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A B S T R A C T   

In order to estimate flow distance and width function more accurately, the triangulation with linear interpolation 
(TLI) method to approximate the missing flow distance values within a cell except for the cell center. Then a new 
flow distance algorithm (D∞-TLI) is proposed to estimate the flow distance using a two-segment-distance 
strategy, while two segmented-distances in and outside a local 3 × 3 window are severally modelled with D∞ 
and TLI. Then, using the continuous flow distance field approximated over a cell region, this cell can be divided 
into multiple equidistant belts (MEB) to estimate the width function. Assessments using four numerical and two 
real-world terrains demonstrate that D∞-TLI outperforms nine existing flow distance algorithms and has a mean 
absolute relative error (MARE) lower than 5%. Moreover, the combination of D∞-TLI and MEB extracts width 
function which is less affected by unreasonable artificial fluctuation and has a MARE lower than 3%.   

1. Introduction 

As an important feature of overland flow, flow distance is important 
in many fields such as hydrology, geomorphology, and ecology. It plays 
a vital role in runoff or flood analysis (Bogaart and Troch, 2006; Di 
Lazzaro et al., 2016; Liu et al., 2012; McGuire et al., 2005; Xu et al., 
2018), soil erosion or thickness simulation (Dong et al., 2022; Hickey, 
2000; Tesfa et al., 2009), and water quality modeling (Fan et al., 2015). 
These researches rely on flow distance estimations at different scales, 
including the distance to channel or outlet (Bogaart and Troch, 2006; 
Van Nieuwenhuizen et al., 2021), the river length (Fan et al., 2015) and 
the uphill slope line length (Dong et al., 2022; Tesfa et al., 2009). 
Additionally, the width function of a hillslope or catchment, which is a 
representation of flow distance distribution, is commonly utilized as a 
hydrologic response function in hydrologic modeling (Bogaart and 
Troch, 2006; Gupta et al., 1986; Hazenberg et al., 2015; Lapides et al., 
2022; Li et al., 2011; Liu et al., 2016; Moussa, 2008; Mutzner et al., 
2016; Noël et al., 2014; Ranjram and Craig, 2021; Rigon et al., 2016; 
Troch et al., 2003). However, existing algorithms for the estimation of 
flow distance and width function have some noticeable limitations as 
outlined below, so there has been renewed interest in developing new 
algorithms to accurately estimate these two features. 

Due to the discretized representation of terrains using grid digital 
elevation models (DEMs), flow distance is typically estimated by 
cumulating the length along the predicted DEM-based flow path (May
orga et al., 2005). With the estimated flow distance distribution, the 
width function can be implicitly estimated (e.g., Liu et al., 2012; Sahoo 
and Sahoo, 2019b). This implicit method defines the width function as 
an area distribution function or a probability density function of equi
distant belts (Bogaart and Troch, 2006; Liu et al., 2012; Moussa, 2008; 
Sahoo and Sahoo, 2019a, 2019b; Veneziano et al., 2000). There are also 
other simplified approaches to obtain the width function, such as taking 
the length of contour line as width (Fan and Bras, 1998) or generalizing 
the terrains into regular shapes for monotonically varying width func
tion (Lapides et al., 2022; Noël et al., 2014; Ranjram and Craig, 2021). 
But the implicit method can provide more details for the applications in 
the real-world hillslopes or catchments than these simplified methods 
(Sahoo and Sahoo, 2019b). 

Unlike the small number of width function estimation methods, there 
are more choices available for flow distance calculation. Each flow 
distance calculation method is a combination of one flow path extraction 
strategy and one cumulative length computation strategy. Over the past 
few decades, many algorithms were proposed to extract flow path (e.g., 
Chantaveeroda et al., 2023; O’Callaghan and Mark, 1984; Orlandini 
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et al., 2003; Quinn et al., 1991; Shin and Paik, 2017; Tarboton, 1997; 
Wu et al., 2020, 2022). Based on whether a cell is permitted to drain to 
more than one cell, these algorithms can be categorized into two types: 
the single flow direction (SFD) algorithms and the multiple flow direc
tion (MFD) algorithms (Wilson et al., 2007). Due to the discretized grid 
structure of DEM, both SFD and MFD typically provide zigzag lines 
connecting neighboring cell centers. The traditional and simplest cu
mulative length algorithm adopts SFD and directly measures the length 
of the path as flow distance (Blodgett et al., 2021; Kotyra and Cha
budziński, 2023; Li et al., 2020). Meanwhile, for the dispersive network 
generated by MFD, its flow distance is the weighted average length of all 
the lines (Bogaart and Troch, 2006). 

However, the zigzag predicted flow path is inconsistent with the true 
flow path because the latter is smoother and may not pass the downslope 
cell centers (Paik, 2008). Consequently, the length of a predicted flow 
path is always longer than the true flow distance (Paz et al., 2008; Liu 
et al., 2012). One solution to this problem is to utilize some highly ac
curate algorithms to track the gravity-driven flow path, which is not 
constrained to pass the downstream cell centers (e.g., Zhou et al., 2011). 
But this solution is not feasible for large scales because of its high time 
and space consumption (Zhou et al., 2011), which must be taken into 
account in any practical application (Farahbakhsh et al., 2020; Masdari 
et al., 2020). 

To ensure acceptable computational efficiency, the process of flow 
distance assignment for each cell center is better to only search in a local 
window rather than the whole flow path. Bogaart and Troch (2006) 
proposed such a two-segmented-distance framework that models the 
sub-distance from the cell center to a crossing point at a 3 × 3 window 
boundary and adds it to the sub-distance originating from the crossing 
point to a given target (e.g., channel) for the final flow distance value. 
But this method previously only adopted center-to-center flow path 
because the true crossing points inconsistent with cell centers may not 
be assigned flow distance values. 

Some strategies have been introduced to mitigate this error. For 
instance, Paz et al. (2008) applied the fixed distance transform value of 
0.96194 as an averaged approximation to shorten the computed flow 
distance, following the suggestions of Butt and Maragos (1998) as well 
as De Smith (2004). Liu et al. (2012) used the cosine of the angle be
tween the SFD direction and the steepest downstream direction as the 
transform value to represent the specific bias in every 3 × 3 window. 
Dong et al. (2022) introduced a merging method to correct the flow 
distance, which used the Euclidean distance of every three local flow 
segments to replace the cumulative length. But all these methods aim to 

restore the true flow distance within a local window, and the absence of 
flow distance values at the window sides appears to still restrict the 
improvements in flow distance estimation. 

