.67 kg m-2,
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while mean subsoil SOCD was 5.08 kg m-2, rang-

ing from 0.14 to 47.63 kg m-2. Topsoil SOCD did

not differ from that stored in subsoils (Figure 1).

Therefore, more than half of the total SOCD

(53.30%) was in subsoils within a one-meter soil

profile. We also compared topsoil and subsoil SOCD

observations with the corresponding model-de-

rived estimates from the SoilGrids250m database

and found that these model-based datasets signifi-

cantly overestimated topsoil SOCD by up to

13.72% and subsoil SOCD by 65.49% (paired t-test,

p < 0.05) (Figure 2). Furthermore, we also found

that SOCD for each soil depth decreased with lati-

tude but increased with longitude, though the

strength of such relationships tended to weaken

insignificantly for subsoils (Figure 3).

Factors Influencing Geographical
Variation in Top- and Subsoil SOCD

We found that factors controlling SOCD varied

between top- and subsoils (Figure 4). Topsoil SOCD

was positively associated with MAP and PS but

negatively correlated with MAT (but not TS) and

TWI. Topsoil SOCD correlated positively with soil

total nitrogen (TN), but negatively with soil sand

content, and exhibited no significant relationship

with soil clay and total P content (TP). Soil pH did

not significantly affect topsoil SOCD (p > 0.05).

Topsoil SOCD was greater with higher below-

ground (rather than aboveground) biomass and a

longer GSL (Figure 4A).

Likewise, we found that subsoil SOCD positively

correlated with MAP and PS but was negatively

linked to MAT, though it exhibited no significant

trend with TS and TWI (Figure 4B). Subsoil SOCD

correlated positively with TN but negatively with

soil sand content. Soil pH was strongly positively

correlated with subsoil SOCD. We detected

insignificant effects of soil TP and clay on subsoil

SOCD. GSL was the only vegetation attribute that

was positively correlated to subsoil SOCD.

The Relative Importance of Climatic,
Edaphic, and Vegetation Characteristics

We found that climatic, edaphic, and vegetation

characteristics collectively accounted for 73.13 and

64.44% of the variation of topsoil and subsoil

SOCD, respectively (Figure 5 and Appendix S5).

The relative contribution of climate and soil prop-

erties increased from topsoil to subsoil, while veg-

etation contributions weakened (Figure S5). MAP

and TN were the greatest predictors of SOCD in

both topsoils and subsoils, whereas the other vari-

ables varied in their contributions between topsoil

to subsoils. For example, soil pH contributed little

in topsoils, but became much more important in

subsoils, while belowground biomass (BB) con-

tributed to geographic variation in topsoil SOCD,

but its effects disappeared in subsoils.

DISCUSSION

Our large-scale empirical work has substantially

expanded previous studies (Wang and others 2004;

Yu and others 2007; Nie and others 2019) and

provided up-to-date estimates of SOCD in Chinese

shrublands. We further identified differences in the

strength of the relative effects of climatic and

edaphic properties and vegetation attributes on

SOCD between soil depths, contradicting previous

assumptions that control of SOCD would be con-

sistent across soil layers (Hobley and Wilson 2016;

Delgado-Baquerizo and others 2017). Therefore,

our study provides a nationwide benchmark of

SOCD to refine our understanding of the pivotal

role of shrublands in estimating SOC storage and

sequestration potential and consequently could

serve as an ecologically meaningful baseline for

emulating future depth-dependent soil C dynamics

in shrublands.

Subsoil SOC Constitutes an Important
Carbon Pool and has been Overestimated
by SoilGrids250m Database

We found that mean topsoil and subsoil SOCD fell

into the previously-documented ranges for terres-

trial ecosystems (Table 2) and identified that subsoil

SOC represented 53.30% of the topmost meter’s

SOC stocks, agreeing with reported values for glo-

bal ecosystems (30–61%) (Jackson and others

Figure 1. SOCD for topsoil (0–30 cm) and subsoil (30–

100 cm) layer in Chinese shrublands. There was no

significant difference for SOCD between topsoil and

subsoils.

282 J. Ge and others



2017; Balesdent and others 2018; Lal 2018) and

earlier estimates in Chinese shrublands constructed

from a small set of poorly-representative legacy

data (54%, calculated from only 91 soil profile

samples) (Wang and others 2004). These results

underscore that subsoils contribute substantially to

total SOC stocks, and the routine surface sampling

depth (30 cm) recommended by current protocols

of the IPCC could considerably underestimate the

actual SOC storage and sequestration potential of

shrublands.

