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A B S T R A C T   

Microbial food webs (MFW) play an indispensable role in marine pelagic ecosystem, yet their composition and 
response to abiotic variables were poorly documented in the oligotrophic tropical Western Pacific. During winter 
of 2015, we conducted a survey to examine key components of MFW, including Synechococcus, Prochlorococcus, 
picoeukaryotes, heterotrophic prokaryotes (HP), heterotrophic/pigmented nanoflagellates and ciliates, across 
water column from surface to 2000 m. Each MFW component exhibited unique vertical distribution pattern, with 
abundance ratio varying over six and three orders of magnitude across Pico/Microplankton (1.6 ± 1.0 × 106) 
and Nano/Microplankton (3.2 ± 2.8 × 103), respectively. Furthermore, HP was main component for MFW in the 
bathypelagic (>1000 m) zone. Multivariate biota-environment analysis demonstrated that environmental vari
ables, particularly temperature, significantly impacted MFW composition, suggesting that bottom-up control 
(resource availability) dominated the water column. Our study provides benchmark information for future 
environmental dynamics forcing on MFW in the oligotrophic tropical seas.   

1. Introduction 

Microbial food webs (MFW) play a critical role in ocean biogeo
chemical cycles by generating most of the primary production consumed 
by upper trophic levels or exported to the seafloor (Falkowski et al., 
2004). They are mainly comprised of viruses, Synechococcus (SYN), 
Prochlorococcus (PRO), picoeukaryotes (PEUK), heterotrophic pro
karyotes (HP), heterotrophic/pigmented nanoflagellates (HNF/PNF) 
and ciliates (CTS) with body-size ranging from 0.2 to 200 μm in the 
marine ecosystem (Di-Poi et al., 2013; Giannakourou et al., 2014; Li 
et al., 2020; Sugai et al., 2023). Simultaneously, they dominate several 
trophic linkages at the base of the traditional classical food web (from 
mesozooplankton to fish) (Azam et al., 1983; Landry, 2002; Pavés and 
González, 2008), and conduct the cycling process of marine carbon and 

nutrients (Herndl and Weinbauer, 2003; Seymour et al., 2017). While 
empirical studies related to MFW have provided unambiguous insight 
into the species diversity and activities of MFW largely through genetic 
approaches (e.g., DeLong and Karl, 2005; Caron, 2009; Shao et al., 
2023), accurate descriptions of the abundances, biomasses, and trophic 
level interactions of each MFW component in the oligotrophic tropical 
seas (Ducklow and Doney, 2013) are still incomplete. 

The Pacific Ocean boasts the largest oligotrophic sea area worldwide. 
In the oligotrophic tropical Western Pacific (Dai et al., 2023), the mixed 
surface layer is typically considered a typical low-nutrient-low- 
chlorophyll area (Ma et al., 2019; Dai et al., 2020, 2022), and the 
MFW are characterized by a stable metabolic state (Ducklow and Doney, 
2013) and a microbe-dominated ecosystem (e.g., small heterotrophs and 
phototrophs) (Zhao et al., 2020). Although the community compositions 
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and trophic interactions of MFW have been studied in the Mediterranean 
Sea (Tanaka and Rassoulzadegan, 2002; Di-Poi et al., 2013; Gianna
kourou et al., 2014; Šolić et al., 2010, 2018; Trombetta et al., 2020; 
Dinasquet et al., 2022), Southern Ocean (Christaki et al., 2008, 2014, 
2020), Arctic Ocean (Franzè and Lavrentyev, 2017; Jacquemot et al., 
2022) and coastal waters worldwide (Nakano et al., 2004; Pavés and 
González, 2008; Chen and Liu, 2010; Latorre et al., 2018; Meddeb et al., 
2018; Sugai et al., 2023), studies in the oligotrophic tropical Western 
Pacific have been scarce. Despite discrete MFW components (viruses, 
picoplankton, flagellates and ciliate) being studied in the oligotrophic 
tropical Western Pacific in different surveys (Sohrin et al., 2010; Wang 
et al., 2019, 2021, 2023; Zhao et al., 2020), their underlying trophic 
interactions between each MFW component, which ultimately affect the 
marine food web structure, remains unclear. 

In the marine pelagic ecosystem, variations in MFW structure and 
their role in biogeochemical processes were determined by environ
mental factors (e.g., Cotner and Biddanda, 2002; Berglund et al., 2005; 
Šolić et al., 2010; Archibald et al., 2022). For instance, temperature can 
directly affect marine organisms through metabolic processes (Archi
bald et al., 2022), when nutrients concentrations can directly affect 
primary productivity, which are the vital material basis for phyto
plankton and HP growth, and their concentrations can directly affect 
primary productivity (Šolić et al., 2010; Song, 2011; Ma et al., 2020). 
The quantity and quality of Chlorophyll a (Chl a, food supply, through 
lipid unsaturation) can directly determine compositions of pelagic 
micro-/mesozooplankton (Šolić et al., 2010; Våge and Thingstad, 2015; 
Holm et al., 2022). Therefore, it is reasonable to conclude that envi
ronmental factors control the composition and dynamics of MFW, which 
ultimately alter the classical food web through predator–prey in
teractions (Azam et al., 1983; Azam, 1998). Despite the significant dif
ferences in environmental variables from epipelagic to bathypelagic 
zones in the oligotrophic tropical Western Pacific (Sohrin et al., 2010; 
Ma et al., 2020), our understanding of the responses of MFW to envi
ronmental parameters in this region is still very limited. 