Meanwhile, the missing flow distance values prevent it from dividing 
a cell covering multiple equidistant belts into correct numbers of belts. 
The conventional method adds the whole cell into merely one equidis
tant belt based on the flow distance value assigned for the cell center. 
Then the imprecise equidistant belt area function will result in a width 
function with unreasonable artificial fluctuation because some equidis
tant belts may encompass excessive regions from adjacent belts as 
illustrated in Fig. 1 and the results of some existing studies (e.g., Moussa, 
2008; Liu et al., 2012; Sahoo and Sahoo, 2019b; Veneziano et al., 2000). 

Overall, the absence of flow distance values in a cell region seems to 
affect the accuracy of flow distance estimation as well as width function 
estimation, thereby limit the development of new algorithms. Following 
some other geographical studies, the issue of missing values can be 
solved by any interpolation method (e.g., Schwendel et al., 2012; Yil
maz, 2007; Zanella-Béguelin et al., 2023). However, no existing study in 
this research domain attempting to bring in the interpolation method. 
Therefore, the potential rationality of employing the interpolation al
gorithm to improve the accuracy of flow distance estimation as well as 
width function estimation motivates the authors to conduct this study. 
Here the triangulation with linear interpolation (TLI) method is selected 
because of its acceptable precision and ability to generate straight iso
lines in a cell region, allowing a cell to be divided into regular equi
distant belts whose area can be measured explicitly for the width 
function (Sloan, 1987; Yilmaz, 2007; Zhang et al., 2016). 

In this study, a two-segment-distance strategy modified from the 
method proposed by Bogaart and Troch (2006) is introduced to estimate 
the flow distance distribution over the DEM. Subsequently, a novel 
strategy is presented for more precise width function estimation. Both of 
these strategies rely on the TLI method. Finally, the proposed strategies 
are assessed against several existing methods. Both the numerical and 
the real-world terrains of different resolutions are adopted for the 
assessments. 

2. Methodology and experiments 

2.1. Flow distance and width function estimation 

The proposed algorithm is described by Algorithm 1, where the flow 
distance estimation (Line 1–21) and the width function calculation (Line 
22–29) can be viewed as two independent steps. The flow distance 

Fig. 1. The shortcoming of traditional width function algorithm. The 1 m-resolution DEM represents a plane whose radio between the gradients of x and y direction 
is 1:2. A cell may be divided into two parts by an equidistant line (black dashed line), but this cell can be added into only one equidistant belt based on the flow 
distance value assigned to its center. In the most serious cases, the flow distance value assigned to the center of any yellow or blue cell is 3.91 m and 5.03 m, 
respectively. So when the traditional method estimates the equidistant belt, the belt whose flow distance ranging from 4 m to 5 m is ignored. 
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estimation step necessitates a rasterized channel network layer and a 
DEM with flats and depressions removed. The width function calculation 
step demands a rasterized domain of the target hillslope or catchment. 
Detailed explanations of these two steps are provided below. 

2.1.1. Flow distance estimation combining D∞ and TLI 
The algorithm scans all cells located at the channel network or any 

other given target. The center of each selected cell is assigned a flow 
distance value of zero, and all the neighboring cells located at other 

positions are inserted into a min-first priority queue. The min-first pri
ority queue can order the cells in ascending elevation automatically. 
Then, the algorithm continuously takes out the first cell of the priority 
queue to estimate the flow distance from its cell center (P0) to channel 
(or other target) following the sketch in Fig. 2a. 

As shown in Fig. 2a, a 3 × 3 window is firstly built using the current 
cell and its eight neighbors. The D∞ method proposed by Tarboton 
(1997) is adopted to provide the local flow path in the window. Then the 
crossing point (i.e., R) along the local flow path to the window boundary 

Fig. 2. The theory of the new flow distance algorithm. (a) Flow distance (FD0) from a cell center (P0) to a downstream target is computed as the sum of the local flow 
path length (L0) along D∞ direction in a 3 × 3 window and the estimated flow distance from the crossing point (R) on the window boundary to the same target. (b) A 
1 m-resolution DEM is adopted as an example, while the yellow cells are set to be channel cells. The cells out of the displayed region are set to another basin and 
hided for a clear display. The cells not belong to channels are processed following the order in (c). (d) The estimated distribution of flow distance from the cell centers 
to channel, as well as the data generated in the computational processes, are shown. (e) The enlarged window shows the process of the flow distance value 
assignment for C3. 
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can be identified. According to the D∞ theory, the cell centers of the 
closest cardinal neighbor and the closest diagonal neighbor (i.e., P1 and 
P2 in Fig. 2a) to R are always lower than P0, so they have been assigned 
with flow distance values according to the framework iterating from low 
to high. 

Although TLI cannot provide the entire flow distance distribution in 
the window before the assignment of flow distance for P0, it can assign 
the flow distance value for any point on the line P1P2 with the existing 
flow distance values assigned to these two cell centers. The flow distance 
(FDR) from R to the channel is computed by TLI as following: 

FDR =
LdFDc + LcFDd

Lc + Ld
(1)  

where FDc and FDd denote the flow distance from the nearest cardinal 
cell center (i.e., P1) and the nearest diagonal cell center (i.e., P2) to the 
channel, respectively. Lc and Ld denote the length from R to the nearest 
cardinal cell center (i.e., P1) and the nearest diagonal cell center (i.e., 
P2), respectively. Lc and Ld can be calculated as following: 

Lc = h tan α (2)  

Ld = h(1 − tan α) (3)  

where h denotes the resolution of DEM, and α denotes the angle between 
the D∞ direction and the closest cardinal direction. There is a special 
case when the D∞ direction points to a neighboring cell center. In this 
case, the other nearest cell center may be higher than P0, and its flow 
distance value may be unknown. It makes no difference because FDR is 
equal to the flow distance value assigned for the cell center pointed by 
the D∞ direction according to Eq. (1) in this case. Then the local flow 
path length (L0) by D∞ is calculated as: 

L0 =
h

cos α (4) 

Finally, the flow distance (FD0) from P0 to channel is defined as: 

FD0 = FDR + L0 (5) 

After FD0 is computed, the neighboring cells of the current cell is 
checked. Any neighboring cell that has not been assigned with values 
and is not in the priority queue will be inserted into the priority queue. 

This new algorithm combines D∞ and TLI, so it is referred as D∞- 
TLI. The framework of D∞-TLI (Line 1–21 in Algorithm 1) adopts the 
priority queue to improve computing efficiency. This framework is 
based on the Priority-Flood method generalized by Barnes et al. (2014) 
and has a time complexity of O(nlog2n). Here n is the number of cells in 
the DEM. 