We found that subsoil SOCD estimates have been

biased to a greater extent than topsoils when we

compared topsoil and subsoil SOCD observations

with the corresponding model-derived estimates

from the state-of-the-art SoilGrids250m database

(Hengl and others 2017; Dai and others 2019). Two

potential factors could explain these large discrep-

ancies between the model-derived SOCD and our

actual observations. First, the SoilGrids250m

products are based on advanced automated map-

ping and machine learning techniques, but this

Figure 2. Paired comparisons of SOCD for our ground-based actual observational data for both topsoils (A) and subsoils

(B) with the corresponding model-based estimates from the state-of-the-art SoilGrids250 soil map product across Chinese

shrublands. The blue solid line indicates the fitted line between these observed and modeled values from SoilGrids250m

database while the red dash line shows the 1:1 relationship.

Figure 3. Geographical trends of SOCD for topsoils (0–30 cm) and subsoils (30–100 cm) in Chinese shrublands. Note that

SOCD for both soil layers has been transformed using the natural logarithm before performing statistical analyses. All the

regression lines were plotted for relationships with p < 0.05.
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approach has the inherent drawback that it calcu-

lates SOCD from soil properties such as bulk den-

sity, soil organic matter, and particle distribution,

which has much a higher uncertainty than SOCD

measured directly from empirical field data like the

current study (Hengl and others 2017; Tifafi and

others 2018; Dai and others 2019). Another issue is

that this SOCD map is developed to predict current

SOC stocks without considering anthropogenic

impacts. Most data used in the SoilGrids250 data-

base are derived from the compilation of legacy soil

information of SOC stocks. But SOC stocks have

been greatly altered, and these methods preclude

any consideration of possible human-induced dis-

turbance effects on SOC stocks over recent decades

(Sanderman and others 2017; Dai and others 2019;

Wiesmeier and others 2019). This result further

underscores that prior estimates did not adequately

reproduce finer-scale variability of SOCD. Given

that soil inorganic carbon (SIC) is another crucial

component of soil carbon, we should also incor-

porate such information into the future develop-

ment of the production of SOC and SIC stocks maps

for shrublands.

Climatic Controls of SOCD are much
Stronger in Both Topsoils and Subsoils

Current studies pinpoint climate as among the most

dominant variables that control SOC stocks, but the

crucial distinction between top- and subsoils re-

mains poorly resolved (Jackson and others 2017;

Wiesmeier and others 2019). Climatic seasonal

variations have been commonly neglected when

assessing potential SOC drivers in large-scale

models, despite the fact that they are important

determinants of plant production and microbial

enzymatic activity, and thus SOC mineralization

and microbial residue carbon accumulation in soils

(Doetterl and others 2015; Garcı́a-Palacios and

others 2021). We found that both climate means

and seasonality controls over SOCD were equally

strong in both topsoils and subsoils. Both MAP and

MAT played important roles in topsoil and subsoil

SOCD. The pronounced negative effects of TS on

topsoil SOCD diluted in subsoils, while the promi-

nent positive effect of PS in topsoils persisted in

subsoils. This may be attributed to the fact that

Chinese shrublands are mainly precipitation-lim-

Figure 4. Summary of effects of the climatic and soil and vegetation drivers on SOCD for top and subsoils. The points

represent the standard regression coefficients of each predictor included in the best model. Whiskers in A and B represent

the 95% of confidence intervals of the parameter estimates. Coefficients with 95% CI that do not overlap zero can be

considered statistically significant. TWI Topographic wetness index, SR solar radiation, MAT mean annual temperature, TS

temperature seasonality, MAP mean annual precipitation, PS precipitation seasonality, TP soil phosphorus concentration,

TN soil nitrogen concentration, AB aboveground biomass, BB belowground biomass, GSL growing season length.
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ited, rather than temperature-limited (Wu 1980;

Seddon and others 2016), resulting in the greater

response of SOC changes to precipitation pertur-

bations than temperature changes.