In this study, we hypothesize that composition of each MFW 
component and their response to environmental parameters will vary 
from epipelagic to bathypelagic zones of the oligotrophic tropical 
Western Pacific. Through examining variations in MFW composition 
(SYN, PRO, PEUK, HP, HNF, PNF, CTS) and their relationships with 
environmental factors (depth, temperature, salinity, Chl a and nutrients) 
from epipelagic to bathypelagic zones, we aim to gain insight into: 1) the 

interactions in each trophic level, and 2) uncover the impact of abiotic 
conditions in the oligotrophic tropical seas. Our results will provide a 
fundamental baseline for understanding the composition and dynamics 
of MFW in the oligotrophic tropical seas, and variations in the future can 
serve as indicator for environmental change. 

2. Materials and methods 

2.1. Field sampling 

Sampling was conducted aboard R.V. “KEXUE” in the tropical 
Western Pacific Ocean (11–21◦N, 126–136◦E) from 10 to 22 December 
2015 (Transect D) (Fig. 1; Table A.1). A total of 12 stations (St.) were 
occupied along a transect (D1–D12) with bottom depth deeper than 
3000 m (Table A.1). Vertical profiles of temperature and salinity were 
determined at each station from surface (3 m) to 2000 m using a 
SBE911-conductivity-temperature-depth (CTD) unit. The MFW compo
nent (SYN, PRO, PEUK, HP, HNF, PNF, CTS) and environmental vari
ables (temperature, salinity, chlorophyll a [Chl a], ammonium [NH4

+], 
nitrate [NO3

− ], nitrite [NO2
− ], orthophosphate [PO4

3− ], orthosilicate [Si 
(OH)4]) were sampled at depths of 3 m, 15 m, 30 m, 50 m, 75 m, DCM 
(deep Chl a maximum layer), 150 m, 200 m, 300 m, 500 m, 1000 m and 
2000 m. 

Chl a: Chl a concentration was processed by filtering 1 L of seawater 
through a Whatman GF/F glass fiber filter (0.7 μm). The filtered samples 
were stored in the dark at − 20 ◦C for further measurement. 

Nutrients: Seawater samples (250 mL) were collected from each 
sampling layer filtered through a 47 mm diameter glass-fiber filter 
(Whatman GF/F), collected in a polythene bottle, and fixed with chlo
roform (final concentration 2 ‰). All samples were stored at − 20 ◦C for 
nutrient analysis (NH4

+, NO2
− , NO3

− , PO4
3− , Si(OH)4). 

Picoplankton (0.2–2 μm): Subsamples (5 mL) of picoplankton (SYN, 
PRO, PEUK, HP) were fixed onboard with paraformaldehyde (final 
concentration 1 %), kept at room temperature for at least 10 min, freeze- 
trapped and stored in liquid nitrogen. A total of 429 water samples were 
collected for picoplankton analysis. 

Nanoplankton (2–20 μm): Subsamples (20 mL) of nanoplankton 
(HNF, PNF) were filtered onto 0.2 μm pore size black polycarbonate 
membrane filters with Hg pressure lower than 100 mm. After 1 mL 
sample remained in the funnel, the vacuum pump was turned off and the 
sample was stained with DAPI for 10 min. The pump was then turned on 

Fig. 1. Survey stations in the tropical Western Pacific Ocean.  
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again to allow the residual liquid pass through the membrane filter 
completely. The sample slide was immediately stored in the dark at 
− 20 ◦C. A total of 143 water samples were collected for nanoplankton 
analysis. 

Microplankton (20–200 μm): Subsamples (1000 mL) of micro
plankton (CTS) were fixed with acid Lugol’s (1 % final concentration) 
and stored in darkness at 4 ◦C during the cruise. A total of 143 water 
samples were collected for planktonic ciliate analysis. 

2.2. Sample analysis in the laboratory 

Chl a: Plankton retained on the filter in each subsample was 
extracted in 90 % (vv− 1) acetone. Fluorescence was measured using a 
Turner Trilogy fluorometer Model 10, following the Joint Global Ocean 
Flux Study (JGOFS) protocol (Knap et al., 1996). 

Nutrients: Subsamples of each water layer were analyzed using a 
nutrient automatic analyzer (SEAL QuAAtro). The concentrations of 
NH4

+, NO2
− , NO3

− , PO4
3− and Si(OH)4 were determined with detection 

limits of 0.01, 0.01, 0.02, 0.01 and 0.01 μM, respectively. Meanwhile, 
the precision of analysis was determined using China’s national standard 
references and all nutrients met the required precision (better than 3 %) 
and recoveries (97.2–103.5 %). 

Picoplankton: Subsamples (5 mL) of picoplankton were analyzed 
using a BD FACSJazz flow cytometer (Becton Dickinson). Autotrophic 
picoplankton (SYN, PRO and PEUK) were distinguished based on their 
scatter and autofluorescence. HP were stained with SYBR Green I before 
analysis and then resolved based on their side scatter and green fluo
rescence. Flow cytometric data were collected and analyzed with BD 
FACS™ Sortware Sorter software and Summit v4.3 software, 
respectively. 