A DEM is provided as an example in Fig. 2b to demonstrate the ca
pacity of D∞-TLI to restore the flow distance to channel. According to 
the order with elevation from low to high, the cells not belonging to 
channels are processed following the sequence in Fig. 2c. Then the 
estimated local flow path length, as well as both the estimated flow 
distances from the crossing point and the cell center to the DEM side, is 
labelled for each cell in Fig. 2d. Moreover, an enlarged 3 × 3 window in 
Fig. 1e is used to show the detailed assignment of flow distance for a cell 
center following Eqs. (1)–(5). More details about how the cells are 
processed one by one are provided in Fig. S1. 

According to the estimated flow distance distribution (black bolded 
values) in Fig. 1d, the difference between the estimated flow distance 
and the exact slope line length is little for most cell centers. Here the 
exact slope line originating from a cell center is consistent with the 
gravity-driven flow path (Maxwell, 1870; Orlandini et al., 2014). This 
example only shows the potential of D∞-TLI to provide the reasonable 
flow distance distribution. However, whether more bias may appear 
when D∞-TLI is applied to other terrains (e.g., divergent, or convergent 
terrains) still needs further verifications. Hence, multiple terrains (see in 
Section 2.2.1) with different complexities are adopted to assess D∞-TLI 

in our experiments. 

2.1.2. Width function calculation with TLI 
The width function coincides with the area distribution function of 

equidistant belt (Moussa, 2008), so the proposed algorithm extracts the 
equidistant belt firstly. In this step, cells in the specific hillslope or 
catchment are processed one by one. For each cell, the proposed algo
rithm firstly obtains the equidistant lines whose flow distances to 
channel are multiple to the belt interval, then each area between two 
equidistant lines is added to the corresponding equidistant belt. Here the 
belt interval is always set to be the DEM resolution (e.g., Liu et al., 2012; 
Moussa, 2008; Sahoo and Sahoo, 2019b). 

To implement above scheme, a given cell is firstly divided into eight 
triangular facets as marked in blue in Fig. 3a. Then every facet is pro
cessed independently. The grey facet in Fig. 3a is taken for illustration. 
There are two vertexes (i.e., Vc and Vd) except the current cell center (i. 
e., P0) within this facet. Vc is the midpoint of the given cell center (P0) 
and its cardinal neighbor center (P1 for the selected facet), and Vd is the 
midpoint of the given cell center (P0) and its diagonal neighbor center 
(P2 for the selected facet). 

Equidistant lines (dotted lines in Fig. 3b) should be computed firstly. 
However, if any one of the neighboring cells (i.e., P1 or P2) belong to 
another hillslope or catchment, this facet will not be further divided to 
avoid the effects of unreasonable critical lines. Then this facet is added 
to the belt covering the flow distance from the cell center (P0). This step 
ensures that the integration of the width function is equal to the area of 
the extracted hillslope or catchment. 

When all the three vertexes belong to the same hillslope or catch
ment, the continuous flow distance field for the facet is calculated using 
the TLI method. Here the flow distance from P0, P1, P2, P3 are expressed 
as FD0, FD1, FD2, FD3, and the mean of these four flow distance values is 
expressed as MD. According to the TLI, the flow distance from Vc to 
channel (i.e., FDvc) can be calculated following: 

FDvc =(FD0 +FD1) / 2 (6) 

According to Zhou et al. (2011) method, the flow distance from Vd to 
channel (i.e., FDvd) is calculated as below: 

FDvd =

{
(FD1 +FD3)/2, if |MD − (FD1 +FD3)/2| ≤ |MD − (FD0 +FD2)/2|
(FD0 +FD2)/2, if |MD − (FD1 +FD3)/2|> |MD − (FD0 +FD2)/2|

(7) 

Then the equations for the flow distance from any point at the facet 
sides to channel are shown in Fig. 3b. These equations can also help to 
obtain the point position at a side with a given flow distance. Thus, when 
the given flow distance ranges between the minimum and the maximum 
flow distances from the three vertexes, only two points owning the given 
distance can be found at the three sides, and the equidistant line can be 
approximated by a straight line linking them. Thereupon, the facet can 
be divided into multiple equidistant belts between the equidistant lines 
(Fig. 3c and d). 

After all the cells in the hillslope or catchment are processed, the 
probability density (p(x)) and the area distribution of equidistant belt 
are generated (Fig. 3e). Here the width of every equidistant belt is the 
ratio of the equidistant belt area (Sp(x)) to the belt interval (Lu), i.e., Sp 
(x)/Lu, and is defined as the width at the middle flow distance of the belt, 
where S is the total area of the hillslope or catchment (Fig. 3f). Hence, 
the applications of area distribution and probability density function to 
obtain the width function are consistent. 

This proposed division method for width function is referred as the 
multiple equidistant belt (MEB) method, which is different from the 
conventional method adds a cell into single equidistant belt (SEB). The 
implementation of MEB requires no iteration or other complex pro
cesses, and its time complexity is O(n). 
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2.2. Experiment materials and assessment criteria 

2.2.1. Numerical and real-world terrains 
Four numerical terrains and two real-world terrains are adopted for 

algorithm assessments (Fig. 4). The numerical terrains contain an 
ellipsoid, an inverse ellipsoid, a plane, and a saddle (Fig. 4a–d). These 
terrains represent divergent, convergent, plain and complex terrains, 
respectively. The formulas proposed by Li et al. (2021) are used to build 
these terrains with six resolutions (1 m, 2 m, 5 m, 10 m, 20 m, 30 m). As 
mentioned in Section 2.1, the exact flow distance for the numerical 
terrains is equivalent to the slope line length. This length can be 
calculated by integration using the slope line formulas introduced by Li 
et al. (2021), then the exact equidistant belt area can be divided for the 
exact width function. When assessing the flow distance algorithms, only 
the partial ellipsoid with a square boundary in Fig. 4i is used because 
there is a systematic error between the circle boundary of the complete 
ellipsoid and the valid DEM cells (Fig. S2). But the assessments of the 
width function use the complete ellipsoid because it is hard to obtain the 
exact equidistant line or belt with integration when only the partial 
terrain is used. The saddle is not employed for the width function 
extraction due to the lack of the exact equidistant belt area. 

It is difficult to obtain the exact flow distances from most positions 
over a real-world terrain to the channel or outlet. However, flow dis
tance from a point in a channel or gully can be measured along the 

overland flow trajectory. Therefore, some channels (or gullies) in two 
real-world terrains, including a sub-basin of the Spruce Canyon (Fig. 4e) 
and the Duodigou Basin (Fig. 4f), are mapped using the images from the 
Google Earth for the assessments (e.g., Fig. 4g and h). 

