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A B S T R A C T   

Rainfall interception is a critical source of water in arid and semiarid mountain forests. Interception loss (I) in 
mountain forests determines the ecohydrological function of a watershed, and this is particularly important in 
arid and semi-arid regions that rely on runoff yield to balance human and ecosystem water needs. Here, we 
measured gross rainfall (P), throughfall (Tf), and stemflow (Sf) from May 2020 to September 2021, and leaf area 
index (LAI), canopy structural parameters, and meteorological data within a Picea crassifolia (P. crassifolia) forest 
in the Qilian Mountains of northwestern China. Throughfall and canopy interception accounted for 56.4 and 
35.2% of the 745.5 mm cumulative rainfall input during the two growing seasons, respectively. Stemflow of up to 
13.6% of total rainfall events occurred when the amount of P > 30 mm, and canopy storage capacity (S) was 2.0 
mm. Based on the parameters derived from a regression equation between Tf vs. P and a trial-and-error cali
bration scheme, three of the physical models, the Návar, reformulated Gash, and Liu, performed very well both 
for event-based (NSE > 0.8) and total-based (NSE > 0.92) I; a larger deviation was found during large rainfall 
events, especially for the reformulated Gash model. These results indicated that the power Návar and the 
reformulated Liu model are best for event-based and total-based I modeling, respectively, in spruce forests in this 
semi-arid region.   

1. Introduction 

The interception fraction of rainfall (I) modifies surface-atmosphere 
energy and hydrological budgets (Raz-Yaseef et al., 2010; Rotenberg and 
Yakir, 2010), therefore, it is critical in arid and semi-arid regions where 
water is a limiting factor for ecosystem stability and economic devel
opment (Ma et al., 2020; Nazari et al., 2020; Qubaja et al., 2020). 
Rainfall intercepted in dry environments depends on water partitioning 
through the forest canopy and plant water use characteristics (Fathiza
deh et al., 2017; Jian et al., 2019; Sadeghi et al., 2015). Rainfall inter
cepted by the canopy may be lost via evaporation, but the volume of loss 
varies greatly with tree species, forest density, canopy structure (Lin
hoss and Siegert, 2016), and climatic conditions (Liu, 1997). It is 
increasingly recognized that a better understanding of water use pat
terns and their response to climate change depends on our ability to 
partition rainfall and simulate the dynamics of its fractions. 

The main factors influencing I are canopy storage capacity (S) (Liu, 
1997), canopy saturation point, canopy cover fraction (c) (Gash, 1979; 
Rutter et al., 1972), free throughfall coefficient (p), average wet canopy 
evaporation rate, and rainfall distribution (Eliades et al., 2022). The 
amount of S, canopy saturation point, and canopy cover fraction de
pends on vegetation type for evergreen forests, and the growing season 
for deciduous forests, while the average wet canopy evaporation and 
interception losses are highly weather-related. Therefore, derivation of 
hydrological parameters from observation records is one of the most 
important links in regional hydrological process research (Deguchi et al., 
2006; Motahari et al., 2013). 

The majority of interception models focus on the cumulative 
amounts and perform poorly with individual values of rainfall inter
ception (Muzylo et al., 2009); this could be due to temporal variability in 
input data and the mathematical theory behind these techniques 
(Návar, 2019). An independent analytical model, developed by Návar 

* Corresponding author. 
E-mail address: junjun_yang@126.com (J. Yang).  

Contents lists available at ScienceDirect 

Agricultural and Forest Meteorology 

journal homepage: www.elsevier.com/locate/agrformet 

https://doi.org/10.1016/j.agrformet.2022.109257 
Received 7 June 2022; Received in revised form 26 October 2022; Accepted 21 November 2022   

mailto:junjun_yang@126.com
www.sciencedirect.com/science/journal/01681923
https://www.elsevier.com/locate/agrformet
https://doi.org/10.1016/j.agrformet.2022.109257
https://doi.org/10.1016/j.agrformet.2022.109257
https://doi.org/10.1016/j.agrformet.2022.109257
http://crossmark.crossref.org/dialog/?doi=10.1016/j.agrformet.2022.109257&domain=pdf


