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Abstract
To satisfy an increasing need for living space and food while preserving ecosystem services remains one of today’s biggest 
challenges. Oases in arid areas have gradually become the main sources for new cultivated land, affecting the supply and 
transmission of ecosystem services. Yet, little assessment on predicting the effects of oasis expansion on ecosystem service 
value (ESV) has been available to guide policy makers and ecologists. Here we addressed the connections between oasis 
expansion and ESV in the middle reaches of the Heihe River Basin in northwest China by linking the Logistic-CA–Markov 
model and the benefit transfer method. The results showed that the oasis was expected to expand by 419.02  km2 from 2015 to 
2029, with the area of farmland and construction land increasing by 18.87% and 39.05%, respectively. With oasis expansion, 
the total ESV was expected to increase by 104.25 million RMB from 2015 to 2029. However, oasis expansion encroaches on 
vegetation, resulting in decline of the values of climate regulation, waste treatment, and biodiversity protection. This study 
will provide a reference for decision-making in trade-offs involved in land management.

Keywords Oasis expansion · Land use change · Ecosystem service value · The Logistic-CA–Markov model · The benefit 
transfer method · The middle reaches of the Heihe River Basin

Introduction

Ecosystem services are defined as services and goods that 
humans obtain directly or indirectly from ecosystems (Daily 
1997). Estimation of the ecosystem service in monetary 
units reflects the impact of human activities on ecosystems 
(Yang et al. 2021), which can improve people’s awareness 

of the importance of ecosystem service relative to other 
contributing factors to human well-being (Braat and Groot 
2012; Li et al. 2021) and provide a basis for ecological 
management (Farley et al. 2010; Gao et al. 2021). Most 
recent advances show that ecosystem services are regulated 
by various ecological mechanisms exhibiting dynamic 
change closely related to land use change (Sangermano et al. 
2021). Research on changes in ESV with land use change 
has gradually attracted attention in academic and political 
circles, because it can provide a scientific basis for countries 
all over the world to reduce the risk of natural disasters and 
improve the quality of human life (Cegielska et al. 2018; 
Ouyang et al. 2016).

As regional granaries, oases play an important role in 
maintaining food security and have gradually become the 
main source of newly reclaimed farmland (Liu et al. 2014; 
Xu et al. 2020). These newly reclaimed farmlands are mainly 
located in the desert-oasis transition zone, in which material 
circulation, energy conversion, and information transmission 
between desert ecosystem and oasis ecosystem occur (Bai 
et al. 2020). Oasis expansion characterized by farmland 
reclamation has triggered complex ecological evolution 
that may affect oasis stability (Chen et al. 2018). It is of 
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great significance to study the influence mechanism of oasis 
expansion on ESV for maintaining oasis safety.

The Hexi Corridor-Alashan Plateau zone is the most 
unstable area in arid region of China, and the middle reaches 
of the Heihe River Basin is the oasis with the largest total 
farmland area and the fastest expansion rate in the Hexi 
Corridor-Alashan Plateau zone (Feng et al. 2019; Li et al. 
2020). Such expansion affects the supply and transmission of 
ecosystem services (Gong et al. 2019; Rallings et al. 2019). 
At present, research on the middle reaches of the Heihe 
River Basin mainly focuses on assessing the impact of pre-
vious land use change on ecosystem services, which greatly 
enriches the oasis ecosystem service theory (Li et al. 2018; 
Meng et al. 2018). However, few studies have explored the 
potential effects of oasis expansion on ESV because of the 
difficulty of predicting future oasis expansion trends, which 
reduces the feasibility of applying the research results to 
land use planning.

Field investigation and model simulation are common 
methods used to assess the effects of oasis expansion on 
ESV (Fang et al. 2014). Recently, model simulation has been 
increasingly emphasized because of simplicity of use on dif-
ferent scales (Lu et al. 2018). Currently, models including 
Land Use Scenario Dynamics (LUSD) (He et al. 2016) and 
Conversion of Land Use and Its Effects at Small Regional 
Extent (CLUE-S) (Anputhas et al. 2016) were developed 
to predict land use change. Among them, the CA-Markov 
(Cellular Automata-Markov) model has also been widely 
adopted to simulate land use change and has exhibited rea-
sonable results (Etemadi et al. 2018). The Markov model is 
used to predict the amount of land use change, and the Cellu-
lar Automata (CA) models is used to predict the spatial dis-
tribution of landscapes with certain transition rules (Basse 
et al. 2014). More importantly, the CA–Markov model can 
be combined with logistic model to simulate land use suit-
ability maps, thereby improving the simulation accuracy in 
different regions. To date, theoretical and methodological 
frameworks applying land use data and economic factors 
for evaluating ESV have been established. Among them, the 
benefit transfer method is increasingly popular because of its 

low demand for data and simplicity of use at different scales 
(Costanza et al. 1997; Xie et al. 2015).