The Spruce Canyon is in New Mexico, USA, and the selected tributary 
sub-basin (referred as SCT Basin) owns a drainage area of 7.0 km2 with 
the elevation ranging from 2292 m to 3027 m. This basin has a relatively 
low mean slope (17.2◦), while the valley bottoms and the channels are 
narrower than 100 m and 3 m, respectively. The downstream channels 
of thirty points are mapped. To avoid repetitive computation bias, only 
two longest channels are selected as the main channels, while other 
twenty-eight channels end up at the main channel and are regarded as 
branches. The lengths of two main channels are 3475 m and 3496 m, 
while the lengths of the branches range from 75 m to 687 m. Bare earth 
DEM data with 1 m resolution is provided by the Jemez River Basin 
Snow-off LiDAR Survey, and is resampled to five coarser resolutions (2 
m, 5 m, 10 m, 20 m, 30 m) consistent with the selected resolutions of the 
numerical terrains. 

The Duodigou Basin (referred as DDG Basin) is located in the Tibetan 
Plateau, China (Fei et al., 2022). It is a steep alpine terrain covering 56.6 
km2 with the elevation ranging from 3719 m to 5425 m and a mean 
slope equal to 28.0◦. The valley bottom is narrow (<20 m) at the up
stream and wide (>900 m) at the downstream. The downstream chan
nels of ten points are mapped. The longest channel (11386 m) is selected 

Fig. 3. The method to determine the local equidistant belt area which is used to constitute the width function. (a) The cell is divided into eight facets as shown with 
blue boundary, and the flow distance of any point at the facet boundary can be calculated following (b), where L1, …, L6 denote the lengths from the points to the 
vertexes. Each equidistant line is straight and linking two points at the boundary with the same flow distance. (c) The cell C3 in Fig.1b is used as an example to shown 
the equidistant line, and the equidistant belt distribution for the region out of channels in Fig.1b is shown in (d). It is notable that the equidistant lines cannot reach 
the region sides. Then (e) the PDF of the equidistant belt area and (f) the width function can be calculated. 
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Fig. 4. Four numerical and two real-world terrains are used for the assessments, including (a) an ellipsoid, (b) an inverse ellipsoid, (c) a plane, (d) a saddle, (e) the 
SCT Basin, and (f) the DDG Basin. Local images of (g) the SCT Basin and (h) the Duodigou Basin with several selected source points mapped are used to show the 
branch channels or gullies. Moreover, the elevation distribution of the square partial region of the ellipsoid (− 1020 m < x, y < 1020 m) used for the flow distance 
assessments is shown in (i). 
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as the main channel. The lengths of the branches range from 936 m to 
5979 m. These channels are narrower than 10 m. The 12.5 m-resolution 
DEM of this basin is obtained from the Advanced Land Observing Sat
ellite (ALOS). Limited by the coarse initial resolution, the DEM is 
resampled to four resolutions (15 m, 20 m, 25 m, 30 m) with smaller 
intervals than those of other terrains to show the influence of the 
resolution. 

2.2.2. Algorithm assessments 
The estimated flow distance distributions estimated by ten flow 

distance algorithms, including D∞-TLI and nine other algorithms, are 
adopted by the assessments over the numerical or the real-world ter
rains. The information of these algorithms are listed in Table 1. Here the 
traditional cumulative length (CL) method, the distance transform (DT) 
method by Paz et al. (2008), and the cosine transform (CT) method by 
Liu et al. (2012) are combined with two SFD algorithms, namely the 
classical D8 algorithm (O’Callaghan and Mark, 1984) and a highly 
precise algorithm named iFAD8 (Wu et al., 2020). The merging (M) 
method by Dong et al. (2022) is also employed and combined with 
iFAD8. The cumulative length methods based on D∞ and QMFD pro
posed by Bogaart and Troch (2006) are also adopted. Hence, ten algo
rithms for assessments are D8-CL, D8-DT, D8-CT, iFAD8-CL, iFAD8-DT, 
iFAD8-CT, iFAD8-M, D∞-CL, QMFD-CL and D∞-TLI. The flow direction 
algorithms (D8, iFAD8, D∞ and QMFD) are selected due to their 
applicability for flow distance measurements. Although some other flow 
direction algorithms are shown to be more effective in other applications 
(e.g., Pilesjö and Hasan, 2014; Wu et al., 2022), they are not suitable to 
this study because they provide flow path out from a non-point source. 

The mean absolute relative error (MARE) is used to assess the de
viations between the estimated and the exact flow distances. It is defined 
as follows: 

REi =
PVi − EVi

EVi
(8)  

MARE =
1
n

∑n

i=1
|REi| (9)  

where PVi and EVi are the estimated and the exact values of the ith cell, 
respectively. REi denotes the relative error of the ith cell, and n denotes 
the number of cells considered for the assessment. 

When width function is estimated for a terrain, the exact widths of 
some estimated equidistant belts may be zero due to the possible over
estimation of the flow distance. This phenomenon can limit the direct 
application of MARE to assess the deviations between the estimated and 

the exact width functions. Hence, two valid assessment criteria are 
adopted here. Firstly, a part of the equidistant belts with flow distances 
not exceeding the maximum exact flow distance are selected to calculate 
the MARE following Eqs. (8) and (9). Here PVi and EVi in Eq. (8) are the 
ith estimated and the ith exact widths, respectively. Then the exceeding 
index (EI) is adopted to represent the proportion of the widths whose 
estimated flow distances are longer than the exact maximum flow 
distance. 

EI =

∑m

j=1
Wj

T
(10)  

where m denotes the number of the equidistant belts exceeding the 
maximum exact flow distance, and Wj denotes the jth exceeding equi
distant belt width. T denotes the total width of all exact equidistant 
belts. It is obvious that an accurate width function should possess both 
low MARE and EI values. 

3. Results 

3.1. Assessments of the flow distance algorithms 

3.1.1. Performances over the numerical terrains 
To clearly illustrate the difference between the exact and the esti

mated flow distance distributions, the partial enlarged details over the 
20 m-resolution terrains are shown in Fig. 5. Meanwhile, the flow dis
tance distributions over the whole terrains are provided in Fig. S3. Ac
cording to Fig. 5b and d, it is evident that D∞-TLI accurately reproduce 
the exact flow distance for the inverse ellipsoid and the saddle. The 
isolines of flow distance by D∞-TLI are smooth and parallel to the exact 
isolines over the partial ellipsoid, with a deviation as low as iFAD8-CT or 
iFAD8-M (Fig. 5a). However, D∞-TLI underestimates the flow distance 
where the exact isolines facing two directions intersect over the plane 
(see in Fig. 5c). In contrast, the results by the D8-based algorithms 
(including D8-CL, D8-DT and D8-CT) are unsatisfactory. D∞-CL and 
QMFD-CL overestimate flow distance over every numerical terrain. 
Although iFAD8-CL and iFAD8-DT lead to large deviations, the other 
two iFAD8-based algorithms, iFAD8-CT and iFAD8-M, are able to 
reproduce the exact flow distance distribution more reliably than other 
algorithms except D∞-TLI. But the accuracy of iFAD8-CT or iFAD8-M is 
unsteady as indicated by the undulant isolines, and it is obviously lower 
than the accuracy of D∞-TLI over the inverse ellipsoid and the saddle. 
Hence, the visual assessments demonstrate that D∞-TLI is the best 
choice to reproduce flow distance distributions over the numerical ter
rains, a conclusion that is further supported by the results over 5 m- 
resolution terrains (Fig. S4). 