Agricultural and Forest Meteorology 328 (2023) 109257

2

(2020), exhibits a very good performance with individual events and 
cumulative values of I. Linear and power equations can be analyzed 
when predicting I as a function of gross rainfall for a particular climate 
and forest type. Currently, there are almost 17 published I models, of 
which the sparse Gash (Gash, 1979; Gash et al., 1995; Sadeghi et al., 
2015) and the re-formulated Liu (Liu, 1997; Muzylo et al., 2009) models 
are the most frequently used in simulation of the world’s forests (Lin
hoss and Siegert, 2016). The Návar model expands the traditional drip 
equations to predict I, S and rainfall features, but it has yet to be fully 
evaluated for dryland forests (Návar, 2019, 2020). 

Additionally, there is an urgent need for a comparison of the Návar, 
Gash, and Liu models for robustness and applicability to rainfall parti
tioning, especially for dryland forest plantations. Parameters for model 
development are commonly derived from reference values for individual 
tree types or from coefficients of regression equations for I vs. P or Tf vs. 
P (Carlyle-Moses and Price, 2007; Motahari et al., 2013), both of which 
often result in large deviations. As a consequence, new calibration 
methods are needed for model parameterization. An improved under
standing of model applicability and of effects of parameter acquisition 
on interception loss will enhance accuracy of water-oriented prediction 
and management of semiarid forest plantations. 

In this study, we measured P, Tf, and Sf in a fixed 240 m2 plot at 
3000 m elevation from May 2020 to October 2021. We also determined 
leaf area index (LAI), meteorological data at 30-minute intervals, and 
soil water content in a P. crassifolia forest in the Qilian Mountains of 
northwestern China. Our objective in this study was to: (1) determine 
canopy structure variables and partition interception parameters in a 
P. crassifolia forest, (2) derive an optimal model parameterization 
scheme, and (3) validate the three primary physical interception models 
based on the adapted stand parameters. 

2. Materials and methods 

2.1. Study area and measurements 

The study was conducted in Pailugou catchment, located 50 km 
south of Zhangye City, Gansu Province (100◦17′ E, 38◦24′ N), China. The 
area is part of the northern Qilian Mountains and has continental arid 
climate with hot and rainy seasons. Mean annual precipitation was 384 
mm from 2000 to 2020 at 2700 m, of which nearly 65% fell during the 
summer. Mean annual air temperature is 0.5 ◦C; pan evaporation is 
1051.7 mm. P. crassifolia is the only tree species in the study area; it is 
primarily distributed at elevations between 2650 and 3400 m, and 
ranges in age from 80 to 120 years old. Moss (Abietinella abietina) ac
counts for 95% cover of the forest floor, with a thickness of 10 to 30 cm. 
The soil is gray-drab with a field water capacity of 53.8%, bulk density of 
850 kg m− 3, and depth of 70 cm (Chang et al., 2014). 

2.2. Gross precipitation (P), throughfall (Tf), stemflow (Sf) and 
interception (I) 

P was measured using one manual rain-gage (20 cm diameter) 
located in a nearby forest gap (< 20 m away from the plot). A rain event 
was defined as a period when P was > 0.5 mm; rain events were sepa
rated by a drying time of more than 10 h (Sadeghi et al., 2015). 
Fifty-nine rainfall events were observed during the growing season of 
2020 and 2021. Based on the amounts measured for past rainfalls in the 
Qilian Mountains, P was divided into six classes (Table 1). Surface runoff 
was measured in a 5 × 10 m runoff field within the plot. To quantify and 
evaluate rainfall intensity and duration, two HOBO RG3-M automatic 
precipitation sensors (470 MacArthur Blvd., Bourne, MA 02532, U.S.) 
were installed at the observation site to continuously collect and record 
rainfall at 30-min intervals; sensitivity of the sensor was 0.2 mm. 

Table 1 
Range, frequency, and the average value of gross rainfall (P) during the observation period at 3000 m elevation. ± value denotes standard error (Std.), I/P means the 
relative interception loss between I (mm) and P (mm).  

