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Abstract

Nutrient addition has a significant impact on plant growth and nutrient

cycling. Yet, the understanding of how the addition of nitrogen (N) or phos-

phorus (P) significantly affects soil gross N transformations and N availability

in temperate desert steppes is still limited. Therefore, a 15N tracing experiment

was conducted to study these processes and their underlying mechanism in a

desert steppe soil that had been supplemented with N and P for 4 years in north-

western China. Soil N mineralization was increased significantly by P addition,

and N and P additions significantly promoted soil autotrophic nitrification,

rather than NH4
+-N immobilization. The addition of N promoted dissimilatory

NO3
� reduction to NH4

+, while that of P inhibited it. Soil NO3
�-N production

was greatly increased by N added alone and by that of N and P combined, while

net NH4
+-N production was decreased by these treatments. Soil N mineraliza-

tion was primarily mediated by pH, P content or organic carbon, while soil

NH4
+-N content regulated autotrophic nitrification mainly, and this process was

mainly controlled by ammonia-oxidizing bacteria rather than archaea and

comammox. NH4
+-N immobilization was mainly affected by functional microor-

ganisms, the abundance of narG gene and comammox Ntsp-amoA. In conclu-

sion, gross N transformations in the temperate desert steppe largely depended
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on soil inorganic N, P contents and related functional microorganisms. Soil acid-

ification plays a more key role in N mineralization than other environmental

factors or functional microorganisms.

KEYWORD S
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1 | INTRODUCTION

In recent decades, atmospheric nitrogen (N) and phos-
phorus (P) depositions have continued to increase due to
human activities and dust input (Liu et al., 2013; Pan
et al., 2021). Increased atmospheric N and P depositions
influence soil N transformations and N availability,
microbial composition and ecosystem stability (Cheng
et al., 2019; Hao et al., 2020). In general, increased N and
P depositions effectively alleviate soil N and P limitation,
promoting plant growth and ecosystem productivity
(Chen et al., 2016), and the increase in N deposition exac-
erbates soil P limitation (Zhu et al., 2014). Desert grass-
lands are sensitive to N and P depositions, especially, and
they are significantly limited by N after precipitation
(Yue et al., 2021). Therefore, it is critical and important
to improve the availability of soil N after P deposition.

Nitrogen availability in soil is regulated by numerous
gross N transformation processes (Elrys, Wang, et al., 2021).
The advancement of 15N isotope tracing technologies has
led to an improved understanding mechanisms of N trans-
formations (Jansen-Willems et al., 2022; Zaman
et al., 2021). Soil gross N transformations to N addition dif-
fer among ecosystems (Dai et al., 2017; Kwak et al., 2018).
For example, N input was shown to significantly increase
gross N mineralization or nitrification in grassland soils
(Hao et al., 2020), while it did not produce any significant
effect in forest soils (Barraclough & Smith, 1987; Kwak
et al., 2018). In particular, the addition of N can lead to
increased soil organic carbon, NH4

+-N, NO3
�-N contents

and lower pH, which in turn will affect soil microbial activ-
ity and composition (Hao et al., 2020). In carbon-rich soils,
N addition significantly enhances N mineralization, nitrifi-
cation and NH4

+-N immobilization, while in carbon-limited
soils, it does not significantly affect N transformations,
except for nitrification (Cheng et al., 2020). Gross N trans-
formations have been mainly studied in farmland, grass-
land, yet less so in desert steppe soils (Wang, Cheng,
et al., 2016; Wang, Wang, et al., 2016; Wang, Zhang,
et al., 2016).

One third of the soil on land is P limited, a condition that
is further aggravated by N deposition and that significantly
affects plant growth and ecosystem productivity (Elser
et al., 2007; Vitousek et al., 2010). Increasing P deposition

can effectively alleviate the restriction on soil biological
processes. For example, soil N mineralization, immobiliza-
tion rate, denitrification and N2O emission were largely
enhanced by P input (Cheng et al., 2018). In contrast, the
addition of P can influence gross N transformations and
nitrification, although no significant impacts of P addition
on N transformations were observed in grassland soils
(O'Neill et al., 2021). The effects of the combined addition of
N and P differ across soil types, but only a few studies have
investigated this subject, especially in arid regions (Cheng
et al., 2019).