To effectively forecast the effects of oasis expansion on 
ESV, we linked the Logistic-CA–Markov model to predict 
oasis expansion and the benefit transfer method to evaluate 
changes in ESV. The objectives of this study were to (1) pre-
dict future oasis expansion pattern and (2) assess the effects 
of oasis expansion on the provision of ESV. The results of 
this study allow a quantitative evaluation of the effects of 
oasis expansion on ESV, providing scientific support for 
land use planning and ecological management trade-offs 
and decision-making.

Study area and methodology

Study area

As the second largest inland river in northwest China, the 
Heihe River originates in the Qilian Mountains and finally 
flows into the Inner Mongolia Plateau (Song et al. 2016). 
The middle reaches of the Heihe River Basin is the typical 
desert oasis area; it is located in the middle of Hexi corridor 
(97°20′–102°12′ E, 38°28′–39°50′ N) and mainly includes 
Ganzhou District, Linze County, and Gaotai County of 
Zhangye City in Gansu Province. The altitude ranges from 
1252 to 3609 m, showing a decreasing trend from south-
east to northwest (Fig. 1). Most of the study area belongs 
to the piedmont alluvial-proluvial fan in the Heihe River 
Basin, with good irrigation conditions, forming a unique 
desert oasis landscape. The study area belongs to the mid-
temperate Gan-Mongolia climate zone, and the annual aver-
age temperature is between − 1.1 and 9.5℃. Because it is far 
away from the water vapor transmission channel, the average 
annual precipitation in most areas is less than 200 mm, while 
the average annual evaporation exceeds 1600 mm. Due to its 
proximity to the desert, the study area are mainly desert soil 
and gray desert soil. The natural vegetation growing in the 
middle reaches of the Heihe River Basin is mainly drought-
tolerant, salt-tolerant trees, small shrubs, and semi-shrubs. 

Fig. 1  Location of the study 
area
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The study area is a typical artificial oasis, which has long 
been transformed by human activities. The issues of ecologi-
cal security, water resource allocation, and environmental 
protection in the study area have attracted wide attention 
of scholars.

Methodology

The Logistic-CA–Markov model and the benefit transfer 
method were used to assess effects of oasis expansion on 
ESV. Specifically, the Logistic-CA–Markov model con-
sists of two parts: the logistic regression model was used to 
produce the land use suitability maps, and the CA–Markov 
model was used to simulate the land use map. The benefit 
transfer method was used to quantify changes in ESV with 
oasis expansion.

The logistic regression model

This method divides the dependent variables into two or 
more values, analyzes the multiple regression relationships 
between the dependent variable and several independent 
variables, and then predicts the probability of the dependent 
variable. The independent variables involved in the logistic 
regression model can be discrete or continuous, and it is not 
necessary to obey normal distribution. In this paper, we used 
the binary logistic regression model to establish each land 
use type as a dependent variable. If the grid belongs to this 
land use type, the value is 1; if it does not, the value is 0. 
The independent variables were set as different natural and 
socioeconomic factors. The logistic regression equation can 
be constructed as follows:

where Pi is the probability of land use type I, β0 is con-
stant, �1 , �2 , … �m are regression coefficients of the independ-
ent variables, and X1 , X2 , … Xm are independent variables.

In the logistic regression model, the odds ratio (OR) is 
the ratio of probabilities of a result occurrence to nonoccur-
rence, that is, when the independent variable changes a unit, 
the change unit corresponds to the dependent variable; the 
formula is as follows:

where OR is the odds ratio of an event, P is the prob-
ability of the event, and β is the regression coefficient in the 
logistic regression model.

The area under the relative operating characteristic curve 
(ROC) is one of the commonly used indicator to test the 

(1)

logit
(
Pi

)
= ln

[
Pi

1 − P

]
= �0 + �1X1 + �2X2 +⋯ + �mXm

(2)OR = p∕(1 − p) = exp(�)

fit goodness of the logistic regression model (Zhang et al. 
2018). The expression of area under the ROC curve is as 
follows:

where A is the area under the ROC curve, xai (i = 1, 2, …, 
 na) is one of the observed abnormal values of  na group, and 
xnj (j = 1, 2, …,  nn) is one of the observed abnormal values of 
 nn groups. The larger the area under the ROC, the higher the 
fit goodness. When A = 0.5, it means the simulation result is 
completely random and the fit goodness is the worst; when 
A = 1, it means the simulation results are consistent with the 
actual results, and the fit goodness is the highest. Generally, 
when A > 0.70, it is considered that the fit goodness can 
meet the research needs (Tiné et al. 2019).