Observation period Rainfall class 
(mm) 

Frequency 
(N) 

Frequency percentage 
(%) 

Precipitation percentage 
(%) 

Average 
(mm) 

I/P (%) Description 

Growing season in 2020 and 
2021 

0–4.9 22 37.3 7.9 2.69±1.31 62.2 ±
18.0 

Very small 
(C1) 

5–9.9 12 20.3 10.8 6.71±1.33 54.3 ± 5.7 Small (C2) 
10–14.9 4 6.8 6.7 12.41±1.86 46.0 ± 7.1 Middle (C3) 
15–19.9 8 13.6 17.9 16.67±1.15 48.2 ± 6.6 Large (C4) 
20–29.9 6 10.2 20.2 25.15±3.42 40.3 ±

11.4 
Very large (C5) 

30–51.25 7 11.9 36.5 38.83±7.81 35.5 ± 4.2 Storm (C6)  

Fig. 1. Map of the sampling instruments within the plot at 3000 m elevation. (a) layout of collectors and sampling trees during the growing seasons in 2020 and 
2021; (b) distribution of diameter at breast height (DBH) within the plot. 
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Tf and Sf were measured in a 12 × 20 m plot at an elevation of 3000 
m (Fig. 1). Sixty cylindrical throughfall collectors made of stainless steel 
(height = 24 cm, diameter = 20 cm) were evenly distributed across the 
plot area at an interval of 2 m, for the purpose of long-term observation 
and analysis of individual interception events (Calder, 1976; Crockford 
and Richardson, 2000). Tf was collected within 2 h after each rainfall in 
graduated cylinders (accurate to 0.1 cm) suspended on 10 
evenly-distributed trees at breast height (1.5 m above ground). 

Sf data were obtained from direct measurements, and the collectors 
for Sf were built following the recommendations of Pypker et al. (2012). 
According to He et al. (2014), Sf is present in this area primarily with 
heavy rainfall events, thus the collector volume for Sf measurements was 
20 L. 

Soil moisture was monitored at 30 min intervals with EM50 
(Decagon, Inc. Decagon, USA), calibrated against the gravimetric 
method at five soil depths (5, 10, 20, 40, and 60 cm). P, Tf, and Sf 
measurements were recorded only during the frost-free season (typically 
May to September). 

Interception losses (I) are generally determined as the difference 
between P and the sum of Tf and Sf (Eq. (1)) (Junqueira Junior et al., 
2019; Prasad Ghimire et al., 2017). Linear regression equations were 
fitted for the Tf vs. P relationship for the plot. Parameter used in the 
models were derived from the relationship, including the maximum 
forest storage capacity (Ps) which corresponds to P when Tf is zero and 
the relationship between Tf and P is linear (Gash, 1979). 

I = P − (Tf + Sf ) (1)  

2.3. Tree structural traits 

To investigate the relationship between canopy ecohydrological 
parameters and tree structural traits, diameter at breast height (DBH) 
was measured for 32 trees, leaf area index (LAI) was determined for 60 
trees, and the canopy cover fraction (c) at 1.3 m above each throughfall 
collector was determined. LAI and c were obtained using an LAI-2200 
plant canopy analyzer (LI-COR, Inc. U.S. & Canada) in July 2021. Tree 
size classes were categorized as: DBH ≦ 4.9 cm, 5 – 9.9 cm, 10 – 19.9 cm, 
20 – 29.9 cm, 30 – 39.9 cm, > 40 cm (Table 2). 

2.4. Parameterization of interception components 

S, the canopy saturation point or the water storage capacity, is the 
amount of P required to saturate the canopy (Sadeghi et al., 2015); the 
maximum canopy storage capacity (Ps) is defined as the minimum 

amount of rainfall the canopy can hold while saturated (Klaassen et al., 
1998). S was derived from separate regression lines relating P to Tf for 
rainfalls that were either pre-sufficient (R1, P < Ps) or post-sufficient 
(R2, P ≥ Ps) for the canopy; the value of P at the intersection of R1 
and R2 provides an estimate of Ps and, the difference between P and Tf at 
the intersection of R1 and R2 was S. The slope of the regression line R1 
represents the free throughfall coefficient p, which is defined as the 
proportion of rain which falls to the ground through gaps without 
striking the canopy (Grunicke et al., 2020). The mean wet canopy 
evaporation during rainfall Ev (mm h− 1) was estimated from a regression 
between I and P (Gash, 1979) (Table 3). 