Nanoplankton: Nanoflagellates were counted using an epifluor
escence microscope (Olympus BX 53) at 1000× magnification. PNF were 
distinguished from HNF based on the presence of red fluorescence in the 
former using a blue excitation laser set (Tsai et al., 2005). At least 30 
fields of view were examined. The length (L) and width (W) of a nano
flagellate cell were measured on photomicrographs using software 
Image-Pro Plus. At least 60 cells per sample were measured. 

Microplankton: Each water sample was concentrated to approxi
mately 200 mL by siphoning off the supernatant after settling the sample 
for 60 h in the laboratory. After two rounds of settling and siphoning 
process, a final volume of 25 mL was settled in a Utermöhl counting 
chamber (25 mL) (Utermöhl, 1958) for at least 24 h. CTS were counted 
using an Olympus IX 73 inverted microscope (100× or 400×). 

2.3. Data processing 

Picoplankton abundance was converted to carbon biomass using 
constant conversion factors: 250, 49, 671 and 15 fg C cell− 1 for SYN, 
PRO, PEUK and HP, respectively. 

Nano volumes were estimated according to the following form 
(Girault et al., 2013): 

V =
W2 × L × π

6  

where V (μm3) was the cell volumes, W and L were the width and length 
(μm) of a nanoplankton cell. The cell volumes of nanoflagellates were 
converted to carbon biomass using a conversion of 220 fg C/μm3. 

Microplankton (CTS) volumes were estimated according to their 
appropriate geometric shapes (cone, ball, and cylinder). Carbon biomass 
of each individual was estimated by the equation (Verity and Lagdon, 
1984): 

C = Vi × 0.053+ 444.5  

where C (pg C) was the carbon biomass of individual tintinnid, Vi (μm3) 
was the lorica volume. As for aloricate ciliates, we used a conversion 

factor (0.19 pg/μm3) for calculating their carbon biomass (Putt and 
Stoecker, 1989). The unit of biomass was converted into μg C/L in the 
manuscript. Classification of mixotrophic (including SYN, PRO, PEUK, 
PNF) and heterotrophic (including HP, HNF, CTS) planktons were 
referring to Li et al. (2020). Classification of epipelagic (0–200 m)/ 
mesopelagic (200–1000 m)/bathypelagic (≥1000 m) zones in whole 
waters was referring to Zhao et al. (2020). 

3. Results 

3.1. Hydrography and abundance and biomass of each MFW component 

All environmental variables (except for NH4
+ and NO2

− ) showed a 
clear delamination pattern from surface to 2000 m layers (Fig. 2). A 
thermocline (16–24 ◦C) was presented steadily at depths ranging from 
100 to 300 m, with higher salinity occurring at depths ranging from 100 
to 200 m (Fig. 2; Fig. A.1). Chl a concentrations were relative high in 
waters shallower than 150 m, with the DCM occurring at approximately 
100 m (Fig. A.1). Nutrient patterns indicated that productivity in surface 
waters at the study site were typically and consistently N-limited and P- 
limited (Fig. 2; Fig. A.2). In the euphotic zone, high concentrations of 
NH4

+ and NO2
− occurred at DCM in several stations (Fig. 2; Fig. A.1). The 

concentrations of NO3
− , PO4

3− , Si(OH)4 were lower than the detection 
limits at surface waters, and then gradually increased to 2000 m (Fig. 2). 
Generally, different environmental variables exhibited three vertical 
distribution patterns in the tropical Western Pacific: 1) temperature 
showed a surface-peak pattern, 2) salinity, Chl a, NH4

+ and NO2
− showed 

a DCM-peak pattern, and 3) NO3
− , PO4

3− and Si(OH)4 exhibited a 2000 m- 
peak pattern (Fig. A.2). 

Each MFW component exhibited various distribution characteristics 
in vertical profiles (Fig. 3; Fig. A.3). The abundances of SYN, PRO, PEUK, 
HP, HNF, PNF and CTS were 0.0–2.1 × 103, 0.0–1.4 × 105, 0.0–3.0 ×
103, 0.1–5.5 × 105, 14.8–622.4, 0.0–385.3 cells/mL and 2–443 ind/L, 
respectively. Their biomass were 0.0–0.2, 0.0–7.5, 0.0–4.6, <0.1–6.6, 
<0.1–1.0, 0.0–1.5 and <0.1–0.8 μg C/L, respectively. High total abun
dance and biomass of MFW occurred mainly in waters shallower than 
150 m (epipelagic zone), and decreased to 2000 m (bathypelagic zone) 
(Fig. 2; Fig. A.1). Horizontally, there were few variations of each MFW 
component at each sampling layers of each station. Based on the 
abundance and biomass in vertical profiles, different MFW components 
were categorized into three types: 1) SYN, HP, HNF and PNF showed a 
surface-peak type, 2) PRO and PEUK showed a DCM-peak type, and 3) 
CTS showed a bimodal-peak (surface- and DCM-peaks) type (Figs. A1 
and A3). 