The CA–Markov model

The CA–Markov model combines the CA model and the 
Markov model and used the transition probability matrix 
to simulate the change of land use pattern in time scale. 
The following equation in the Markov model can be used to 
obtain the transition probability matrix of land use change 
from stage 1 to stage 2 (Zhao et al. 2018):

where S(t + 1) and S(t) are the status of the land use type 
at stages t + 1 and t and Pij is the transition probability matrix 
defined as follows:

However, Markov processes do not account for spatial 
parameters adequately, and cannot identify the variability of 
spatial land use pattern (Wickramasuriya et al. 2009). The 
CA model can simulate the spatial–temporal evolution of 
multiple processes, including land use change. The temporal 
and spatial states of each pixel are discrete, and each pixel 
has only a finite number of states. The definition of the CA 
model is as follows (Sang et al. 2011):

where S represents a set of cellular states, t + 1 and t are 
different stages, f is the local transition rule of the cellular, 
and N is the cellular field.
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1
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(4)S(t + 1) = Pij × S(t)

(5)
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(6)S(t, t + 1) = f (S(t),N)
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To ensure the reliability of the simulation results, we used 
the kappa index to test the consistency between the simu-
lated and the actual land use maps (Mitsova et al. 2011):

where kappa is the index of simulation accuracy, Po 
represents the actual simulation accuracy, Pc represents 
the expected simulation accuracy in a random state, and 
Pp represents the ideal simulation accuracy (100%). When 
kappa ≥ 0.80, it denotes that these two maps are almost 
identical; when 0.60 ≤ kappa < 0.80, it denotes these two 
maps are highly consistent; when 0.40 ≤ kappa < 0.60, 
it denotes these two maps are moderately consistent; 
when kappa < 0.40, it denotes these two maps are poorly 
consistent.

The K‑means algorithm

The K-means algorithm was chosen to classify each suit-
ability map, as this unsupervised classification method could 
identify similar clusters without prior knowledge (Hartigan 
and Wong 1979). We used this method to divide each suit-
ability map into 5 groups, within which group 1 represents 
the highest suitability, while group 5 represents the lowest 
suitability.

The benefit transfer method

The benefit transfer method was used to evaluate changes 
in ESV caused by oasis expansion. This method defines the 
ESV per unit area corresponding to each land use type and 
multiplies it by the area of each land use type to estimate the 
ESV (Xie et al. 2015). The formulas are as follows:

where ESV is the total ESV of the study area, ESVi is the 
value of ecosystem service i, ESVk is the ESV of land use k, 
Ak is the area of land use k, and Uki is the ESV per unit area 
of ecosystem service i of land use k. It should be corrected 
based on the local natural and social conditions, and the 
correction formulas are as follows:

(7)kappa =
(
Po − Pc

)
∕
(
Pp − Pc

)

(8)ESV =
∑n

k=1

∑m

i=1
Uki × Ak

(9)ESV i =
∑n

k=1
Uki × Ak

(10)ESVk =
∑m

i=1
Uki × Ak

(11)Uki = E × Dki × Fkik = 1, 2,… , n

(12)E =
∑3

i=1
Pi × Qi × R × Yi = 1, 2, 3

where Uki is the ESV per unit area of ecosystem service i 
of land use k, E is the economic value of one equivalent, Dki 
is the equivalent per unit area of ecosystem service i of land 
use k, Fki is the functional adjustment index for equivalent 
of ecosystem service i of land use k, Pi is the percentage of 
planting area of crop I, Qi is the net profit for crop I, R is 
the index of capacity to pay, Y is the index of willingness 
to pay, GDPm is the real GDP per capita of the study area, 
GDPn is the real GDP per capita of China, e is the natural 
logarithm, t is the socioeconomic development index, and 
En is the Engel coefficient.

Ck, Wk, and Mk represent the average NDVI of growing 
season, the average annual precipitation, and average annual 
amount of soil retention of land use k in the study area, 
respectively; C , W  , and M refer to the corresponding aver-
age values in China: (1) includes the ecosystem services of 
raw material, food production, atmosphere regulation, waste 
treatment, climate regulation, nutrient cycling, biodiversity 
protection, and recreation and culture; (2) includes the eco-
system services of water regulation and water supply; and 
(3) includes the ecosystem service of soil retention.

Model implementation

Land use map for 2029 forecast

Suitability maps

The production of suitability maps was completed using 
IDRISI17.0 software, including the following five steps:

(1) Selection of driving factors. The middle reaches of the 
Heihe River Basin contain most of the human activi-
ties, so both natural and socioeconomic factors should 
be considered when selecting driving factors. Based 
on the regional characteristics with reference to rel-
evant literature (Liang and Liu 2014), a total of nine 
variables were finally selected: natural factors include 
average annual temperature, average annual precipita-

(13)R = GDPm∕GDPn

(14)Y = 1∕
(
1 + e−t

)

(15)t = 1∕En − 3

(16)Fki =

⎧
⎪⎨⎪⎩

1)Ck∕C

2)Wk∕W

3)Mk∕M
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tion, DEM, slope, and groundwater depth, and socio-
economic factors include road density, village density, 
canal density, and population density. The sources 
and processing methods of each variable are shown in 
Table 1.

(2) Dependent variable extraction of the logistic regression 
model. The dependent variables need to be extracted 
before constructing the logistic regression model. 
When simulating the suitability map of farmland, the 
pixels with grid attribute as farmland are reclassified 
to 1, and the others are 0, and the other five dependent 
variables of forest land, grassland, water body, con-
struction land, and unused land were obtained.