2.5. Rainfall interception modeling 

2.5.1. Návar model 
The Návar model was developed for forest interception (I) and its 

components S and Ev during rainfall (Návar, 2020). I was parsed into S 
and Er using analytical techniques, and the model provides independent 
and unbiased I and S assessments; the model allows for comparisons of 
linear and power functions specific to the forest, climate, or rainfall 
conditions (Návar, 2019). 

ILM =
( [

b0 − kPc
in + binPin

])
Pin +

∫ P

Pin

binexp(− 0.0001P) ∗ ∂P (2)  

IPM =
( [

b0 − kPc
in + binPin

])
Pin +

∫ P

Pin

kP(±g1) ∗ ∂P (3) 

Where, b0, bin are intercept and slope of the linear equation, k, c are 
the parameters of the power equation, the depth of P from P = 0 to P =
Pin is assumed to account for most of the precipitation needed to saturate 
the canopy, the g1 value indicates the influx of advected energy and is 
quasi constant during most storms in dry and seasonal dry forests 
(Návar, 2020), and ILM and IPM are the interception loss models in the 
linear and power modes, respectively. 

2.5.2. The reformulated Gash model 
The reformulated Gash canopy model estimates I for n rainfall events 

with sufficient volume to saturate the canopy (P > Ps) on an event basis 
(Cuartas et al., 2007; Prasad Ghimire et al., 2017); the forest parameter 
is kept constant, and the rainfall inputs are taken as discrete rainfall 
events divided by the length of intervals sufficient to dry the canopy and 
stems. The model estimates evaporation based on canopy area rather 
than on the ground area. 

In = Iw + Ia +

(

c
Ev

R

∑n

j=1
(P − Ps)

)

+

(

n
′

Ss +Pt

∑n− n′

j=1
(P)

)

(4)  

Iw = ncPg − ncSc (5)  

Ia = ncSc (6) 

Where, Iw is evaporation from the canopy when P > Ps; Ia refers to 
evaporation from the canopy when throughfall stopped; Ev is the 
average canopy evaporation, and R is the average rainfall intensity 
necessary for canopy saturation when P ≥ Ps. Pg is the saturation canopy 
point (Ps), n’ refers to the number of rainfall events with P > Ss/Pt, Ss is 

Table 2 
DBH and LAI distribution statistics at the stemflow-collector position in the 
study plot at 3000 m elevation.  

Variables DBH (cm) LAI 

N 32 60 
Mean 12.9 ± 12.6 2.72 
Variance 159.1 0.28 
Range 41.0 2.58 
Minimum 0.5 1.58 
Maximum 41.5 4.16 

Note: N is the number of samples. 

Table 3 
Parameter value used for the three models in the present study.  

Model parameter Návar model Model parameter Reformulated Gash model Model parameter Reformulated Liu model 

Pin (mm) 2.37 Ps (mm) 1.84–2.0 Ps (mm) 1.16–1.46 
b0 0.56 ER (mm h− 1) 0.34–0.64 ER (mm h− 1) 0.85–1.26 
c 0.85 c 0.74–0.84 C 0.75–0.88 
bin 0.31 S (mm) 1.41–2.68 Ev (mm h− 1) 0.08–0.25 
k 0.30   S (mm) 1.20–2.12 
g1 0.29   Ss (mm) 1.56  

J. Yang et al.                                                                                                                                                                                                                                    



Agricultural and Forest Meteorology 328 (2023) 109257

4

the stem storage capacity and Pt is the proportion of P converted to Sf. 