3.2. Composition of MFW component 

Abundance and biomass compositions of each MFW component 
varied with depths (Fig. 3; Fig. A.3). HP was the most dominant group in 
the MFW, accounting for >69.3 % at each depth (69.3–99.5 %, average 
92.8 ± 9.1 %) in terms of abundance. The highest value of PRO occurred 
at the DCM with a relative abundance of 29.6 % to MFW (Fig. 3a). As for 
biomass, HP was the dominant group in the MFW at all depths except for 
the DCM. At surface and 15 m layers, PEUK was the second dominant 
group in the MFW, while at 30, 50, 75, and 150 m, the second dominant 
group in the MFW shifted to PRO. In waters deeper than 200 m, HNF was 
the second dominant group in the MFW (Fig. 3b), indicating a distinct 
MFW composition in different water columns. To understand the regu
lation of HP and HNF by resource (bottom-up control) and/or predation 
(top-down control) (Gasol, 1994), the relationship between HP and HNF 
abundance was examined (Fig. A.4). Most of HNF (sampled from 
epipelagic to mesopelagic zones) fell above the MRA (mean realised 
abundance) line (Fig. A.4), suggesting stronger bottom-up control on 
HNF. However, for sampling points below the MRA line especially at 
epipelagic zone (Fig. A.4), the top-down control on HNF played the main 
role. 
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The picoplankton (0.2–2 μm), nanoplankton (2–20 μm) and micro
plankton (20–200 μm) sized-plankton exhibited different vertical dis
tribution patterns in all stations. Both picoplankton and microplankton 
showed bimodal-peak (surface- and DCM-peaks) pattern, with their 

highest average abundance and biomass occurring at DCM and surface 
layers, respectively. Nanoplankton showed a surface-peak pattern with 
the highest average abundance and biomass at surface waters (Fig. 3c 
and d). The relative abundance ratio ranged from 0.4 to 5.0 × 106 

Fig. 2. Vertical distribution of environmental variables (Temperature, salinity, Chlorophyll a [Chl a], ammonium [NH4
+], nitrate [NO3

− ], nitrite [NO2
− ], ortho

phosphate [PO4
3− ], orthosilicate [Si(OH)4]), and each microbial food web component (abundance and biomass of Synechococcus, Prochlorococcus, picoeukaryotes, 

heterotrophic prokaryotes, heterotrophic/pigmented nanoflagellate, ciliate) from surface to 2000 m depth in the tropical Western Pacific Ocean. Black dots are 
sampling depths. 
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(average 1.6 ± 1.0 × 106) for pico/microplankton and 0.8–22.2 × 103 

(average 3.2 ± 2.8 × 103) for nano/microplankton at all sampling 
depths. The relative biomass ratio ranges from 2.2 to 169.6 (average 
28.5 ± 26.1) for pico/nanoplankton and 0.4–49.1 (average 2.9 ± 4.6) 
for nano/microplankton (Fig. A.5). In terms of different sampling 
depths, the relative abundance ratio for both pico/microplankton and 
nano/microplankton were lowest at the DCM layers (average 1.0 ± 0.4 
× 106 and 1.4 ± 0.4 × 103, respectively), then increased to 2000 m 

(average 2.5 ± 1.6 × 106 and 8.5 ± 7.2 × 103, respectively) (Fig. A.5). 
The highest values for relative biomass ratio for both pico/micro
plankton and nano/microplankton occurred at 2000 m layers (average 
67.0 ± 53.2 and 14.1 ± 16.8, respectively), while their lowest values 
occurred at different layers (pico/microplankton at the surface [average 
15.5 ± 6.0], while nano/microplankton at the DCM [average 1.1 ±
0.8]) (Fig. A.5). 

Mixotrophic and heterotrophic plankton showed distinctive vertical 

Fig. 3. Representation for vertical distribution of each microbial food web component abundance/biomass and its abundance/biomass proportion (a and b), and 
vertical distribution patterns of Pico/Nano/Micro sized-plankton and heterotrophic (HETE)/mixotrophic (MIXO, including autotroph and mixotroph) plankton 
abundance and biomass (c and d). 
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distribution patterns (Fig. 3) with DCM-peak and surface-peak, respec
tively (Fig. 3c and d). With respect to ratios between Mixotrophic/het
erotrophic plankton at different layers, both their abundance and 
biomass showed an increasing trend from the surface to the DCM, fol
lowed by a decrease to 2000 m (Fig. A.6). The relative abundance of 
mixotrophic plankton at each depth were lower than 30.5 % (Fig. A.6a), 
while the relative biomass of mixotrophic plankton at 75 m and DCM 
layers were higher than 50 % when compared to the percentage of each 
group (Fig. A.6b). 

3.3. Relative biomass of each MFW component to HP 

The biomass values of the MFW components (SYN, PRO, PEUK, HNF, 
PNF and CTS) were normalized by HP as described by Li et al. (2020). 
The relative biomass trends of different MFW components showed 

significant variations (Fig. 4a). The relative biomass of SYN, PNF, HNF 
and CTS were <1 at all depths, while PRO and PEUK were >1 at the 
DCM layer (Fig. 4; Fig. A.7). For both picoplankton and microplankton, 
their relative biomass first increased from the surface to the DCM layers, 
then decreased to 2000 m (Fig. 4; Fig. A.7). In contrast, the relative 
biomass of nanoplankton remained steady from the surface to 2000 m 
layers (Fig. A.7). With respect to mixotrophic and heterotrophic plank
tons, their relative biomass exhibited a DCM-peak and bimodal-peak 
(surface- and DCM-peaks) patterns, respectively (Fig. 4; Fig. A.7). 