(3) Logistic regression analysis. We input dependent vari-
ables and independent variables into the LogisticReg 
Model of IDRISI17.0 software and used 10% random 
sampling for regression analysis. By eliminating the 
variables not related to dependent variables, the six 
logistic regression equations corresponding to each 
dependent variable were finally constructed. The equa-
tion coefficients are shown in Table 2.

(4) Logistic regression accuracy analysis. The coefficients 
of each logistic regression equation (blank means the 
independent variable has no obvious influence on the 
dependent variable) are listed in Table 2. The simu-
lation results show that the simulation accuracy of 
farmland is the highest, followed by unused land and 
construction land. Overall, all the ROCs of the logistic 
regression equations were greater than 0.70, indicat-
ing that the fit goodness were robust and can meet the 
research needs.

(5) Production of suitability maps. According to the logis-
tic regression equations constructed in Table 2, the suit-
ability maps of each land use type were simulated sepa-
rately. The suitability probability was between 0 and 1: 

the higher the value, the higher the suitability. Finally, 
the Collection Editor Model of IDRISI17.0 software 
was applied to combine the above suitability map into 
a suitability atlas (Fig. 2).

Land use map simulation

Based on the land use maps for 2001, 2008, and 2015, the 
IDRISI17.0 software was used to predict the land use map of 
the middle reaches of the Heihe River Basin in 2029, which 
primarily included the following five steps:

(1) Acquisition of the land use transition probability 
matrix. We established the land use maps for 2001 
and 2008 as the initial and last years, respectively, 
and obtained the land use transition probability matrix 
through the Markov model of IDRISI17.0 software.

(2) Construction of the CA filter. We chose a 5 × 5 filter 
as the neighborhood definition and set the cell size at 
30 m × 30 m (Gong et al. 2015).

(3) Simulation of land use map for 2015. To simulate the 
land use map in the middle reaches of the Heihe River 
Basin more accurately, two different scenarios were 
set up: a usual scenario (usual interest, UI) and a con-
strained scenario (constrained interest, CI). In the UI 
scenario, land use change is affected only by histori-
cal land use transition probability, whereas in the CI 
scenario, land use change is not only affected by his-
torical land use transition probability, but also by con-
strained factors. According to the Wetland Protection 
Program, water body could not convert to other land 
use types, and in practice, construction land generally 
did not change; thus, water body and construction land 
were both set as constraints. Then we set the land use 
map for 2008 as the initial year, input the suitability 

Table 1  Database used for producing suitability atlas

Variables Sources Processing method

Average annual temperature Resource and Environment Science and Data Center of Chinese Acad-
emy of Sciences

Extraction with ArcGIS software

Average annual precipitation Resource and Environment Science and Data Center of Chinese Acad-
emy of Sciences

Extraction with ArcGIS software

DEM Resource and Environment Science and Data Center of Chinese Acad-
emy of Sciences

Extraction with ArcGIS software

Slope Resource and Environment Science and Data Center of Chinese Acad-
emy of Sciences

Calculation with DEM data

Groundwater depth Water Affairs Bureau of Zhangye City Kriging interpolation
Road density Heihe Plan Data Management Center Linear density of road
Village density Land and Resources Bureau of Zhangye City Point density of administrative villages
Canal density Heihe Plan Data Management Center Linear density of canal system
Population density Resource and Environment Science and Data Center of Chinese Acad-

emy of Sciences
Extraction with ArcGIS Software
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atlas and the transition probability matrix into the CA–
Markov model of IDRISI17.0 software, and simulated 
land use maps for 2015 based on UI and CI scenarios, 
respectively (Fig. 3).

(4) Accuracy test. The simulated and actual land use maps 
for 2015 were input into the CROSSTAB Model of 
IDRISI17.0 to verify the simulation accuracy of the 
CA–Markov model. The results showed that the kappa 
index of the UI scenario is 0.8447, and the kappa index 
of the CI scenario is 0.8642, indicating satisfactory 
results (Zhang et al. 2011).

(5) Simulation of the land use map for 2029. The kappa 
index of the CI scenario is higher than that of the UI 
scenario, denoting that simulating land use map based 
on the CI scenario could reflect actual conditions bet-
ter (Fig. 3). Thus, we established the land use map for 
2015 as the initial year and simulated the land use map 
for 2029 based on the CI scenario.

The benefit transfer method

Xie et al. (2015) proposed the ESV per unit area in China, but 
when applying it to small-scale areas, it needs to be corrected 
according to the regional natural and social characteristics. 
The required data and sources are as follows: the NDVI are 
derived from the Atmosphere Archive and Distribution System 
(LAADS); the precipitation and the amount of soil retention 

are derived from Resource and Environment Science and Data 
Center of Chinese Academy of Sciences; the real GDP per 
capita, the Engel coefficient, and crop planting area are derived 
from Zhangye Statistical yearbook; the net profit of crop is 
derived from Compilation of National Agricultural Product 
Cost and Income Data. The obtained ESV per unit area in the 
study area is as follows (Table 3).