Soil N transformations are driven by functional micro-
organisms (Daims et al., 2015) such as ammonia-oxidizing
microorganisms, which specifically affect the soil nitrifica-
tion process (Yue et al., 2021, 2022). Complete ammonia
oxidizers (comammox) can oxidize NH4

+-N directly to
NO3

�-N, rather than via two steps (oxidation of ammonia
to nitrite and nitrite to nitrate) which is the traditional
view of nitrification (Daims et al., 2015). P addition has
been shown to significantly increase the abundance of bac-
teria (Wu et al., 2022), modifying soil microorganisms
(Wu et al., 2022), which consequently affects the soil gross
N transformation dynamics. In arid areas, soil microbial
activity was significantly limited by P, especially with
increasing N input (Wakelin et al. 2017). In contrast, the
impact of functional microorganisms on soil nitrogen
transformations under the influence of N and P additions
has not been thoroughly investigated.

Highlights

• Phosphorus (P) additions significantly pro-
moted soil nitrogen (N) mineralization and
autotrophic nitrification.

• Autotrophic nitrification was mainly controlled
by ammonia-oxidizing bacteria rather than
ammonia-oxidizing archaea or comammox in
desert steppes.

• N or P addition did not significantly affect
NH4

+-N immobilization.
• Soil acidification was the most important factor
affecting soil N mineralization.
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In addition, a suitable C/N ratio is also a key index
affecting N mineralization, which mainly regulates the
microbial biomass (Cheng et al., 2020), and changes in
soil nutrient and pH have significantly impacted N trans-
formations and its availability (Hao et al., 2020). Desert
steppe is characterized by low soil organic carbon con-
tent, high pH and better aeration conditions, which will
significantly affect soil N transformations (Zuo et al.,
2022). The desert steppe is both limited by N and P that
are key life elements that affect the growth of plants and
microorganisms. Increased N and P depositions can sig-
nificantly affect soil properties and microbial activity,
which will significantly affect the N transformations. Yet,
it is unclear how N and P additions and their interactive
effects affect gross N transformations and N availability
in temperate desert steppes. In this study, to address this
knowledge gap, 15N tracing technology was used to:
(1) quantify the response of soil gross N transformations
to N and P additions in a temperate desert steppe, in par-
ticular any interaction between the two nutrients;
(2) identify the key N transformation processes and its
drivers. We hypothesized that (1) P addition and N–P
interaction, but not N addition, promoted N mineraliza-
tion; (2) N addition significantly promoted soil autotro-
phic nitrification and N immobilization; and (3) these
processes were mainly regulated by soil N functional
microorganisms.

2 | MATERIALS AND METHODS

2.1 | Soil sampling

The Nutrient Network was conducted more than 130
sites worldwide using the same experimental treatment
(https://nutnet.org/). Soil samples of this study were col-
lected from the Urat desert steppe in northwest China,
which joined the Nutrient Network in 2018. Over the past
38 years, the average rainfall was 151 mm, the average
air temperature was 5.6�C. The soil is grey-brown desert
soil composed of 40% sand, 43.2% silt and 6% clay. The
Nutrient Network experiment included 16 treatments,
four of which were examined in the present study: con-
trol (CK, i.e., no added N or P), N addition alone, P addi-
tion alone and their interaction. Slow-release CO(NH2)2
or Ca(H2PO4)2�H2O was used to simulate N or P addi-
tions, respectively. Each treatment was replicated six
times. In mid-May each year, N (10 g N m�2 a�1) and P
(10 g P m�2 a�1) were evenly added to each plot (36 m2).
Topsoil samples (10 cm deep) were taken in August 2021,
and plant fine roots were removed, and the soils were
stored at 4�C until use in culture experiments. Soil sam-
ples were used for 15N tracing, and to measure soil
properties.