According to the quantitative assessments (Fig. 6), lower MARE ap
pears when a finer resolution is used for most cases. D∞-TLI emerges as 
the superior algorithm because it obtains the least MAREs across all 
resolutions over the inverse ellipsoid, the plane or the saddle, while only 
iFAD8-CT has a comparable performance with D∞-TLI over the partial 
ellipsoid. Overall, the average MARE of D∞-TLI is a mere 2.31 % over 
four numerical terrains. iFAD8-CT and iFAD8-M are the two algorithms 
follow closely behind D∞-TLI, exhibiting obvious improvements to 
iFAD8-CL and iFAD8-DT while iFAD8-DT outperforms iFAD8-CL. When 
comparing the D8-based algorithms, D8-DT and D8-CT outperform D8- 
CL over the partial ellipsoid and the inverse ellipsoid, but underperform 
D8-CL over the saddle. The D8-based algorithms have similar perfor
mances over the plane. Consistent with the results in Fig. 5, D∞-CL and 
QMFD-CL produce great errors over all the terrains, but D∞-CL seems to 
be more accurate than QMFD-CL. 

3.1.2. Real-world applications 
The distribution of flow distance to the mapped channels is calcu

lated in both the SCT Basin and the DDG Basin, and the visual results by 

Table 1 
The flow distance algorithms adopted for the comparison in this study.  

Algorithm Origin of the 
cumulative distance 
algorithm 

Adopted flow 
direction 
algorithm 

Origin of the flow 
direction algorithm 

D8-CL – D8 O’Callaghan and Mark 
(1984) 

D8-DT Paz et al. (2008) D8 O’Callaghan and Mark 
(1984) 

D8-CT Liu et al. (2012) D8/D∞ O’Callaghan and Mark 
(1984)/Tarboton 
(1997) 

iFAD8-CL – iFAD8 Wu et al. (2020) 
iFAD8-DT Paz et al. (2008) iFAD8 Wu et al. (2020) 
iFAD8-CT Liu et al. (2012) iFAD8/D∞ Wu et al. (2020)/ 

Tarboton (1997) 
iFAD8-M Dong et al. (2022) iFAD8 Wu et al. (2020) 
QMFD-CL Bogaart and Troch 

(2006) 
QMFD Quinn et al. (1991) 

D∞-CL Bogaart and Troch 
(2006) 

D∞ Tarboton (1997) 

D∞-TLI Current study D∞ Tarboton (1997)  
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Fig. 5. Enlarged windows of the exact flow distance distributions (grey dashed lines) versus estimated flow distance distributions (black solid lines) to the terrain 
boundary by different algorithms over four numerical terrains with 20 m resolution. The window ranges of the partial ellipsoid or the inverse ellipsoid are 100 m < x 
< 400 m and 300 m < y < 600 m. The window ranges of the plane are 350 m < x < 650 m and 100 m < y < 400 m. The window ranges of the partial ellipsoid are 
150 m < x < 300 m and 1250 m < y < 1400 m. 
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different algorithms are shown in Fig. 7. Here some short channels in the 
SCT Basin are ignored and only four channels are adopted. Enlarged 
details in Fig. 7c and d reveal that the MFD-based algorithms, including 
D∞-TLI, D∞-CL and QMFD-CL, yield smoother isolines of flow distance 
than the seven selected SFD-based algorithms. In contrast to other al
gorithms, D∞-CL and QMFD-CL always overestimate the flow distance. 
The application of strategy DT, CT and M effectively shorten the results 
of CL no matter which SFD algorithm (D8 or iFAD8) is selected. This is 
evident from the isoline of 100 m over the SCT Basin (Fig. 7c) and the 
isoline of 600 m over the DDG Basin (Fig. 7d). 

Two cases are taken into consideration for quantitative assessments: 
the flow distances from the selected points to the main channels shown 
in Fig. 4e and f, and the flow distances from all the selected points to the 
basin outlet. The wavy MAREs show that the ability of every selected 
algorithm is unsteady over the real-world terrains with different reso
lutions (Fig. 8). Nonetheless, compared with other algorithms, D∞-TLI 
consistently yields acceptable MAREs. For any given case in Fig. 8, the 
average MARE of all the resolutions is listed in Table 2. D∞-TLI ranks 
among the top three algorithms for any case. In addition, the average 
MARE of all the cases and resolutions are calculated, with D∞-TLI 
achieving the lowest value of 4.01 %. The values of D8-CT (4.30 %) and 
iFAD8-CT (4.29 %) are lower than other algorithms except for D∞-TLI. 
The average MAREs of QMFD-CL are excessively high over the real- 
world terrains. The performances of D8-CL, D8-DT, iFAD8-CL, iFAD8- 
M and D∞-CL are similar according to the results in Table 2. 

3.2. Assessments of the width function 

According to the results in Section 3.1, only five flow distance al
gorithms are selected to provide the flow distance distribution for the 
assessments of width function algorithms, including D∞-TLI, classical 
D8-CL, and three algorithms with acceptable performances over the 
numerical or the real-world terrains (i.e., D8-CT, iFAD8-CT and iFAD8- 
M). Fig. 8 shows the width functions estimated by two width function 
algorithms (i.e., the conventional SEB and the proposed MEB) with 
different estimated flow distance distributions over three 20 m-resolu
tion numerical terrains. Here the flow distance interval of the equidis
tant belt for the width function is equal to the DEM resolution (i.e., 20 
m) following some existing studies (e.g., Liu et al., 2012; Moussa, 2008; 
Sahoo and Sahoo, 2019b). 