2.5.3. The reformulated Liu model 
The Liu model (Liu (1997), revised by Carlyle-Moses and Price 

(2007), accounts for the presence of forest gaps. Drainage from the 
canopy starts before its saturation, and canopy saturation is exponential 
in nature. The model is given by Eq. (7): 

I =
∑n

j=1

(

c
{

Scs

[

1 − exp
[(

−
1

Scs

)

P
]]

⋅
[

1 −
Ev
R

]

+
Ev
R

P
})

(7)  

I = c
∑m

j=1
Pj (8)  

where n is the total number of rainfall events, and m is the number of 
events, which are pre-sufficient to Ps. Scs (mm) is the sum of canopy and 
stem storage capacity (S and Ss, respectively). 

2.6. Evaluation of model performance 

Model performance was assessed using the coefficient of determi
nation (R2) to indicate the fit of the regression model between observed 
and simulation results. We also compared the mean relative absolute 
error (MRAE), and Nash-Sutcliffe efficiency (NSE) to determine the 
relative magnitude of the residual variance of two records (Nash and 
Sutcliffe, 1970). 

R2 = 1 −

∑n
i=1(Ii − Î i)

2

∑n
i=1(Ii − I)2 (4)  

MRAE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
⃒
⃒

(Ii − Î i)
⌢
I i

⃒
⃒
⃒
⃒
⃒
⃒

(5)  

NSE = 1 −

∑n
i=1(Ii − Î i)

2

∑n
i=1(Ii − I)2 (6)  

where: Ii is derived from measured P, Tf, and Sf; ̂I is interception using 
the proposed model; n is the total number of measured storms during the 
observation period. 

The performance of the model was evaluated using MRAE as follows: 
MRAE can range from 0 to infinity, with low numbers indicating a better 
performance; this is not affected by the direction of errors since absolute 

values are used. MRAE is a more stringent test of model performance 
than mean error (%) Muzylo et al. (2009). NSE determines model fit as 
follows: unsatisfactory (NSE ≤ 0.50), satisfactory (0.50 < NSE ≤ 0.70), 
good (0.70 < NSE ≤ 0.80), and very good (NSE > 0.80) (Fan et al., 2014; 
N. Moriasi et al., 2015). Assessin g stand water use in four coastal 
wetland forests using sapflow techniques 

3. Results 

3.1. Rainfall partitioning and model parameters 

We registered 59 rainfall events between May 2020 and September 
2021, with a total amount of rain of 745.5 mm and an average (±stand 
deviation) of 12.6 ± 12.4 mm per event (Table 1). Twenty-two events 
(37.3%) did not exceed 5 mm, and 20.3% events delivered between 5 
and 10 mm of rain. Nearly 12% of rain events were > 30 mm, and 
contributed ≥ 39% of the total rainfall. The duration of a rainfall event 
was between 0.5 and 11.5 h, with an average of 2.5 h during the two 

Fig. 2. Rainfall (P), mean throughfall (Tf) and mean stemflow (Sf) in the stemflow events during the two observational seasons, the dash line is a reference line with 
rainfall = 30 mm. 

Fig. 3. Probability of occurrence of stemflow during the two seasons of study.  
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years of study; rain intensity ranged from 0.4 to 5.8 mm h− 1, with an 
average of 0.7 mm h− 1 indicating that small rainfall dominates rainfall 
type in this region. 

Tf and Sf was 420.4 and 62.8 mm, respectively, accounting for 
approximately 56.4 and 8.4% of the total rainfall, respectively. An I 
event totaled 262.3 mm, accounting for 35.2% of P. Notably, 9 of 59 
(approximately 15.3%) rainfall events produced stemflow, with the 
amount of rainfall ranging from 28.3 to 51.2 mm (Fig. 2). Probability of 
stemflow was low and increased with the amount of rainfall (Fig. 3); 
when the amount of rainfall was 42 mm, stemflow occurred nearly 30% 
of time, and the relationship was an exponential function. 

Event-based relative interception loss (I/P) varied between 35.5 (for 
C6 event) and 62.2% (for C1 event) in a power regression equation for I 
vs. P (Fig. 4), decreasing with increasing rainfall (Table 1) and stabi
lizing around S of the forest; there was no recharge occurrence in the 
study area during the two hydrological years. 