2.2 | 15N tracing experiment in the
laboratory

Soil gross N transformation was evaluated by 15N tracing
using the Ntrace tool (Müller et al., 2011). Soil samples from
each of the four treatments were labelled with 15NH4NO3

and NH4
15NO3 as sub-treatments and, for each of them,

three replicates were conducted at four extraction times
(i.e., 0.5, 12, 24 and 48 h). Fresh soil (20 g of oven-dried soil
equivalent) was used for culture experiments, to add 2 mL of
labelled solution of 15NH4NO3 or NH4

15NO3, equivalent to
50 mg of NH4

+-N or NO3
�-N per g of soil. Soil moisture

content was set at 60% of the water holding capacity
(WHC), as this percentage is thought to (1) promote
microbial activity to obtain potential maximum N conver-
sion under aerobic conditions, and it was used in other
studies (Wang, Cheng, et al., 2016; Wang, Wang,
et al., 2016; Wang, Zhang, et al., 2016); (2) 80% of the pre-
cipitation was mainly concentrated during the growth sea-
son, which resulted in relatively high soil moisture (Zuo
et al., 2022). Each flask was sealed with Parafilm, which
was punctured by seven holes to maintain humidity, while
allowing air exchange. The soil samples were incubated at
18.6�C (the mean temperature recorded in the growing
season) for up to 48 h. Soil samples were extracted using
KCl (2 mol L�1). This was used to determine the NH4

+-N,
NO3

�-N and the abundance of 15N in the sample.

2.3 | Measurements

The C, N, Olsen-P, pH of the soil were measured through
the method of Murphy and Riley (1962) and Yue et al.
(2021). The soil NH4

+-N and NO3
�-N contents were ana-

lysed by flow analysis (AA3 flow analyser, Seal Inc.). The
15N abundance of NH4

+-N and NO3
�-N was determined

by the method of Zhu et al. (2019). The method reported in
Bremner (1996) was used to isolate NH4

+-N and NO3
�-N

in the samples. Firstly, 0.3 g of magnesium oxide was
added to 20 mL of the extract to convert the NH4

+ con-
tained in it to NH3, which was collected through the film
with oxalic acid and converted to ammonium oxalate.
Subsequently, Devarda's alloy was used to convert NO3

�

into NH4
+, and further converted into NH3 and ammo-

nium oxalate. Finally, the film was completely dried in a
dryer containing anhydrous copper sulfate, was wrapped
in tin foil and 15N abundance was determined. For addi-
tional details of the procedure, refer to Zaman et al. (2021).

2.4 | 15N tracing analysis

Gross N transformation was evaluated by the NtraceBasic
tool, which calculates the following 10 transformations
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simultaneously, including mineralization, nitrification,
assimilation and other nitrogen conversion processes
(Table S1; Müller et al., 2007, 2011). The ratios of nitrifi-
cation to ammonia immobilization, N mineralization
activity, net NH4

+-N production and net NO3
�-N produc-

tion were evaluated based on Hao et al. (2020).

2.5 | Determination of functional gene
abundance

The abundance of functional genes for nitrogen mineraliza-
tion (ureC), nitrification (comammox Ntsp-amoA, amoA
(ammonia oxidizing bacteria, AOB), amoA (AOB), hao) and
soil dissimilatory NO3

� reduction to NH4
+ (DNRA) (nxrA,

nxrB, narG, napA, nrfA) was measured. The primer
sequences of functional gene are shown in Table S2. For each
fresh soil sample, 0.25 g was weighed and the corresponding
DNA was extracted. The measurements were made in tripli-
cate for each sample. All DNA samples were amplified using
a Real-time PCR system: 10 μL of 2 � Master Mix and
0.5 μL of each PCR-specific primer (F and R) at a concentra-
tion of 10 μM, and it was adjusted to a total volume of 18 μL
by adding water. The solution was mixed by flicking the bot-
tom of the tube and centrifuging briefly at 5000 rpm, and
was then added to a 96-well PCR plate. Subsequently, 2 μL of
extracted DNA was added to each well, the plate was sealed,
briefly centrifuged and placed on ice before setting up the
PCR program. The 96-well PCR plates were then placed in
the Real-time PCR apparatus and the reactions were carried
out (Hou et al., 2010).