3.4. Relationship between MFW components and environmental variables 

The relationship between the MFW components (PRO, SYN, PEUK, 
HP, HNF, PNF, CTS) and environmental variables (temperature, salinity, 
Chl a, NH4

+, NO2
− , NO3

− , PO4
3− , Si(OH)4) were clearly different (Fig. 5a). 

Fig. 4. Variations of microbial food web component biomass relative to HP biomass (a) and heatmap representation for their average relative biomass value at each 
depth. HP, heterotrophic prokaryotes; PRO, Prochlorococcus; SYN, Synechococcus; PEUK, phototrophic picoeukaryotes; HNF, heterotrophic nanoflagellates; PNF, 
pigmented nanoflagellates; CTS (or Micro, microplankton), ciliate; Pico, picoplankton (HP, PRO, SYN, PEUK); Nano, nanoplankton (HNF, PNF); MIXO, autotrophic 
and mixotrophic organisms (PRO, SYN, PEUK, PNF), HETE, heterotrophic organisms (HP, HNF, CTS). 
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High biomass of each MFW component occurred at relatively high 
temperatures and Chl a levels, and relatively low NH4

+, NO3
− , PO4

3− and 
Si(OH)4 levels (Fig. 5a). The suitable NO2

− range for each MFW 
component was 0.2–1.5 μmol/L. Among MFW components, PRO, PEUK, 
HP, HNF and CTS showed relative higher biomass in higher salinity 
environment, while PNF and SYN exhibited the opposite pattern 
(Fig. 5a). Additionally, variations in the highest ratio of MFW compo
nent to HP and temperature revealed that they had different suitable 
growing habitats with particular temperature environment (Fig. 5b). 

To compare variations in environmental sensitivities, we performed 
Mantel tests between the MFW components and environmental vari
ables (Fig. 6a). Biomass of each MFW component was strong signifi
cantly correlated to temperature (p < 0.01). Additionally, SYN, PRO, 
PEUK and HP were strong significantly correlated to Chl a, PO4

3− and 
NO3

− (p < 0.01). In contrast, both HNF and CTS were strong significantly 
correlated to depth, PO4

3− , NO3
− and Si(OH)4 (p < 0.01) (Fig. 6a). In 

addition, SYN, PRO, PEUK, HP and CTS were significantly correlated to 
Si(OH)4, NO2

− , depth, NH4
+ and Chl a, respectively (p < 0.05) (Fig. 6a). 

Fig. 5. Variations of different MFW component biomasses to environmental variables (a), and simulative curve based on each relative biomass of MFW component to 
HP and temperature (b) in the tropical Western Pacific Ocean. Pico/Nano/Micro, Pico/Nano/Microplanktons; MIXO, mixotrophic plankton; HETE, heterotro
phic plankton. 
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With respect to pico/nano/microplanktons, their biomasses were strong 
significantly correlated to depth, temperature, PO4

3− , NO3
− and Si(OH)4 

(p < 0.01). Additionally, picoplankton was strong significantly corre
lated to salinity and Chl a (p < 0.01), and significantly correlated to NH4

+

(p < 0.05) (Fig. 6a). Both mixotrophic and heterotrophic planktons were 
strong significantly correlated to depth, temperature, Chl a, PO4

3− , NO3
−

and Si(OH)4 (p < 0.01). Except that, mixotrophic plankton was strong 
significantly correlated to salinity and NO2

− (p < 0.01), while hetero
trophic plankton was significantly correlated to NH4

+ (p < 0.05) 
(Fig. 6a). 

Principal component analysis was conducted to examine the 
contribution of the environmental variables to the MFW components at 

Fig. 6. Relationships between different microbial food web component and environmental variables by partial Mantel tests (a) and Principal component analysis 
(PCA) (b) in the tropical Western Pacific Ocean. Edge width corresponds to the Mantel’s r statistic for the corresponding distance correlations, and edge color denotes 
the statistical significance based on 9999 permutations. The x-axis is the first PCA axis, and the y-axis is the second PCA axis. Environmental variables and microbial 
food web component are indicated by red lines and blue lines, respectively. Pico/Nano/Micro, Pico/Nano/Microplanktons; MIXO, mixotrophic plankton; HETE, 
heterotrophic plankton. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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all stations (Fig. 6b). Two principal components discriminated the 
environmental conditions in different water layers. These components 
explained large proportions of the variance in each MFW component 
(63.21 %), pico/nano/microplanktons (65.65 %), and heterotrophic/ 
mixotrophic planktons (72.67 %), respectively. The first principal 
component was closely related to temperature, depth, PO4

3− , NO3
− , Si 

(OH)4, five MFW components (CTS, HP, PNF, SYN, HNF) or micro
plankton, nanoplankton or heterotrophic plankton. Among them, CTS 
(microplankton) and heterotrophic plankton had strongly positive cor
relation with temperature, but strongly negative correlation with depth, 
PO4

3− , NO3
− and Si(OH)4 (Fig. 6b). In addition, the second principal 

component was closely related to Chl a, salinity, NO2
− , NH4

+, two MFW 
components (PEUK, PRO) or picoplankton or mixotrophic plankton 
(Fig. 6b). 