Results

Driving mechanism of land use change

The results of logistic regression model show the driving mech-
anism of land use change (Table 2). A positive coefficient shows 
that the factor is positively correlated with land use suitability 
and vice versa. The absolute value of coefficients reflects the 
degree of influence of the factor on land use suitability. The 
results show that as the main land use type of artificial oasis, 
farmland is primarily distributed in areas with convenient irri-
gation facilities. The higher the density of canal systems, the 
higher the farmland suitability. Construction land is mainly 
distributed in areas with strong accessibility, dense village 
points, and small slope. The water body is mainly distributed 
in areas with high precipitation and good catchment conditions. 
Because forest land has numerous requirements for the growth 
environment and the proportion of oasis shelter forest in the 

Table 2  Logistic regression results of each land use type

Variables Coefficients Farmland Woodland Grassland Water body Construction land Unused land

Average annual temperature β 0.8416 2.1129
exp(β) 2.3201 8.2722

Average annual precipitation β 0.0149  − 0.0092 0.0153  − 0.0412
exp(β) 1.0150 0.9908 1.0154 0.9596

DEM β 0.0039  − 0.0341 0.0043  − 0.0026  − 0.0452 0.0137
exp(β) 1.0039 0.9665 1.0043 0.9974 0.9558 1.0138

Slope β  − 0.0965  − 0.0013  − 0.0950 0.0274
exp(β) 0.9080 0.9987 0.9094 1.0278

Groundwater depth β  − 0.0514  − 0.0723 0.0067 0.0431
exp(β) 0.9499 0.9303 1.0067 1.0440

Road density β  − 1.5743 1.6906
exp(β) 0.2072 5.4227

Village site density β 1.4035 0.3346
exp(β) 4.0694 1.3974

Canal density β 2.8736 0.6096  − 2.1578
exp(β) 17.7006 1.8397 0.1156

Population density β 0.0013
exp(β) 1.0013

Constant β  − 16.3327  − 6.5831  − 7.5508  − 1.8757  − 4.6002  − 32.3077
exp(β) 0.0000 0.0014 0.0005 0.1532 0.0100 0.0000

ROC 0.9662 0.8606 0.8845 0.8278 0.9542 0.9576
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middle reaches is relatively high, it is mainly distributed in areas 
with good habitat conditions that are suitable for human habita-
tion. Grassland and unused land are mostly naturally formed 
landscapes, mostly distributed in areas with less precipitation, 
higher groundwater depth, and worse habitats. The results can 
provide a basis for land use planning.

Oasis expansion pattern between 2001 and 2029

Oasis expansion pattern between 2001 and 2015

From 2001 to 2015, the oasis expanded by 361.12  km2, with 
a total of 6.92% of the land in the middle reaches of the Heihe 

River Basin converted to other land use types (Fig. 4). Among 
them, farmland, water body, and construction land showed 
increasing trends: the growth rate of construction land was the 
highest, reaching 34.34% (60.76  km2), followed by farmland, 
increasing by 20.40% (377.58  km2), and water body, increas-
ing by 9.50  km2 with a growth rate of 3.97%. With oasis 
expansion, the areas of the other three land use types showed 
downward trends: woodland decreased by 19.97% (29.15 
 km2); unused land and grassland decreased by 5.32% (361.12 
 km2) and 3.68% (57.58  km2), respectively, all of which were 
mainly converted to farmland (Table 4).

Under the background of oasis expansion, the growth 
rate of farmland and construction land was significantly 

Fig. 2  Suitability maps of each 
land use type: a farmland, b 
woodland, c grassland, d water 
body, e construction land, f 
unused land
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higher than that of the other four land use types. The oasis 
expansion in the middle reaches of the Heihe River Basin 
was mainly based on the reclamation of unused land. 
However, it is worth noting that parts of the woodland 
and grassland were occupied during the process of oasis 
expansion, which may result in a series of ecological and 
environmental problems.

Future oasis expansion pattern between 2015 and 2029

The predicted land use map for 2029 indicates that the oasis 
in the middle reaches of the Heihe River Basin is expected to 
further expand 419.02  km2 from 2015 to 2029, and a total of 
6.85% of the land use types will change (Fig. 5). The areas of 

farmland, construction land, and water body will continue to 
grow. Farmland is expected to increase by 18.87% (420.37 
 km2); unused land is the main source of farmland expansion. 
Construction land has the highest growth rate with an expected 
increase of 39.05% (92.84  km2), mainly converted from unused 
land and farmland. Water body is expected to increase by 
4.42%. The areas of the other three land use types are expected 
to decrease by different degrees: the area of unused land is 
expected to decrease by 419.04  km2, followed by grassland 
(81.27  km2). Although forest land is expected to decrease by 
only 23.91  km2, its change rate is the second highest (20.48%) 
after construction land. In addition to occupying unused land, 
the farmland expansion is expected to occupy woodland and 
grassland, leading to a further decline in vegetation coverage.