Specifically, climate regimes generally impact

SOC storage dynamics through direct and indirect

controls over C inputs (for example, the quantity

and quality of organic carbon), and C outputs (for

example, decomposition of plant litter and miner-

alization of SOC) (Jackson and others 2017; Cusack

and Turner 2021). With increasing soil depth,

temperature and precipitation regimes become

increasingly stable and the impact of soil mineral

chemistry becomes more pronounced. However,

precipitation-induced moisture varied much more

than temperature in subsoils due to the soil’s

buffering effects on temperature (Hobley and Wil-

son 2016). High SOC accumulation under high

seasonality of precipitation may be caused by high

C inputs and low microbial decomposition. Mean-

while, high precipitation amount could induce

anaerobic conditions in soils under water-logged

conditions, which would further impede micro-

bially-mediated decomposition and increase

microbial residues carbon accumulation (Wies-

meier and others 2019; Garcı́a-Palacios and others

Figure 5. The relative importance of climate, edaphic properties, and vegetation attributes on SOCD for topsoils (A) and

subsoils (B). TWI Topographic wetness index, SR Solar radiation, MAT mean annual temperature, TS temperature

seasonality, MAP mean annual precipitation, PS precipitation seasonality, TP soil phosphorus concentration, TN soil

nitrogen concentration, AB aboveground biomass, BB belowground biomass, GSL growing season length.

Table 2. Comparisons of Soil Organic Carbon (SOCD) (kg m-2) in Topsoils (0–30 cm) and Subsoils (30–
100 cm) with Earlier Chinese and Global Estimates

Region Ecosystem type Topsoil Subsoil References

China All terrestrial ecosystems 3.74 4.66 Yang and others (2007)

Globe All terrestrial ecosystems* 5.44–5.76 6.18–6.87 Batjes (1996)

Globe All terrestrial ecosystems* 6.00 5.19 Batjes (2016)

Globe All terrestrial ecosystems* 5.86 5.91 Jackson and others (2017)

Globe Grasslands and shrublands* 3.57 3.30 Jackson and others (2017)

China Open and closed shrublands 1.94–6.55 2.85–3.51 Wang and others (2004)

China Alpine shrublands 12.78 13.43 Nie and others (2019)

China Alpine shrublands 16.62 No data Chen and others (2016)

China All shrublands 4.84 5.08 This study

The asterisks (*) indicate these data were recalculated from these references.
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2021). High precipitation conditions potentially

favor high plant productivity and plant-derived

organic matter inputs by indirectly altering plant

biomass distribution, especially in root biomass

along soil profiles across Chinese shrublands. In-

tense seasonal precipitation can also cause great

temporal variability in soil moisture and facilitate

the vertical transport of labile compounds such as

dissolved organic carbon, the colloidal transport of

particulate organic carbon, and root carbon exu-

dation from topsoils to subsoils (Kramer and

Chadwick 2018; Cusack and Turner 2021). This

finding clearly reiterated the importance of con-

sidering not only mean climate values but also

seasonal patterns and in particular precipitation

regimes to accurately model depth-specific SOC

dynamics in shrublands. This is particularly

important in light of climate change, as we expect

greater heterogeneity in precipitation patterns un-

der a changing climate.

The Predominant Role of Edaphic
Properties is more Pronounced in Subsoil
SOCD

While the overall effects of edaphic properties on

SOCD have recently received much attention,

quantitative relationships between these variables

have been not identified (Billings and others 2021;

Cusack and Turner 2021; Hartley and others 2021).

Here, we demonstrate that the overall contribution

of edaphic properties consistently outweighed that

of climate on both top- and subsoil SOCD. While

this finding corroborates some earlier studies

(Doetterl and others 2015; Luo and others 2019), it

contradicts studies from Chinese forests (Yang and

others 2007; Zhou and others 2019) and earlier

conclusions that edaphic properties dominated

only in subsoils (Jobbágy and Jackson 2000; Wang

and others 2004). This finding further contradicts

the current climate-driven framework of SOC

dynamics in Earth Systems Models (Doetterl and

others 2015; Rasmussen and others 2018; Luo and

others 2021). We argue that this finding may be

ascribed to at least two complementary factors that

are ultimately linked to C inputs into and output

from soils. First, edaphic conditions can exert

prominent direct effects on shrubland growth,

impacting the quantity and quality of soil C inputs

(Wu 1980; Ge and others 2017; von Fromm and

others 2021). Although belowground resource

availability has a pronounced effect on plant

growth, the actual availability of those resources is

largely controlled by edaphic physiochemical

environmental properties (Viscarra Rossel and

others 2019; Luo and others 2021). Second, soil

physical and chemical properties can directly gov-

ern carbon outputs via their influence on the

transformation and stabilization processes of C in-

puts into soils, as well as the composition and

activity of the soil microbial community (Wies-

meier and others 2019; Cusack and Turner 2021;

Garcı́a-Palacios and others 2021). For instance,

SOC can be highly protected from mineralization

via tight occlusion within soil aggregates and

binding with soil minerals.