2.6 | Statistical analyses

One-way ANOVA test was used to assess differences in the
main nutrient contents of the soil associated with the treat-
ments. Differences in soil gross N transformation rates were
assessed using methods described in Hao et al. (2020). The
relationships between N transformations (i.e., N mineraliza-
tion, nitrification, NH4

+-N immobilization and DNRA) and
environmental factors, substrate concentrations and func-
tional genes were analysed. All statistical analyses were con-
ducted in SPSS20 and each figure was plotted using
Sigmaplot (12.5).

3 | RESULTS

3.1 | Soil properties and abundance
of key functional genes

For all treatments (i.e., N, P and their interaction), no sig-
nificant differences in soil maximum WHC, N contentT
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and soil C/N ratio (Table 1) were detected between the
experimental samples and the control. However, the
nutrient additions significantly increased soil NH4

+-N
and NO3

�-N contents, especially in N treatment
(Table 1). The NP treatment had a synergistic effect on

soil inorganic N content compared to the addition of
either N or P alone (Table 1). Soil pH was significantly
reduced by P and NP treatments. Under these two
treatments, soil total P and Olsen-P content signifi-
cantly increased, which was not observed with N

FIGURE 1 Changes in the abundance of functional gene ureC (a), amoA (AOB, b), amoA (AOA, c), comammox Ntsp - amoA (d),

Hao (e), narG (f), nxrA (g), nxrB (h), napA (i), nrfA (j) and between treatments. Different letters indicate significant differences.

FIGURE 2 Soil

concentrations of NH4
+-N (a),

NO3
�-N (b) and 15N

enrichments of NH4
+-N (c) and

NO3
�-N (d) as measured (point)

and modelled (line).

YUE ET AL. 5 of 11

 13652389, 2023, 5, D
ow

nloaded from
 https://bsssjournals.onlinelibrary.w

iley.com
/doi/10.1111/ejss.13416 by C

old &
 A

rid R
egions E

nvironm
ental, W

iley O
nline L

ibrary on [25/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



addition (Table 1). Soil organic C content significantly
increased only under the P treatment (Table 1).

No significant differences were detected in the number
of ureC, amoA (ammonia oxidising archaea, AOA), napA
and hao genes among treatments (Figure 1). In contrast,
amoA (AOB) was significantly more abundant under the
N and NP treatments (Figure 1b). In addition, Ntsp-amoA
(complete ammonia oxidizer, comammox) was signifi-
cantly increased by P and NP treatments (Figure 1). In
contrast, the abundance of the nrfA and nxrA genes signif-
icantly increased only under the NP treatment (Figure 1).
The number of nxrB and narG genes significantly reduced
under the N and NP treatments (Figure 1).

3.2 | 15N abundance of soil inorganic
nitrogen

Soil NH4
+-N content decreased as the incubation time

increased, and this occurred more rapidly under the N
and NP treatments (Figure 2a). In contrast, the opposite
was observed for soil NO3

�-N content, which increased
sharply with incubation time (also more rapidly under
the N and NP treatments; Figure 2b).

A slight increase in the 15N abundance of NH4
+-N

was observed for the NH4
15NO3-labelled treatment

(Figure 2c), while this parameter remained unaltered
under the 15NH4NO3-labelled treatment (Figure 2c). The
15N abundance of NO3

�-N in this treatment increased

with incubation time (Figure 2d), whereas it decreased
over time under the NH4

15NO3-labelled treatment
(Figure 2d). The inorganic N concentrations and 15N
abundance for each treatment were accurately simulated
using NtraceBasic (Figure 2).

3.3 | Impact of nitrogen or phosphorus
input on soil N transformation

Nitrogen transformation rates in soil were low in the
study area (Table 1). The N and P additions significantly
promoted soil N mineralization and autotrophic nitrifica-
tion (Figure 3). The two nutrients, applied alone, signifi-
cantly promoted and inhibited DNRA, respectively
(Figure 3). Nitrogen mineralization was mainly regulated
though soil pH, P content and organic C (Figure 4). How-
ever, autotrophic nitrification was mainly controlled by
soil NH4

+-N and the number of amoA (AOB) rather than
amoA (AOA) or Ntsp-amoA (Figure 5). In addition,
NH4

+-N immobilization was primarily influenced by the
abundance of narG and Ntsp-amoA (Figure S1).