As shown in Fig. 9, while the exact width functions for the numerical 

terrains are smooth, SEB causes artificial fluctuations in the estimated 
width functions in most cases. The MEB algorithm effectively mitigates 
these unreasonable artificial fluctuations successfully. The quantitative 
assessment results in Fig. 10 further demonstrate that MEB improves the 
accuracy of the estimated width function, yielding lower MARE than 
SEB for any selected flow distance distribution. Meanwhile, EI is always 
equal to zero over the ellipsoid or the plane, and slightly larger than zero 
over the inverse ellipsoid when the flow distance distribution by D8-CL 
or iFAD8-M is adopted. The estimated width function combining MEB 
and D∞-TLI is highly consistent with the exact width function (Fig. 9m- 
o), and generally achieves the lowest MARE over all the numerical ter
rains (Fig. 10). The average MARE is 2.97 % for this combination but 
higher than 5% for other combinations. Other estimated flow distance 
distributions except the distribution by D∞-TLI can restore the trend of 
the exact width function over the ellipsoid with SEB or MEB (Fig. 9a, d, 
9g and 9j). However, the deviation of D8-CL is great over the inverse 
ellipsoid (Fig. 9b) and the plane (Fig. 8c), while D8-CT exhibits sub
stantial deviations over the plane (Fig. 9f). These unreasonable de
viations can also be identified from Fig. 10. 

The application of MEB over the real-world terrain also exhibits its 
ability to overcome the artificial fluctuations (Fig. 11). To obtain the 
exact width function over a real-world terrain is a great challenge. 
However, if the flow distance to channel is close to zero, the estimated 
width can be approximated as twice the channel length because the 
equidistant belt has a small interval and is proximity to both the channel 
banks. This is not a very disciplined assessment method, but can provide 
a reference for the application over the real-world terrain. Here the SCT 
Basin with 1 m-resolution DEM is selected for real-world applications 
and the width function to channel (including four channels in Fig. 7a) 
with an equidistant belt interval of 1 m is calculated. No matter which 
algorithm is adopted to determine the flow distance distribution, the 
area of the first equidistant belt with flow distance ranging from 0 m to 1 
m should be much smaller than the exact area as shown in Fig. 9. This is 
because the exact first equidistant belt is covered by both the hillslope 
and the channel cells while the proposed algorithm only estimates width 
function using the hillslope cells. Hence, the next belt ranging from 1 m 
to 2 m (i.e., the width at 1.5 m flow distance) is used to predict the total 
channel length (7546 m), and the results are shown in Table 3. 

The relative errors of all the predicted lengths by SEB exceed 10 %, 
while the relative errors by MEB are lower than 10 %. When combined 
with MEB, the relative errors of D∞-TLI and D8-CL are lower than 3 %. 

Fig. 6. The mean absolute relative error (MARE) of the estimated flow distance by different algorithms over (a) the partial ellipsoid, (b) the inverse ellipsoid, (c) the 
plane, and (d) the saddle with six different resolutions. The plots of D∞-TLI are specially marked. Here the lines of D∞-TLI and iFAD8-CT are almost coincident for 
(a) the partial ellipsoid. 
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Fig. 7. The estimated flow distance distribution (dashed lines) to channels (solid lines) by D∞-TLI over (a) the SCT Basin and (b) the DDG Basin. For the marked 
domains in (a) and (b), enlarged windows in (c) and (d) are used to show the difference between the flow distance distributions estimated by ten selected algorithms. 
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Table 3 presents the widths at three neighboring flow distances (i.e., 1.5 
m, 2.5 m, 3.5 m) by different combinations. Although slight fluctuation 
in width function is normal, the fluctuation of the selected widths by any 
SEB-based combination is too strong for such a small flow distance in
terval. This unreasonable fluctuation is obviously artificial which is 
caused by SEB. 

4. Discussions 

4.1. Different algorithms on flow distance estimation accuracy 

The flow direction algorithm selected appears to be the primary 
factor influencing the accuracy according to the results in Section 3.1. 
All the D8-based algorithms (i.e., D8-CL, D8-DT and D8-CT) provide 
abnormal flow distance distributions over the partial ellipsoid, the plane 
and the saddle, but yield more effective distributions over the inverse 
ellipsoid (Fig. 5). This is because D8 can generate false flow paths that 
direct the flow to incorrect targets over the divergent and the plain 
terrains, but has an acceptable performance over the convergent terrain 
(Wu et al., 2022). Meanwhile, D8-CL and D8-CT can provide reasonable 
flow distances to outlet for the selected points over two selected 
real-world terrains (Table 2), as the majority of the flow path from a 
selected point to the outlet traverses a convergent valley where the D8 
algorithm operates effectively. 

iFAD8 can provide reasonable zigzag flow paths out from the cell 
center (Wu et al., 2020), thus the results of any iFAD8-based algorithm 
(i.e., iFAD8-CL, iFAD8-DT, iFAD8-CT and iFAD8-M) can roughly reflect 
the features of the exact flow distance distributions. D∞ and QMFD 
provide dispersive flow paths and may drain a part of the flow into the 
channel at some unusually distant locations, so D∞-CL and QMFD-CL 
always overestimate the flow distance (Figs. 5 and 7). D∞ is less 

dispersive than QMFD (Orlandini et al., 2012), so D∞-CL obtains better 
results than QMFD-CL over all the terrains. Generally, the SFD-based 
algorithms get better application results than the existing MFD-based 
algorithms (i.e., D∞-CL and QMFD-CL). 

D∞-TLI outperforms any other selected algorithm in estimating the 
generally most accurate flow distance over both the numerical and the 
real-world terrains. Although the traditional D∞ method is treated as a 
MFD method, D∞-TLI neglects the dispersive global flow path of D∞ 
and only employs D∞ for the local drainage direction. Hence, D∞-TLI 
does not suffer the serious problem of dispersive flow path by the MFD 
methods and can provide more accurate flow distance. 

There are some strategies to improve the precision of the local 
drainage direction by D∞ (e.g., Hooshyar et al., 2016; Wu et al., 2020). 
These new methods may obtain the potential to further improve the 
accuracy of the estimated flow distance. But when the new infinite di
rection (ND∞) method proposed by Wu et al. (2020) is adopted to 
replace the D∞ direction in D∞-TLI, no obvious improvement appears 
to the accuracy over the real-world terrains (Fig. S5). That is because the 
limited improvement of ND∞ to D∞ can be offset by other errors, such 
as the errors in TLI or the DEM generation. Hence, the applicability of 
the improved versions of D∞ requires more assessments in further 
studies, and the tradition D∞ direction is recommended in this study 
due to its simplicity and popularization. 

4.2. Width function estimation 

It is possible that some cells cover multiple equidistant belts when 
their cell centers are located on one equidistant belt (Fig. 1). Then SEB 
adds all these cell regions into one equidistant belt while other neigh
boring equidistant belts receive no cell area, which draws the artificial 
fluctuations in Fig. 9. The originality of MEB is to attempt to divide a cell 

Fig. 8. The mean absolute relative error (MARE) of the estimated flow distance to channel or outlet for the selected points in the SCT Basin and the Duodigou Basin.  