4. Discussion 

To our knowledge, our study is the first comprehensive investigation 
of all the major components of the MFW simultaneously, from HP to CTS 
and the first to estimate the biological carbon flux at vertical dimension 
(from surface to 2000 m) in the oligotrophic tropical Western Pacific. 
Overall, the microbial abundances and biomasses reported at epipelagic 
zone in this study are consistent with those reported by Sohrin et al. 
(2010). The environmental variables (except NH4

+ and NO2
− ) in seawater 

showed obvious delamination from surface to 2000 m, with little vari
ations compared to other seasons at neighboring seas (Gómez, 2007; Dai 
et al., 2020; Ma et al., 2021a, 2021b), suggesting that the results on 
MFW structures are applicable to other times of year. Moreover, our 
analysis of MFW structure (abundance, biomass, vertical distribution 
patterns and trophic linkage) and abiotic conditions from the tropical 
Western Pacific were consistent with studies carried out in the oligo
trophic ocean, where picoplankton-dominated in marine pelagic 
ecosystem, contribution of small forms (picoplankton and nano
plankton) was higher than 90 %, and rapid attenuation of each MFW 
component abundance and biomass occurred at around 100 m with 
strong positive correlation to temperature and Chl a (Landry, 2002; 
Thingstad, 2005; Sohrin et al., 2010; Christaki et al., 2011; Chiang et al., 
2014; Kormas et al., 2014; Selph et al., 2018). In addition to these 
similarities, our study revealed more interactions between each MFW 
component and their relationship with abiotic variables in the oligo
trophic tropical Western Pacific were discovered. 

4.1. The dynamics of MFW component in the vertical dimension 

MFW organisms are the fundamental base of pelagic ecosystems and 
support the entire marine food web (Trombetta et al., 2020). Under
standing the ecological function of MFW components in marine eco
systems requires information on their vertical distribution. Therefore, 
researchers have focused on the vertical characteristics of each MFW 
component to uncover their trophic level interactions in various seas (e. 
g., Tarran et al., 2001; Landry, 2002; Tanaka and Rassoulzadegan, 2002; 
Christaki et al., 2008, 2011, 2014, 2020; Sohrin et al., 2010; Kormas 
et al., 2014; Caron et al., 2017). Empirical studies have found that the 
abundance ratios between pico(prokaryotes)/nano(HNF)/microplank
tons(CTS) were approximately 106/103/1 at discrete sampling depths in 
the Mediterranean Sea (Tanaka and Rassoulzadegan, 2002) and the 
North tropical Pacific (Sohrin et al., 2010). Our results in the oligotro
phic tropical Western Pacific from epipelagic to bathypelagic zones 
(Fig. 3c) were in accordance with mentioned-above seas. Meanwhile, we 
further uncovered the variations of discrete trophic linkage in different 
sampling depths. 

The oceanic water in the oligotrophic tropical Pacific is relatively 
homogenous, and vertical distribution patterns of each MFW component 
remain relatively steady (Sohrin et al., 2010; Zhao et al., 2020). The high 
abundance and biomass of top grazer (CTS) in the MFW at surface water 
was supported by SYN, HP, HNF and PNF (surface-peak pattern), while 

at DCM water, it was supported by PRO and PEUK (DCM-peak pattern). 
The existence of these components can determine the balance between 
resource limitation (bottom-up control) and strong predation (Top- 
down control) in the marine food web (Calbet et al., 2001). Regarding 
the trophic coupling between microbial heterotrophs, we found a one- 
order-of-magnitude increase in biomass ratio of both pico/nano
plankton and nano/microplankton in bathypelagic zones (Fig. 3d; 
Fig. A.5), similar to the Mediterranean Sea (Tanaka and Rassoulzadegan, 
2002). This phenomenon suggests that the prey biomass at deep water is 
controlled more by resource than by predation. However, in waters 
shallower than 150 m, the CTS grazing process (Top-down control) may 
play a key role in controlling HNF/PNF and HP community, as suggested 
by previous studies (Gonzalez et al., 1990; Hall et al., 1993; Ayo et al., 
2009; Šolić et al., 2010; Di-Poi et al., 2013; Nakajima et al., 2017; 
Meddeb et al., 2018; Selph et al., 2018; Rekik et al., 2021). 

Plankton size spectra were used to indicate their ecological functions 
through prey-predator interactions in marine ecosystem (Vandromme 
et al., 2012; Wang et al., 2023a). For instance, ciliates (top grazer of the 
MFW), play important role in determining numerous physiological and 
ecological processes (e.g., metabolism, carbon flux, turnover and food 
web dynamics), as their body size is an important factor influencing the 
predation of meso− /macro-zooplankton (Turner, 2002; Brown et al., 
2004; García-Comas et al., 2016; Liu et al., 2023; Wang et al., 2023a). 
Generally, the method of molecular biological biomarkers for describing 
the MFW through the relative abundance (DeLong and Karl, 2005; 
Caron, 2009; Shao et al., 2023), but it cannot reveal the real abundance 
and interaction between each trophic level in the marine ecosystem. 
Therefore, our results can fill in gaps of 16S/18S rRNA gene-based 
surveys. 