4 | DISCUSSION

The N and P input affects plant diversity, productivity, soil
nutrient cycling and ecological functions (Pan et al., 2021;
Zhou et al., 2018), and has a significant impact on gross N

FIGURE 3 Gross N transformation rates (mean ± SD) and rate of change (%, + sign means an increase and - sign means a decrease) in

control plots (a), nitrogen (N) addition alone treatment (b), phosphorus (P) addition alone treatment (c), combined N and P addition (d).

Bold font and * indicate significant effects (p < 0.05). Note: mineralization rates are the sum of MNrec and MNlab.
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transformation rates, with direct effects on soil N availabil-
ity (Cheng et al., 2019). N and P additions significantly
affected soil N mineralization, autotrophic nitrification,
NH4

+-N immobilization, DNRA, but the effect on other N
transformation rates was negligible (Figure 3; Table S2), a
result that is consistent with previous findings reported for
temperate grasslands (Hao et al., 2020). The values
obtained were mainly driven by N addition, soil properties
and microorganisms, but the effects of P limitation on
nitrogen transformations were also highlighted (Chen
et al., 2017; Mehnaz et al., 2018). Moreover, N addition
increased the risk of soil N loss (N/I > 1), while P addition
largely reduced it (Table S2).

4.1 | Effect of N and P additions on N
mineralization

Soil N mineralization rate in this study was significantly
lower than that reported for temperate grasslands and
other ecosystems (Hao et al., 2020). Furthermore, this
process was mainly derived from recalcitrant organic N
rather than labile one (Table S2), which is also in

contrast with previous results obtained for temperate
grasslands (Wang, Cheng, et al., 2016; Wang, Wang,
et al., 2016; Wang, Zhang, et al., 2016) and may be
because of the lower organic N content available in desert
steppe soils compared to other ecosystems (Yue et al.
2021). Nitrogen addition increased soil N mineralization
by 35% (Figure 2), a result that was slightly higher than
the average value (25%) obtained from a previous meta-
analysis (Cheng et al., 2019). There may be two reasons
for this: (1) soil pH, induced by N input, was the key con-
trolling factor for affecting soil N mineralization in our
study (Table 1); and (2) with N addition, an increasing
trend for soil nutrient content, which are key factors
affecting soil N mineralization, was observed (Table 1;
Figure 4). Moreover, P addition also significantly pro-
moted soil N mineralization, supporting our hypothesis,
in line with previous results obtained for P-limited arable
soils (Cheng et al., 2018), but not with those obtained for
P-limited grassland soils (Mehnaz et al., 2018). This may
be because, in our study, P addition significantly
increased P content (a key factor affecting soil N mineral-
ization) and, at the same time, it significantly reduced
soil pH, thereby enhancing N mineralization (Table 1).

FIGURE 4 Relationship between soil pH (a), the ratio of soil carbon to nitrogen (N) (b), soil total nitrogen content (c), soil total

phosphorus content (d), the abundance of ureC (e), soil organic carbon content (f) and soil gross N mineralization rate.

YUE ET AL. 7 of 11
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Furthermore, soil pH and P content had greater impacts
on N mineralization than soil organic C or functional
microorganisms (Figure 4), which supported previous
observations (Cheng et al., 2013, 2019).

4.2 | Effect of N and P additions on
nitrification

Nitrification consists of both autotrophic and heterotro-
phic processes (Cheng et al., 2019). The autotrophic nitri-
fication rate in this study was similar to that previously
reported for a temperate grassland in Inner Mongolia
(Hao et al., 2020). This rate was much higher than the
heterotrophic nitrification rate (Figure 3), also in line
with results obtained for temperate grasslands in China
(Hao et al., 2020). Nitrogen addition significantly
enhanced autotrophic nitrification by 376% (Figure 3b),
supporting our hypothesis, a rate that was considerably

higher than the average value obtained from a previous
meta-analysis and research conducted in the temperate
grassland (Cheng et al., 2019; Hao et al., 2020). This was
because (1) desert soils, which consequently have a high
oxygen content, and stronger nitrification in the presence
of sufficient substrate; (2) an increase in soil NH4

+-N (the
substrate of autotrophic nitrification) following N addi-
tion, which was the most important factor affecting auto-
trophic nitrification (Figure 5i); and (3) the amoA (AOB),
another essential influencing factor during this process,
which was sensitive to N addition (Figure S1b and 4b,
Chen et al., 2016).