Fig. 3  Comparison between 
actual and simulated land use 
maps for 2015: a actual land use 
map for 2015, b simulated land 
use map for 2015 based on the 
CI scenario, c simulated land 
use map for 2015 based on the 
UI scenario

Table 3  The ESV per unit area 
 (103 ¥/km2)

Ecosystem service types Farmland Woodland Grassland Water body Construc-
tion land

Unused land

Food production 45.02 10.88 5.89 58.26 0.00 0.00
Raw material 21.19 24.68 8.24 16.75 0.00 0.00
Atmosphere regulation 35.49 81.05 30.01 56.08 0.00 1.77
Climate regulation 19.07 242.97 78.86 166.78 0.00 0.00
Waste treatment 5.30 72.81 25.89 404.20 0.00 8.83
Nutrient cycling 6.36 7.47 2.94 5.10 0.00 0.00
Biodiversity protection 6.89 90.13 32.96 185.71 0.00 1.77
Recreation and culture 3.18 39.63 14.71 137.65 0.00 0.88
Water supply 0.38 5.74 3.53 237.84 0.00 0.00
Hydrological regulation 5.16 83.63 43.26 2933.26 0.00 2.65
Soil retention 102.92 96.93 44.27 264.75 0.00 4.91
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Changes in ESV between 2001 and 2029

Changes in ESV between 2001 and 2015

Our results showed that the ESV of the study area is primar-
ily distributed in the area near the Heihe River because of 
the superior irrigation conditions and topographical advan-
tages. The total ESV of the study area increased by 90.93 
million RMB from 2001 to 2015, and farmland expansion 
contributed the most to the increase in ESV.

For each land use type, nearly half of the ESV was 
stored in water body by 2015 because it has a greater 

Fig. 4  Land use maps: a 2001, 
b 2008, c 2015

Table 4  Land use change between 2001 and 2029  (km2)

Land use types 2001 2008 2015 2029

Farmland 1850.56 2004.64 2228.14 2648.50
Woodland 145.91 131.06 116.77 92.86
Grassland 1564.54 1549.52 1506.96 1425.69
Water body 239.40 244.30 248.91 259.91
Construction land 176.97 190.59 237.73 330.57
Unused land 6785.61 6642.88 6424.49 6005.45

Fig. 5  Land use change from 
2015 to 2029: a land converted 
from and b land converted to
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ability to provide ecosystem services than other land use 
types (Fig. 6). Followed by farmland, its ESV share is 
about 20%. The ESV of grassland is close to farmland, 
but its proportion decreased with the shrinkage of its 
area. Although the area of unused land is the largest, its 
ESV accounts for only 6% because of a lower capacity 
to supply ecosystem services. The proportion of ESV 
supplied by forest land is less than 5% because of its 
small area.

For each ecosystem service type, hydrological regula-
tion is the most valuable ecosystem service in the middle 
reaches of the Heihe River Basin, accounting for nearly 
40% of the total ESV (Fig. 7); the value of soil retention 
accounts for about 17%; the total value of climate regula-
tion and waste treatment accounts for about 9%; the total 
value of atmosphere regulation, biodiversity protection, 
and food production accounts for about 5%; and the total 
value of the other ecosystem service types accounts for 
less than 4%.

Potential effects of oasis expansion on ESV

Our results show that oasis expansion is expected to lead 
to an increase in ESV by 104.23 million RMB from 2015 
to 2029, with a mean accumulation of 7.45 million RMB 
per year (Fig. 6). Moreover, the ESV of each land use 
type is expected to be positively related to the changes in 
its area; as the area expands, its ESV increases and vice 
versa. Specifically, as farmland and water body expand, 
their ESVs are expected to increase by 105.49 million 
RMB and 49.15 million RMB, respectively. However, 
shrinkage in grassland, woodland, and unused land are 
expected to decrease their ESVs by 23.61 million RMB, 
18.07 million RMB, and 8.72 million RMB, respectively. 
Although the values of most ecosystem service types are 
expected to increase by varying degrees, the values of 
climate regulation, waste treatment, and biodiversity pro-
tection are expected to decrease with continuous farmland 
expansion (Fig. 8).

Discussion

Effects of artificial oasis expansion on ESV

The oasis in the middle reaches is the main bearing area 
of human production and life in the Heihe River Basin. 
With continuous economic development, the oasis 
expands rapidly, leading to changes in ESV. Exploring 
the potential effects of oasis expansion on ESV is greatly 
significant for land planning and ecological restoration 
(Gomes et  al. 2020). Farmland and construction land 
growth are the most salient features of artificial oasis 
expansion, whereas farmland and urban expansion have 
different impacts on ESV.