4.2. Relative biomass of each MFW component and their function 

The relative biomass variations of different MFW components (SYN, 
PRO, PEUK, HNF, PNF, CTS) exhibited different trends compared to the 
increase in HP biomass (Fig. 4), suggesting the variation of the MFW in 
vertical dimension of the oligotrophic tropical Western Pacific. Previous 
studies have shown that the relative biomass of each MFW component to 
HP in surface water was <1 at all seasons in oceanic water of the Arabian 
Sea (Garrison et al., 2000) and coastal water of the Sanggou Bay (China) 
(only occurred in spring and winter) (Li et al., 2020). Our results for the 
relative biomass of each MFW component to HP in surface water was 
consistent with these findings. At DCM layers, the relative biomasses of 
both PRO and PEUK were >1, indicating significant variations in their 
ecological roles compared to surface water. 

Regarding mixotrophic and heterotrophic planktons, their relative 
biomass (mixotrophic: heterotrophic plankton) first increased from the 
surface (unproductive water) to the DCM (relatively productive water) 
layers, then decreased to 2000 m (Fig. A.6). This phenomenon was in 
accordance with Gasol et al. (1997), who first proposed that unpro
ductive and productive waters were characterized by high and low 
relative heterotrophic plankton biomass, respectively. Previous studies 
considered that biomass ratio of HP: autotrophic plankton = 1 as a 
boundary index for indicating a pelagic ecosystem living in the oligo
trophic (>1, HP dominant) or eutrophic (<1, phytoplankton dominant) 
conditions (Li et al., 1993). Our results revealed that the oligotrophic 
tropical Western Pacific in winter was living with a HP dominant state 
throughout the water column except 75 m and DCM layers, which is 
consistent with Duarte et al. (2013). 

4.3. The MFW structure associated with the environmental parameters 

The MFW structure and its contribution to carbon fluxes rely 
significantly on the abiotic (e.g., temperature, salinity, Chl a, nutrients, 
Fe, pH) factors, as each MFW component is highly reactive to environ
mental changes (Fitter and Hillebrand, 2009; Christaki et al., 2014; Sala 
et al., 2016; Zander et al., 2017; Trombetta et al., 2020). Thus, abiotic 
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environmental variations play a crucial role in determining the com
munity structure of marine pelagic ecosystems. Among the majority 
environmental variables, temperature has a direct effect on marine or
ganisms through intrinsically temperature-dependent metabolic pro
cesses (Archibald et al., 2022). The statistically significant upward or 
downward trend for each MFW component was established, exhibiting a 
strong significant correlation with temperature (Fig. 6). Simultaneously, 
the HNF/HP and CTS/HP ratios increased with temperature (Fig. 5b), 
which suggests a strong bottom-up control of bacteria dominance (Šolić 
et al., 2018) in layers ranged from 2000 m to DCM (around 100 m). 
Additionally, our results revealed that heterotrophic plankton was more 
abundant than mixotrophic plankton at relative higher temperature 
environments (27.5–28.8 ◦C) in the oligotrophic tropical Western Pacific 
(Fig. 5b). This phenomenon may be attributed to the higher temperature 
sensitivity processes (growth/grazing rate) of heterotrophic than mix
otrophic plankton (Parain et al., 2016; Connell et al., 2017; Šolić et al., 
2018; Archibald et al., 2022). 

Nutrients (e.g., N, P, Si) have strong impacts on the MFW composi
tion in the marine ecosystem (Šolić et al., 2010; Song, 2011; Dai et al., 
2023). For example, P is an essential element for synthesizing ribo
somes, DNA, and cell membranes (Muscarella et al., 2014), while Si 
plays a key role in maintaining the dominance of diatoms. Through 
osmotrophs by bacteria and phytoplankton (Lignell et al., 2013), nu
trients were transported to the MFW trophic linkage, and their enrich
ment would lead to high abundance/biomass of each MFW component 
(Berninger et al., 1991; Šolić et al., 2010). Our results showed that the 
small phytoplankton fraction (SYN, PEUK, PRO) dominated the total 
phytoplankton community in waters shallower than 150 m, accompa
nied by low nutrient environment in the oligotrophic systems. The high 
abundance of small-sized phytoplankton in the oligotrophic tropical 
Western Pacific is attributed to their higher affinity for inorganic nu
trients (Button, 1986) and lower energetic costs compared to larger 
phytoplankton (Neidhardt et al., 1990). However, there was a mismatch 
between low abundance/biomass of each MFW component and high 
nutrients in waters deeper than 200 m, which could be due to the 
extreme pressure and low temperature environment in those depths. 