Parameters in the Návar model were derived from values recom
mended for an arid and semi-arid forest in southeastern Brazil of Jun
queira Junior et al. (2019); parameters used in other two models were 
calculated from measured values (Fig. 5). Partial parameters were 
determined following trial-and-error techniques (Gill et al., 2006; 
Návar, 2020; Nourani et al., 2014; Yang et al., 2016). We used mean Ps 
of 2.37 mm, S of 2.0 mm, and free throughfall coefficient p of 0.11 (Fig 
5). 

3.2. Model performance 

The relationship between observed I and I modeled with the power 
Návar model exhibited an R2 = 0.93, MER = 0.39, and NSE = 0.90 
(Table 4 and Fig. 6), while that between observed I and I modeled with 
the linear model exhibited an unfavorable performance with R2 = 0.92, 
MEAR = 0.51, and NSE = − 4.04 (not shown here), indicating that the 
power equation model is appropriate for this area. Modeling of inter
ception based on event (Fig. 6a) or the cumulative amount (Fig. 6b) gave 
similar results across the three models. The Liu model exhibited an 
outstanding performance with NSE = 0.92, while the reformulated Gash 
model had NSE = 0.80. The reformulated Gash model overestimated, 
while the Návar model somewhat underestimated in the high value 
range. The Liu model overestimated slightly in the low range. Further, 
the Návar and Gash models resulted in MRAE of 0.39 and 0.30, 
respectively, while the Liu model yielded a larger MRAE of 0.59. The 
cumulative I for the three models exhibited a consistently good fit with 
NSE > 0.9 (Table 4 and Fig. 6), although the Návar model was the 
weakest. The cumulative MRAE of the Gash model exhibited greater 
deviation at > 1.00. Again, the Liu model performed consistently well 
(MRAE=0.00) for the unbiased I assessments. Both Návar and refor
mulated Gash model overestimated event interception by an average of 
0.7 mm, and the Liu model performed best with a slightly under
estimated interception by event-based − 0.27 mm (Table 5). 

4. Discussion 

Stand structure and rainfall partitioning measurements. Tf measure
ments are affected by rainfall amount, tree density, and canopy structure 
(Ma et al., 2020). Overall, accuracy of measurement requires an 
adequate number of throughfall collectors, appropriate collector posi
tion within the stand, and sufficient length of observation or number of 
rainfall events (Junqueira Junior et al., 2019; Prasad Ghimire et al., 
2017). The methodology in this study included a collection interval of 2 
m both horizontally and vertically across the study plot, for a total of 60 
rainfall collectors; this density accounted for the great spatial variability 
of Tf underneath forest canopies (Sadeghi et al., 2015). The cumulative 
observed Tf over the two seasons was 420.4 mm (Tf/P = 56.4% of the 
total rainfall) for this study area; this value was lower than that found at 
2700 m elevation (approximately Tf/P = 64.7%) by He et al. (2014), and 
in other studies in tropical and temperate forest regions (Carlyle-Moses 
et al., 2010; Fathizadeh et al., 2017), but higher than that of Sadeghi 
et al. (2015) (average value of 43.9% for Pinus eldarica in Northern Iran 
with an average annual rainfall of 272 mm). According to Horton (1919) 
and Sadeghi et al. (2015), the size of P was a primary control factor of 
the differences in Tf/P across studies. This was also observed in this 
study (Table 1), with largest I/P for smallest rainfall events; also, a 

Fig. 4. The regression equation between gross rainfall (P) and interception 
loss (I). 

Fig. 5. The regression relationship between gross rainfall (P) and throughfall 
(Tf) for rainfall events; R1 is a fitting line when P is lower than canopy satu
ration point (Ps), and R2 is a fitting line when P ≥ Ps at 3000 m elevation. 

Table 4 
Summary statistics for interception (I) evaluation using three models for event- 
based and total-based rainfall during two years.   