Farmland expansion has dual effects on ESV, primar-
ily related to whether the capacity of the occupied land 
use type to provide ESV is higher than that of farmland; 
if so, it helps increase ESV and vice versa. Thus, when 

Fig. 6  Changes in ESV for each land use type from 2001 to 2029

Fig. 7  Changes in ESV for each ecosystem service type from 2001 to 
2029

Fig. 8  The effects of farmland expansion on ESV from 2001 to 2029: 
FP, food production; RM, raw material; WS, water supply; AR, 
atmosphere regulation; CR, climate regulation; WT, waste treatment; 
HR, hydrological regulation; SR, soil retention; NC, nutrient cycling; 
BP, biodiversity protection; RC, recreation and culture
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farmland encroaches on woodland and grassland, ESV 
decreases (Ouyang et al. 2016). From 2001 to 2015, 30.57 
 km2 of woodland and 92.59  km2 of grassland converted to 
farmland, leading to a total loss of ESV of 19.11 million 
RMB. Similarly, 24.70  km2 of woodland and 100.44  km2 of 
grassland are expected to convert to farmland, leading to a 
loss of ESV of 16.45 million RMB. Vegetation degradation 
reduces the values of climate regulation mostly, followed 
by hydrological regulation and biodiversity protection, 
mainly because the ability of vegetation to provide these 
types of ecosystem services is significantly higher than that 
of farmland (Xie et al. 2015).

When farmland encroaches on unused land, ESV 
increases. From 2001 to 2015, 297.32  km2 of unused land 
converted to farmland, and ESV increased by 68.43 million 
RMB. From 2015 and 2029, 361.63  km2 of unused land is 
expected to convert to farmland, resulting in an increase in 
the ESV by 83.23 million RMB. Although the values of 
most types of ecosystem services are on the rise, the value 
of waste treatment is on the decline, mainly related to the 
use of fertilizers, pesticides, and plastic films in the process 
of crop planting (Vasco et al. 2021).

Compared with farmland expansion, the impact of 
construction land expansion on ESV is much lower, mainly due 
to its relatively small expansion area. Despite this, construction 
land expansion mainly takes over farmland and unused land, 
resulting in loss of ESV. From 2001 to 2015, 30.43  km2 of 
farmland and 33.43  km2 of unused land were converted to 
construction land, leading to a loss of 7.63 million RMB and 
0.70 million RMB, respectively. From 2015 to 2029, 24.60 
 km2 of farmland and 48.12  km2 of unused land are expected to 
convert to construction land, leading to a loss of 6.17 million 
RMB and 1.00 million RMB, respectively. This is because the 
construction land blocks the communication of the ecosystem 
and can hardly provide ecosystem services (He et al. 2016).

We concluded that oasis expansion is mainly characterized 
by farmland expansion. Farmland expansion encroaching on 
unused land led to a growth of the total ESV, whereas the 
encroachment on vegetation led to the decline of ecosystem 
services such as climate regulation. More attention should be 
paid to reducing the ecosystem services trade-offs caused by 

oasis expansion. Notably, except for oasis expansion, after the 
Wetland Protection Program was implemented in the middle 
reaches of the Heihe River Basin, the growth of water body 
area also contributed to the growth of ESV.

Suggestions for land use optimization

It is obvious that the invasion of farmland to woodland 
is the main cause of ESV loss. In order to improve the 
coordination of ecological protection and economic 
development, we put forward the land use optimization 
scheme (Fig.  9). Firstly, we used K-means algorithm 
to divide the land use suitability maps of farmland and 
woodland into 5 groups, of which group 1 represents the 
highest suitability, while group 5 represents the lowest 
suitability. Then the decision tree method was applied to 
optimize the land use pattern.

The land use optimization map shows that the reserved 
farmland is mainly distributed around the existing farmland, 
which is in line with the actual situation of the study area 
(Fig. 10). We recommend these areas as the main source of 
new farmland, which could greatly reduce irrigation costs and 
facilitate management. As shown in Table 2, the irrigation 
canal system is the most important factor affecting farmland 
distribution. Therefore, we suggest that the canal should be 
built near the reserved farmland in the future to facilitate 
the reclamation of reserved farmland. In addition, the 
de-farming area is mainly distributed in areas far away from 
existing farmland. The ecosystem in these areas is relatively 
fragile, and the irrigation cost is higher than reserved 
farmland, so those farmlands should be abandoned. The 
total area of reserved woodland is small, mainly distributed 
in the southeast of the study area with better hydrothermal 
conditions. The general area is mainly distributed in areas 
with poor natural environment and location conditions. 
Human disturbance to these areas should be reduced so that 
they can become grassland or unused land naturally according 
to local resource carrying capacity. It is worth noting that this 
study only provides suggestions on the land use suitability, 
but lacks analysis on resource carrying capacity. For example, 
the reserved farmland is more suitable to be reclaimed as 

Fig. 9  The land use optimiza-
tion scheme: F, suitability grade 
of farmland; W, suitability 
grade of woodland (1 represents 
the highest suitability, 5 rep-
resents the lowest suitability); 
L, land use type (1 represents 
farmland, 2 represents wood-
land, 3 represents grassland, 
4 represents water body, 5 
represents construction land, 6 
represents unused land)
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farmland than other areas, but the reclamation scale still 
depends on the water resource carrying capacity.