4.4. Potential responses of MFW to rapid global warming 

The rapid global warming has led to more frequent occurrences of 
anomaly events (e.g., El Niño and La Niña) (McPhaden et al., 2006; Cai 
et al., 2021; Geng et al., 2023), which are expected to alter water column 
biogeochemical processes of oligotrophic tropical ecosystems in the near 
future (Archibald et al., 2022). Marine phytoplankton and micro
zooplanktons under rapid global warming progress have shown a ten
dency towards miniaturization in the shelf seas (Wang et al., 2023), 
Arctic Ocean (Zhuang et al., 2021; Wang et al., 2022) and Southern 
Ocean (Fitch and Moore, 2007; Beans et al., 2008; Mendes et al., 2013; 
Wang et al., 2023b). The variations in community structure of MFW 
might be responsible for this trend. To better understand their response 
to global warming, future studies should integrate species composition 
of both producers (prey) and consumers (predators) of MFW. Previous 
studies have shown that warming benefits heterotrophs more than au
totrophs, especially for small-sized organisms (Brown et al., 2004; 
Daufresne et al., 2009; Zander et al., 2017; Šolić et al., 2018; Trombetta 
et al., 2020; Archibald et al., 2022). Therefore, HP may play a more 
important role in future oligotrophic tropical seas under rapid global 
warming. Our results indicate that each MFW component has a unique 
thermal tolerance (compared to HP), and the MFW will cascade when 
temperature exceeds 29 ◦C (Fig. 5b). This finding is in accordance with 
Trombetta et al. (2020). 

Predicting the response of food webs to environmental variations 
requires an understanding of how trophic levels react to global warming 
under different abiotic and biotic conditions. Among the MFW compo
nents, lower trophic levels are expected to react faster than higher tro
phic levels, as they typically consist of smaller-bodied species with 

higher reproductive rates (Zander et al., 2017; Trombetta et al., 2020; 
Archibald et al., 2022). This response could lead to a mismatch to tro
phic levels, in which predators and prey will respond differently to 
changing abiotic conditions (Parain et al., 2016). To accurately identify 
key species among the MFW, future research needs to develop novel 
theories that can rapidly assess their biodiversity and function. 

5. Conclusion 

We examined the microbial community composition from epipelagic 
to bathypelagic zones of the oligotrophic tropical Western Pacific and 
compared each MFW prey assemblages. Our findings highlighted the 
importance of heterotrophic bacteria as a dominant component for 
MFW, particular in the bathypelagic zone. We also observed a significant 
increase in the biomass of mixotrophic plankton (SYN, PRO, PEUK, PNF) 
with increasing temperature, indicating their great potential as an 
additional carbon biomass that can be transported to higher trophic 
levels at waters shallower than 150 m. The abundance comparison be
tween HNF and HP suggests that the bottom-up control of HNF (resource 
availability) played a key role throughout the water column. Our results 
contribute to a better understanding of carbon flux in the tropical 
Western Pacific MFW, and will help assess and predict future changes in 
marine pelagic food web of oligotrophic tropical seas under the influ
ence of the rapid global warming. 
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Supplemental figures 

 

Fig. A.1. Vertical distribution of environmental variables (Temperature, salinity, 
Chlorophyll a [Chl a], ammonium [NH4+], nitrate [NO3-], nitrite [NO2-], 
orthophosphate [PO43-], orthosilicate [Si(OH)4]), and each microbial food web 
component (abundance and biomass of Synechococcus, Prochlorococcus, 
picoeukaryotes, heterotrophic prokaryotes, heterotrophic/pigmented nanoflagellate, 
ciliate) from surface to 300 m depth in the tropical Western Pacific Ocean. 
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Fig. A.2. Vertical distribution patterns of environmental variables from surface to 2000 
m depth. 
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Fig. A.3. Vertical distribution patterns of each microbial food web component 
(abundance and biomass) from surface to 2000 m depth. 
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Fig. A.4. Relationship between bacterial and HNF abundance from epipelagic zone to 
mesopelagic zone at study stations. The data of MRA (mean realised abundance) 
originated from Gasol (1994).  
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Fig. A.5. Relative abundance and biomass ratio between Pico- or Nano- and Micro-
plankton, and its abundance/biomass proportion (A/BP) at each depth of the tropical 
western Pacific. 
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Fig. A.6. Vertical distribution patterns of mixotrophic (MIXO) and heterotrophic 
(HETE) organisms (abundance and biomass), ratio between MIXO and HETE, and 
their abundance/biomass proportion (A/BP) at each depth of the tropical western Pacific. 
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Fig. A.7. Relative biomass variations between each microbial food web component 
(except HP, heterotrophic prokaryotes) and HP at each depth of the tropical western 
Pacific. 
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Supplemental tables 

Table A.1. List of stations with date sampled in the tropical Western Pacific 

Stations Date sampled Longitude (°E) Latitude (°N) Depth (m) 

D12 10/12/2015 126°00′29.52″ 20°09′49.32″ 4765 
D11 13/12/2015 126°51′51.84″ 19°24′07.38″ 3286 
D10 14/12/2015 127°43′14.16″ 18°38′25.48″ 5160 
D9 14/12/2015 128°34′36.12″ 17°52′43.54″ 5840 
D8 15/12/2015 129°25′58.44″ 17°07′01.63″ 5609 
D7 16/12/2015 130°17′20.76″ 16°21′19.69″ 5364 
D6 17/12/2015 131°08′43.08″ 15°35′37.79″ 6592 
D5 18/12/2015 132°00′05.40″ 14°49′55.85″ 5241 
D4 19/12/2015 132°51′27.72″ 14°04′13.94″ 5492 
D3 20/12/2015 133°42′49.68″ 13°18′32.00″ 5023 
D2 21/12/2015 134°34′12.00″ 12°32′50.10″ 5377 
D1 22/12/2015 135°25′34.32″ 11°47′08.16″ 6158 
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