Table 2 
The average MARE of the estimated flow distance by different algorithms.   

D8-CL D8-DT D8-CT iFAD8-CL iFAD8-DT iFAD8-CT iFAD8-M QMFD-CL D∞-CL D∞-TLI 

Distance to channel for the SCT Basin 8.93 8.44 8.24 8.84 7.84 7.62 7.92 21.26 9.04 7.22 
Distance to outlet for the SCT Basin 4.58 4.81 4.52 4.94 4.93 4.78 5.99 6.71 4.65 4.52 
Distance to channel for the DDG Basin 2.61 4.32 2.79 2.48 3.93 2.94 4.65 14.31 2.52 2.57 
Distance to outlet for the DDG Basin 1.09 3.09 0.96 1.17 2.99 1.20 4.03 11.59 1.12 0.93 
All the cases above 4.49 5.29 4.30 4.57 5.04 4.29 5.72 13.47 4.50 4.01 

Note. The unit is in 10− 2, and the three lowest average MAREs of every case are bolded. 
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Fig. 9. The width functions derived by the SEB and the MEB method with five selected flow distance algorithms and 20 m-resolution numerical terrains. The flow 
distance interval is equal to the resolution. 
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Fig. 10. The mean absolute relative error (MARE) and the exceeding index (EI) of the estimated width function over three numerical terrains with different res
olutions. The flow distance interval is equal to the specific resolution. 
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into correct equidistant belts, so it is unsurprising to find that MEB leads 
to slighter artificial fluctuation. However, the accuracy of the estimated 
width function depends not only on the width function algorithm (i.e., 
SEB or MEB), but also on the selected flow distance algorithm. With a 
specific flow distance distribution, MEB can estimated the width 

function more accurately than SEB (Fig. 9). For a specific width function 
algorithm (SEB or MEB), its accuracy can be greatly improved by using a 
more accurate flow distance algorithm. However, the combination of 
SEB with a more accurate flow distance algorithm may outperform the 
combination of MEB with a flow distance algorithm of which the ac
curacy is not that high. As an instance, iFAD8-CT causes higher MARE 
than iFAD8-M when providing flow distance distribution for the plane 
(Fig. 5c), but iFAD8-CT-MEB provides a better width function than 
iFAD8-M-SEB (Fig. 9c). While D∞-TLI is shown to be the best choice for 
flow distance estimation, the combination of D∞-TLI with MEB is 
optimal, which is demonstrated by the steady great performance over 
the numerical and the real-world terrains (Fig. 10 and Table 3). 

The results in Section 3.2 are based on a traditional precondition that 
the equidistant belt interval for the width function is equal to the DEM 
resolution. Since this is a small interval, a large proportion of the whole 
cell region may fall outside the correct equidistant belt. This precondi
tion may increase the artificial fluctuation. If the interval is set to be 
larger, more area in a cell can belong to the same equidistant belt as the 
cell center, then the SEB method will suffer a slighter artificial fluctua
tion. However, MEB can still optimize the accuracy of SEB to a degree in 
this case as shown in Fig. S6. 

4.3. Computational efficiency 

All the flow distance algorithms used in this study are implemented 
following the two-segmented-distance strategy. The runtimes for the 
plane with different resolutions show that this strategy can guarantee 
acceptable computational efficiency (Table 4). Although the runtime 
increases exponentially with the number of cells, D∞-TLI can process a 
DEM with more than 9 × 106 cells in less than 20.0 s. This runtime is 
similar to D∞-CL, and is longer than the D8-based algorithms as well as 
QMFD-CL, while is shorter than the iFAD8-based algorithms. This is 
similar to the difference in efficiency of the selected flow direction al
gorithms (D8, iFAD8, D∞ and QMFD) as shown by Wu et al. (2022). So, 
the selected flow direction algorithm seems to be the main factor 
affecting runtime. Table S1 shows the runtime over other three nu
merical terrains. The results similar to Table 4 prove that the efficiency 
of any flow distance algorithm is steady and its runtime is mainly 
determined by the size of the DEM. 

The computation efficiency of MEB is also acceptable with less than 

Fig. 11. The partial width functions with flow distance shorter than 500 m by 
the SEB and the MEB method. The distributions of flow distance to channel are 
estimated by D∞-TLI over (a) the SCT Basin and (b) the DDG Basin with the 
resolution of 20 m. The flow distance interval of the width function is equal to 
20 m. 

Table 3 
Relative errors between the exact length and the predicted river lengths using the equidistant belt areas by different flow distance algorithms and width function 
extraction modes.   

D8-CL- 
SEB 

D8-CL- 
MEB 

D8-CT- 
SEB 

D8-CT- 
MEB 

iFAD8-CT- 
SEB 

iFAD8-CT- 
MEB 

iFAD8-M- 
SEB 

iFAD8-M- 
MEB 

D∞-TLI- 
SEB 

D∞-TLI- 
MEB 

Width at distance of 1.5 m 
(m) 

17683 15425 18514 15779 18343 16129 17633 15682 18222 15471 

Width at distance of 2.5 m 
(m) 

19731 16118 18123 16546 17994 16745 21262 18300 17528 16277 

Width at distance of 3.5 m 
(m) 

17288 16091 16198 16521 16792 16770 17065 16840 17538 16278 

Predicted river length (m) 8842 7712 9257 7889 9172 8064 8817 7841 9111 7736 
Relative error (%) 17.17 2.21 22.67 4.55 21.54 6.87 16.84 3.91 20.74 2.51  

Table 4 
The runtimes of different flow distance algorithms to process the plane with different resolutions.  

Resolution (m) Cell Numbers D8-CL D8-DT D8-CT iFAD8-CL iFAD8-DT iFAD8-CT iFAD8-M QMFD-CL D∞-CL D∞-TLI 

30 1.02 × 104 0.003 0.004 0.007 0.012 0.015 0.017 0.01 0.005 0.008 0.007 
20 2.28 × 104 0.01 0.008 0.017 0.027 0.025 0.037 0.02 0.009 0.022 0.018 
10 9.06 × 104 0.043 0.042 0.064 0.113 0.108 0.137 0.093 0.046 0.068 0.067 
5 3.61 × 105 0.198 0.227 0.324 0.513 0.551 0.632 0.459 0.269 0.33 0.318 
2 2.25 × 106 2.097 2.155 2.877 4.379 4.583 5.181 5.554 2.378 2.775 2.895 
1 9.01 × 106 11.562 10.306 16.936 21.513 24.577 27.01 59.79 13.971 17.333 18.401 

Note. The unit is in second. The evaluation is performed on a computer with an Intel Xeon E5-1620 v4 CPU and 80 GB of memory. 
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14.0 s required to process any 1 m-resolution DEM using any given flow 
distance distribution. This runtime is much longer than the SEB algo
rithm (0.08 s), but is shorter than the runtimes of most flow distance 
algorithms. 