Strengths and limitations of the method

Land use change and the resulting changes in ESV have 
become a research hotspot, and several studies have 
attempted to assess the effects of land use change on ESV 
(Cao et al. 2015; Tardieu et al. 2015; Vo et al. 2015). While 
those studies concentrate on economically developed areas, 
less attention has been paid to oasis expansion in arid areas. 
Furthermore, most of those studies examined changes in 
ESV revolving around previous rather than future land use 
change, prohibiting applying their results to adjusting land 
management strategies in advance (Zhao et al. 2018). Thus, 
exploring a feasible method to study, the potential effects of 
oasis expansion on ESV is of great significance to ecological 
protection and land use planning, especially in an oasis with 
fragile environment.

In this paper, we predict the potential effects of oasis 
expansion on ESV in the middle reaches of the Heihe River 
Basin. First, we used the logistic regression model to pro-
duce suitability maps: all the ROCs of the six logistic regres-
sion equations were greater than 0.70, indicating that the 
equation fit goodness is robust and can meet research needs. 
Then we used the CA–Markov model to simulate oasis 
expansion patterns, with a kappa index over 0.8, indicating 
that the simulation results of the model are satisfactory. Last, 
we used the benefit transfer method to evaluate the effects 
of oasis expansion on ESV. This method requires a small 

amount of data and is easy to operate. More importantly, this 
method makes it possible to evaluate ESV on a large scale 
(Song and Deng 2017).

Linking the Logistic-CA-Markov and the benefit transfer 
method has promising applications for guiding land management. 
First, the logistic regression model was used to identify factors 
and driving mechanisms of land use change. The suitability 
maps show the areas with higher distribution probability of each 
land use type. Second, assessing changes in ESV resulting from 
oasis expansion helps identify areas with lower trade-off and 
synergy among ecosystem services. The above results are of great 
significance for policy makers and ecologists to screen out those 
areas more suitable for farmland reclamation in combination with 
a low trade-off of ecosystem service changes as sources of oasis 
expansion (Talukdar et al. 2020).

Although the current linked Logistic-CA–Markov 
model and the benefit transfer method have achieved 
success in assessing potential effects of oasis expansion 
on ESV, further attention should be given to the benefit 
transfer method because of the limitations it has shown. 
First, although the ESV per unit area proposed by Xie 
et al. (2015) has been corrected based on local natural 
and socioeconomic characters, the evaluation result is 
still different from the actual results. Second, terrestrial 
ecosystems provide not only positive services but also 
negative ones (Shi et al. 2012). Taking the construction 
land as an example, it has changed the natural landscape of 
the ecosystem and hindered the original ecological process. 
However, in this study, the ESV of construction land is set 
to zero, ignoring the negative ecosystem services provided 
by it, which will lead to a deviation from ESV assessment 
(Arnold et  al. 2018). Therefore, to evaluate the ESV 
accurately, developing a feasible way to formulate more 
accurate equivalents of ESV, and integrating the positive 
and negative ecosystem services into the ESV accounting 
framework will be the next research focus.

Conclusions

We combined the Logistic-CA–Markov model and the ben-
efit transfer method to assess the potential effects of oasis 
expansion on ESV in the middle reaches of the Heihe River 
Basin. The logistic regression model was used to construct 
suitability maps, the CA–Markov model was used to predict 
land use map, and the benefit transfer method was used to 
assess changes in ESV with oasis expansion. The simulation 
results pass all tests indicates that the performance of the 
method in the study area is satisfactory.

The results showed that with the increase of human 
demand for food and living space, the oasis expanded by 
361.12  km2 from 2001 to 2015, and the value is expected 
to reach 419.02  km2 from 2015 to 2029. The farmland, 

Fig. 10  The land use optimization map
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construction land, and water body areas show continu-
ous expanding trends, whereas the grassland, woodland, 
and unused land show continuous shrinking trends. Oasis 
expansion is primarily characterized by the rapid growth 
of farmland and construction land after the exploitation of 
unused land.

The total ESV of the middle reaches of the Heihe River 
Basin increased from 2.24 billion RMB in 2001 to 2.33 bil-
lion RMB in 2015, and it is expected to reach 2.44 billion 
RMB in 2029. With oasis expansion, farmland encroachment 
on unused land increased ESV by 0.07 billion RMB from 
2001 to 2015 and will increase ESV by 0.08 billion RMB 
from 2015 to 2029. The results can provide a basis for trade-
offs and decision-making in environmental management.

Overall, oasis expansion is dominated by the exploita-
tion of unused land, which is also an important reason for 
the increase of ESV. However, farmland expansion occu-
pies vegetation, resulting in a series of ecological problems. 
Therefore, how to achieve the coordinated development 
of economic development and environmental protection 
remains an urgent problem to be solved in the process of 
oasis development in arid areas.
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