Event-based results Total-based results 
Model R2 MRAE NSE R2 MRAE NSE 

Power Návar model 0.93 0.39 0.90 0.99 0.09 0.93 
Reformulated Gash model 0.93 0.30 0.80 0.99 1.03 0.98 
Reformulated Liu model 0.93 0.19 0.92 0.99 0.00 0.99  
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higher frequency of very small and small rainfall (with a total of 57.5% 
based-event) reduced the Tf/P ratio. 

Sf quantities are highly variable between and within different 
vegetation types (Levia and Frost, 2003). Stemflow accounted for 8.4% 
of P in this study, 11.2% in a Pinus radiata plantation in Upper Yass 
Representative Basin in Australia with a mean annual rainfall of 679 mm 
(Crockford and Richardson (1990), and 6.2% in young P. altissima trees 
(Prasad Ghimire et al., 2017). Most species with a rough bark exhibited 
low Sf (Licata et al., 2011; Navar, 1993; Sadeghi et al., 2020; Valente 
et al., 1997; Xiangyang et al., 2013), while trees with a smooth bark and 
DBHs from 10 to 20 cm (17.3 ± 6.4 cm in this study) contributed high Sf 
in the Cerrado savanna of Brazil, (Tonello et al. (2021). Jeong et al. 
(2020) observed that, generally, the greater the rainfall, the higher the 
Sf/P; the amount of C6 varying from 14.5 to > 36.5% in this study. The 
maximum rainfall observed was 40.8 to 51.3 mm in growing season one 
and two, respectively, suggesting that the increase in extreme rainfall 
events may be the reason for the high Sf. Meanwhile, the probability of 
Sf was only 0.3 for a 42 mm rainfall (Figs. 2 and 3), illustrating that 
occurrence of Sf in a P. crassifolia forest is not a common event, even 
with extreme weather. 

I accounted for 35.2% of P and that was consistent with observations 
of He et al. (2014) in the same area at 2700 m, and in Sitka spruce in 
Sweden (Alavi et al., 2001). The similarities were likely related to can
opy characteristics (eg. LAI, crown openness, and crown length). LAI 
was 2.72 and 2.49 and canopy cover was 0.85 and 0.83 at 3000 and 
2700 m, respectively. The higher frequency of C1 and C2 events from 
37.3 to 57.6% (Table 1) may be more convincing of the variousness in I 
(Prasad Ghimire et al., 2017). The S value at 3000 m was higher (2.0) 
than at 2700 m (1.61) (He et al., 2014), and similar to S from other 
needle-leaved species (Llorens and Gallart, 2000; Motahari et al., 2013). 

The dissimilarity in S can be clarified by the higher LAI (2.72) and higher 
canopy cover 0.85 in the present study (Sadeghi et al., 2015). p in this 
study was calculated as 0.15, which was very close to the 0.1 in 
P. eldarica stands (Motahari et al., 2013). Overall, a higher S as well as 
lower p values in P. crassifolia resulted in high interception in this 
semi-arid region and a reduced runoff from the local forest area. 

Model performance and evaluation. A linear or a power regression 
equation have commonly described the I vs. P relationship depending on 
forest types, climate, and rainfall conditions (Návar, 2019; Návar and 
Bryan, 1990). The NSEs for linear and power Návar models in this study 
were − 4.04 and 0.90, respectively, indicating a better fit of the power 
than of the linear model (Table 3 and Fig. 6), further, Ep (a function of P 
linear and Power regression equations) decayed rapidly over P, that is, 
there was an abatement of local and advected sensible heat over P or 
time (Návar, 2020). Parameters in the Návar model were initialized with 
a reference value for arid and semi-arid regions Návar (2020), and R2, 
MRAE, and NSE were 0.89, 0.32 and 0.86, respectively, indicating a 
reasonable, but not sufficiently good fit. To optimize the evaluation, we 
derived the most appropriate parameters and finally obtained a ‘very 
good’ modeling result compared with the other two physical models 
(Tables 3 and 4). The R2 between the observed and modeled values was 
the same among the three models at 0.93, with differing absolute mean 
errors, and a smaller deviation in the Návar model; this was consistent 
with reported statistics for most forests around the world (Muzylo et al., 
2009). The Liu model yielded a larger MRAE of 0.59. The Gash model 
had a larger deviation during large and very large storms, but I pre
diction was consistent with the observed values (NSE=0.92). That is, the 
Liu and Návar models appear to be well suited for I simulation in spruce 
stands in semi-arid climate. The performance of NSE was better than 
that obtained by Návar (2019) and Návar (2020) for a semi-arid region. 
The cumulative interception loss at the scale of a case study resulted in 
an excellent fit for the three models used, and with an ideal evaluation 
index value (Table 4). 