4.4. Suggestions for further studies 

The algorithms are assessed over four numerical terrains and two 
real-world terrains. The selected numerical terrains are typical and can 
represent most of the basic topographic units (Li et al., 2021). So the 
conclusions based on experiments over numerical terrains are con
victive, and the results over real-world terrains support these conclu
sions. However, although the difference between the accuracies of 
different flow distance algorithms or width function algorithms is 
obvious, it is still not clear whether this difference can greatly affect the 
result of hydrological modeling. Therefore, it is necessary to apply these 
algorithms to runoff simulation for a better comparison. 

In addition, the new algorithm selects TLI because its straight isolines 
are suitable for the calculation of equidistant belt area. This is a 
compromise to practicability, but some other interpolation methods 
may have better precision (Xu et al., 2018). Hence, in order to improve 
the precision, more attempts can be taken to couple other interpolation 
methods into the structure of D∞-TLI. 

The execution time of the new algorithms seems to be acceptable, but 
there is potential for further improvement. For example, D∞-TLI uses a 
similar structure to priority-flood, and Barnes et al. (2014) have pro
posed a method to decrease the time complexity of priority-flood to O 
(n). For MEB, while each cell is processed independently, parallel 
computing is a strategy that can be adopted to improve computing ef
ficiency. If these strategies can be included, the practicability of the new 
algorithm will undoubtedly be further improved. 

5. Concluding remarks 

Flow distance and width function are important hydrological pa
rameters. However, it is difficult for existing algorithms to extract them 
accurately, and a major problem limiting the accuracy of the algorithm 
is the lack of flow distance values in a cell region except for the cell 
center. Hence, this study adopts TLI to provide the missing values and 
proposes a new method. This method can be divided into two parts. One 
part can estimate the flow distance distribution based on grid DEMs, and 
the other part can calculate the width function using the estimated flow 
distance distribution. The new flow distance algorithm (D∞-TLI) adopts 
a two-segmented-distance strategy that divides the flow distance into 
two segments whose sub-distances are approximated using D∞ and TLI, 
respectively. Then, the continuous flow distance field is approximated 
over each cell region, so this cell area can be divided into multiple 
equidistant belts (MEB) for the width function. 

Four numerical terrains and two real-world terrains with multiple 
resolutions are adopted for assessments. The results indicate that D∞- 
TLI generally outperforms nine existing flow distance algorithms and 
causes low average MAREs of 2.31 % and 4.01% for the estimated flow 
distance distribution over the numerical and the real-world terrains, 
respectively. Compared with the traditional method, MEB can effec
tively decrease the artificial fluctuations in the estimated width func
tion. The combination of D∞-TLI with MEB (i.e., D∞-TLI-MEB) 
outperforms other combinations by providing estimated width functions 
with an average MARE of 2.97 % for the numerical terrains, while it also 
works well over real-world terrains. Except for the average MARE, the 
high match between the estimated values and the exact values shows 

that D∞-TLI and D∞-TLI-MEB has better accuracy for most positions in 
any terrain (Figs. 5 and 9). Due to the structure similar to priority-flood, 
the complex D∞-TLI method maintains high operating efficiency. 
Moreover, MEB has a simpler structure and higher efficiency. Therefore, 
D∞-TLI and MEB can provide hydro-geomorphological attributes with 
higher accuracy and efficiency. So these methods have great potential in 
hydrological and geomorphological applications. 

Software and data availability 

The codes of the proposed algorithms to extract the flow distance and 
the width function are programmed by java language (version 1.8). 
These codes are available at a Figshare repository created by Pengfei Wu 
(E-mail: wpf@hhu.edu.cn) in 2023: https://doi.org/10.6084/m9.figsh 
are.22010132.v2. This repository contains the program codes (40 KB) 
and the sample data (443 KB). Author’s experimental environment was 
as follows: 

- OS: Windows 10 Pro. 
- CPU: Intel(R) Xeon(R) E5-1620 v4 3.50 GHz. 
- RAM: 80.00 GB. 
- GPU: NVIDIA Quadro M2000 
The DEMs of the numerical terrains are provided by Wu et al. (2022). 

The LiDAR DEM containing the SCT Basin is distributed by Open
Topography at: https://doi.org/10.5069/G9RB72JV. The ALOS DEM 
containing the DDG Basin is available at: https://search.earthdata.nasa. 
gov. The real-world basin domains as well as the mapped channels are 
available at a Figshare repository created by Pengfei Wu in 2023: 
https://doi.org/10.6084/m9.figshare.22004444.v1. 
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Algorithm 1. The proposed width function algorithm. The array WF is the estimated width function. If only the flow distance distribution (i.e., the 
matrix FD) is required, the algorithm can be stopped at the end of Line 21.

Require non-depression DEM, equidistant belt interval (EBI), rasterized Channel layer and 
Hillslope layer 
1:    Let PQ be a min-first priority queue 
2:    Let FD have the same dimensions as DEM  
3:    Let IN have the same dimensions as DEM 
4:    Let IN be initialized to FALSE 
5:    for all c of DEM do 
6:      if c belongs to Channel or the edge of DEM then 
7:        FD(c)←0 
8:        IN(c) ←TRUE 
9:        for all neighbors n of c do 
10:          if IN(n) then repeat loop 
11:          Push n onto PQ with priority DEM(n) 
12:          IN(n)←TRUE 
13:   while PQ is not empty do 
14:     c←POP(PQ) 
15:     Let nc be the closest cardinal neighbor to the D∞ direction of c 
16:     Let nd be the closest diagonal neighbor to the D∞ direction of c 
17:     FD(c) ←Equation 5 (FD(nc), FD(nd)) 
18:     for all neighbors n of c do 
19:       if IN(n) then repeat loop 
20:       Push n onto PQ with priority DEM(n) 

21:       IN(n) TRUE 

22:   Let EB be a one-dimensional array of the length equal to ceiling(max(FD)/EBI) 
23:   Let WF be an array of the same size as EB 
24:   for all c of Hillslope do 
25:     for all facets f of c do 
26:       for all equidistant belt e of f do 
27:         EB(ceiling(e.elev/EBI))= EB(ceiling(e.elev/EBI))+e.area 
28:   for all elements m of EB do 
29:     WF(m)=EB(m)/EBI 
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