Autotrophic nitrification was significantly increased
(12%) by P input (Figure 2c), which is consistent with the
results obtained from a fertilization test on P deficiency
(Cheng et al., 2018). This supported the fact that P addi-
tion increased the content of ammonium nitrogen by
enhancing the mineralization of organic N (Table 1 and
Figure 3), and it may be also associated with the

FIGURE 5 Relationship between the abundance of amoA (comammox) (a), the abundance of amoA (AOB) (b), the abundance of amoA

(AOA) (c), the abundance of hao (d), the abundance of nxrA (e), the abundance of nxrB (f), the ratio of soil carbon to nitrogen (N) content

(g), soil total phosphorus content (h), soil NH4
+-N content (i), soil organic carbon content (j), soil pH (k), soil total N content (l) and soil

total gross N nitrification rate.
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abundance of amoA (AOB, Figure 5; Chen et al., 2016).
Autotrophic nitrification was also significantly increased
by the NP treatment (Figure 2d) because of the increase
in the soil NH4

+-N content (Table 1).

4.3 | Effect of treatments on soil N
immobilization and DNRA

Soil microbial N immobilization includes the immobiliza-
tion of inorganic N (Müller et al., 2011). In this study, the
immobilization of the NH4

+-N was dominant, while that
of the NO3

�-N was extremely limited (Figure 3), which
supports previous results (Hao et al., 2020). However, soil
NH4

+-N immobilization in this study was still consider-
ably lower than that previously reported for a temperate
steppe in China (Hao et al., 2020). The process was
increased by N and P additions, and particularly by the
NP treatment (Figure 3), supporting our hypothesis, in
line with results obtained for arable soils (Cheng
et al., 2018). Nitrifying microorganisms (narG gene) was
significantly associated with NH4

+-N immobilization,
which may indicate that more NH4

+-N was used as a
substrate for nitrification, thereby reducing the immobili-
zation process (Figure S1). In contrast, the abundance of
Ntsp-amoA (comammox) could explain the change in
NH4

+-N immobilization (Figure S1), indicating that com-
plete ammonia oxidation is more important for the
immobilization of NH4

+-N than for its oxidation.
Recent studies have focused on the DNRA process

(Cheng et al., 2022). DNRA (0.18 ± 0.04 mg N kg�1d�1)
can occur in this temperate desert steppe soils, which is
lower than the DNRA rate reported globally (0.31 ±
0.05 mg N kg�1d�1; Figure 3; Cheng et al., 2022). Nitrogen
addition significantly increased the DNRA rate (Figure 3),
possibly due to the resultant increase in NO3

�-N (Cheng
et al., 2022). In contrast, P addition significantly reduced
DNRA, which may be attributed to the reduced microbial
activity under P-limited conditions (Cheng et al., 2022).
No significant relationships between DNRA and func-
tional microbial abundance, substrate concentration or
environmental factors were found (Figure S2). Sample
replicates in our study were likely too small to allow the
identification of key driving factors, therefore, the DNRA
process in desert steppe soils should be further investi-
gated in future studies.

5 | CONCLUSION

Nitrogen availability in the examined desert steppe soil
was mainly regulated by soil N mineralization, autotro-
phic nitrification, DNRA and NH4

+-N immobilization.

These key processes were significantly affected by N and
P additions, except for NH4

+-N adsorption. Soil N miner-
alization was mainly regulated by soil pH. In contrast,
autotrophic nitrification and NH4

+-N immobilization
were regulated by soil NH4

+-N concentration and AOB
rather than AOA or comammox, respectively. Nitrogen
addition significantly promoted DNRA, while this was
significantly inhibited by P addition. Nitrogen addition
also increased soil N loss, while P addition reduced
it. Therefore, appropriate additions of these nutrients are
necessary to decrease soil N loss and increase
N availability in arid soils.
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