Compared to previous studies (Motahari et al., 2013; Muzylo et al., 
2009; Prasad Ghimire et al., 2017), the error for I estimation can be up to 
20%. The Návar model with NSE of 0.93 was slightly inferior to the other 
two models (NSE of 0.98 and 0.99, respectively). The Návar model fo
cuses on event-based interception, while the Gash and Liu model uses 
cumulative rain volumes; this indicates that the Návar model is more 
appropriate for event-based interception modeling, while the Liu model 
would be a better selection for total interception modeling. 

Fig. 6. The relationships between the observed and simulated interception for event (a) and cumulative rainfall (b) for the entire period using three models (N means 
the number of rainfall events used for statistics). 

Table 5 
The average bias of the event-based interception analysis with the three models.  

Model Interception bias event- 
based (mm) 

Percentage bias event- 
based (%) 

Power Návar model − 0.73 − 13.3% 
Reformulated Gash 

model 
0.71 12.9% 

Reformulated Liu 
model 

− 0.27 − 4.9%  
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To better understand how the three models perform, we quantita
tively evaluated model accuracy for different rainfall events (Table 6). 
We found similarities among the three models, and they performed 
consistently well for class C1, C2, and C6, which accounted for 70% of 
total rainfall events; the models did not perform as well for class C3, C4, 
and C5 (R2<0.5). Most of NSEs were negative for the three classes, 
which indicated that the observed mean was a better predictor than the 
model, and the model did not predict I well, as previously described by 
other scientists (Crockford and Richardson, 2000; Nazari et al., 2020; 
Panahandeh et al., 2022; Sadeghi et al., 2015). This demonstrated that 
the model can be further improved by simulating large rain storms (i.e., 
post-saturation point), in which I is not simply dependent on P, S and the 
canopy cover fraction (c), but also on the mean of the ratio of evapo
ration to the mean of rainfall intensity (Panahandeh et al., 2022). On the 
other hand, the lack of large rain storm records lead to insufficient I data, 
which created highly uncertain data of the interception event, and led to 
insignificant statistical results or even a negative value. The perfor
mance for the classified rainfall was slightly different than for 
event-based interception (Fig. 6a). Two reasons may account for this. 
First, large rainfall events do not necessarily result in large interception, 
and, second, density of the rainfall events was different. We conclude 
that the understanding of potential influences of the interception process 
and classified rainfall events would require more data of higher reso
lution. Overall, our results showed that the performance of interception 
modeling of classified rainfall events varies among the three models. 

5. Conclusions 

Field observation and prediction models are both important in a 
multidisciplinary effort to quantify and balance ecosystem and human 
water utilization in an uncertain climate forecast in arid and semi-arid 
regions. Based on the parameterization of interception components 
and canopy structural traits, we recommend the Návar and the refor
mulated Liu model for estimating event-based and total I in the semi-arid 
coniferous P. crassifolia forest. Direct measures of canopy structural 
parameters and trial-and-error can greatly improve the simulation effect 
of the physical model. This is a study of rainfall interception modeling at 
an individual elevation (plot scale) in a mountain forest. Future research 
may explore differences in parametric schemes and simulations of can
opy interception at different elevations, improving simulations at 
watershed and regional scales. The effect of I at the 3000 m elevation 
indicated that less rainfall was available for infiltration and recharge at 
the high-altitude forest area due to high rates of evaporation. Based on 
the parameters and models recommended in this study, local forest 
management departments can better predict hydrological processes, 
such as forest land runoff and flow confluence processes under extreme 
rainfall events. 
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