Numerous studies have reported strong associa-

tions between SOC and soil texture (for example,

clay content), and most existing process-based

models simulating SOC dynamics make full use of

this relationship regarding the fundamental role of

soil clays in soil physiochemical processes (Ras-

mussen and others 2018; Hartley and others 2021).

Here, we found that the influence of soil texture

became more pronounced in subsoils and that soil

clay content was a much weaker predictor of SOCD

than sand content in both topsoils and subsoils.

This finding is strongly supported by some other

studies (Jobbágy and Jackson 2000; Wade and

others 2019), but contrasts other studies showing

that clay content is a robust predictor of SOCD

(Hartley and others 2021). These inconsistent

findings exemplified a dual effect of soil clay con-

tent on SOCD. On the one hand, the positive effect

of increasing clay content can be explained both by

the formation of stable, clay-protected organo-

mineral associations via the adsorption and aggre-

gation of SOC by clay minerals, which creates

physiochemical barriers for microorganisms’ access

to SOC, and the positive effect on soil water hold-

ing capacity (Doetterl and others 2015; Bradford

and others 2016; Garcı́a-Palacios and others 2021).

On the other, soil clay can negatively affect SOC

when high amounts of soil clay make penetration

and growth by deep roots difficult, and available

water for plants may be too low in these soils and

ultimately result in low below-ground carbon

allocation and thus SOC production (Cusack and

Turner 2021; Garcı́a-Palacios and others 2021).

Furthermore, the minor role of clay content here

also suggests that other edaphic properties, such as

the specific type of soil clay and mineral chemistry,

may serve as better predictors of SOCD across

shrublands and should be reasonably integrated

into new Earth Systems Models.
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Vegetation Attributes Predict SOCD
much more Accurately in Topsoils
than Subsoils

While SOC originates predominantly from the

decomposition of plant litter both above- and

belowground, quantitative relationships between

such vegetation attributes and top- and subsoil

SOCD remain largely elusive (Manning and others

2015; Soudzilovskaia and others 2019). We found

that belowground biomass was a powerful predictor

of SOCD in topsoils but not in subsoils, and both

above- and below-ground biomass contributed

much less to variation in SOCD in subsoils than in

topsoils. This finding confirms results from prior

studies in grasslands and croplands (Hobley and

others 2015) but contrasts with some findings in

forests (Li and others 2010; Sanderman and others

2017). This pattern could be caused by the vertical

distribution patterns of root biomass across soil

profiles in shrublands. Root biomass and resulting

litter mainly concentrate in topsoils and conse-

quently promote the efficient interaction of SOC

with soil minerals to form relatively stable organo-

mineral complexes and/or associations (Rumpel and

Kögel-Knabner 2011; Sokol and Bradford 2019; Luo

and others 2021). However, subsoil SOC with more

slow and stable turnover rates could reflect historical

rather than current vegetation conditions (Delgado-

Baquerizo and others 2017; Cotrufo and others

2019; Shi and others 2020). Hence, a promising

avenue for future research is the incorporation of

explicit consideration of multifaceted current and

past vegetation characteristics under paleo-climates

into Earth Systems Models to shed new light on a

more realistic projection of depth-dependent soil

carbon dynamics in shrublands.

CONCLUDING REMARKS

Collectively, we have quantified the relative

importance of climatic, edaphic, and vegetation

attributes in governing top- and subsoil SOCD by

improving the explicit and accurate geographical

representation of shrublands. We showed that

shallow soil sampling in shrublands underestimates

SOC stocks by more than half, and thus strongly

recommended the inclusion of subsoils in shrub-

land SOC studies. We also found that model-based

estimates from the SoilGrids250m soil database

overestimated SOCD by up to 13.72 and 65.49%

for topsoils and subsoils, respectively. We also re-

vealed that the relative importance of SOCD drivers

differed between top- and subsoils. Specifically,

mean annual precipitation and temperature played

important roles in driving SOCD in topsoils and

subsoils, but the pronounced negative effects of

temperature seasonality on topsoil SOCD disap-

peared in subsoils. We additionally reiterated the

importance of precipitation seasonality, a typically

unappreciated climate variable, in subsoil SOCD.

Edaphic properties were much more robust pre-

dictors of subsoil SOCD than of topsoil SOCD.

Topsoil SOCD was more likely to be driven by

apparent belowground carbon inputs, while

belowground biomass did not impact SOCD in

subsoils. Our work has reinforced that shrubland

subsoils could act as significant potential carbon

sequestration sites. More importantly, these results

refine valuable information for large-scale

improvement and validation of depth-dependent

SOC dynamics for multilayer SOC modules in

Earth Systems Models.
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