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Abstract  Rare earth elements (REEs) can be used to trace source materials and identify their 
provenances, because of significant conservation and immobility during chemical alteration processes 
after erosion of materials from the provenance. This study focused on the temporal variation of REEs for 
columnar sediments from the mouth of Jiaozhou Bay in North China to understand the potential controls 
for the geochemical variations of sediments. Through extraction experiments, we identified that the 
residual fraction is the main host for REEs compared with other fractions (i.e., exchangeable and 
carbonate fraction, easily reducible oxides fraction, reducible oxides fraction, magnetite fraction). REE 
ratios (e.g., LaN/SmN and LaN/YbN; N: normalized by chondrite) lack correlations with grain size or the 
chemical index of alteration (CIA), which is correlated with major elements. All these indicate that these 
REE variations reflect the varying contribution of source materials from different provenances instead of 
grain size or chemical weathering effects. REE ratios (e.g., LaN/SmN and LaN/YbN) remain relatively 
constant until the depth of roughly 40 cm (equivalent to the year 1995), and show obvious changes 
beyond this depth. Compared REE characteristics of Jiaozhou Bay with those of neighboring rivers and 
bedrocks, the relative contributions of Dagu River-Jiaolai River, and Licun River may have been 
increased during the sedimentary processes, which could be caused by the construction of reservoir and 
related change of aquaculture (e.g., rapid accumulation of organic materials).
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1 INTRODUCTION

As the product of various natural chemical and 
physical processes, fine-grained sediments record 
important geological and environmental information 
(Guo et al., 2017), such as source materials from the 
provenance (Bhatia, 1985; Cullers, 1994; Hoskin 
and Ireland, 2000; Gürsu et al., 2017), tectonic 
settings (Bhatia, 1985; Etemad-Saeed et al., 2015; 
Khan and Khan, 2015), and sedimentary processes 
(Taylor and McLennan, 1981; Goodfellow, 1983; 

Blair, 1987). However, complex physical and 
chemical processes after being eroded from the 
provenance can alter the geochemical compositions 

* Supported by the National Natural Science Foundation of China 

(No. 41776069), the Science and Technology Innovation Project of 

Laoshan Laboratory (No. LSKJ202202905), and the Special Project of 

Strategic Leading Science and Technology of Chinese Academy of 

Sciences (No. XDB42020302)

** Corresponding authors: jmsong@qdio.ac.cn; yuanyuan.xiao@qdio.ac.cn

# Ziwei SUN and Jin LIU contributed equally to this work and should be 

regarded as co-first authors.



J. OCEANOL. LIMNOL., 41(5), 2023 Vol. 41 

of source materials (Rashid and Ganai, 2015; Ma et 
al., 2017). For example, chemical weathering can 
cause the replacement of feldspars in source rocks 
by secondary clay minerals, leading to the selective 
leaching of Ca2+ and Na+ (Roy et al., 2006; Roy and 
Smykatz-Kloss, 2007). As a result, these alterations 
can also influence the geochemical variation of fine-
grained sediments. Hence, it is important to identify 
different geological processes and environmental 
effects by selecting appropriate geochemical indicators.

Studies on trace elements, which is resistant to 
secondary processes (e.g., diagenesis), are important 
to better constrain the provenance (Taylor and 
McLennan, 1985; Cullers, 1994; Mabrouk et al., 
2015). Rare earth elements (REEs) with similar 
ionic sizes and the same charge (except Eu and Ce) 
share similar geochemical behaviors, and can be 
greatly conserved during most chemical alteration 
processes (Taylor and McLennan, 1985; Coldstein 
and Jacobsen, 1988; Elderfield et al., 1990). In 
addition, geochemical behaviors of various elements 
in nature mainly depend on their hosted fractions, 
which is important to further reveal different 
sedimentary and biogeochemical processes (Chester 
and Green, 1968; Claff et al., 2010; Kiczka et al., 
2011; Zhu et al., 2012). Sequential extraction 
experiments show that REEs are mainly hosted in 
the residual fraction, which are mainly composed of 
silicate minerals and represent the component of 
source materials from the provenance (Zhu et al., 
2012; Burdige and Komada, 2020; Jung et al., 
2021). Thus, REEs are the ideal candidate for 
tracing source materials and identifying their 

provenances (Khan et al., 2017; Noa Tang et al., 
2020).

Jiaozhou Bay is regarded as a typical gulf area of 
the Chinese marginal sea. Many previous studies 
have focused on Jiaozhou Bay in different aspects 
for studying the environmental change of 
embayment in response to different anthropogenic 
and natural factors (Peng et al., 2019; Wang et al., 
2021a), including the sedimentary dynamics (Zhang 
et al., 2019; Yuan et al., 2021), the nutrient structure 
(Yuan et al., 2018; Li et al., 2020a), the phytoplankton 
community compositions (Liu et al., 2020b; Wang et 
al., 2021b), the heavy metal pollution (Xu et al., 
2017; Kang et al., 2018; Liang et al., 2018), and the 
ecosystem (Peng et al., 2019; Cao et al., 2020; Liu 
et al., 2021; Li et al., 2022). The sediments from 
the mouth of Jiaozhou Bay are located at the 
intersection of the inner and outer bays, receiving 
source materials from the inner and outer bays, 
which can better represent the sedimentary 
information of the Jiaozhou Bay. This study focuses 
on the temporal variations of REEs for columnar 
sediments from the mouth of Jiaozhou Bay. 
Together with other geochemical indicators, we aim 
to identify the controls on REE characteristics of 
sediments from Jiaozhou Bay and reveal their 
provenance.

2 MATERIAL

Jiaozhou Bay is located on the southern shore of 
the Shandong Peninsula, an inlet of the Yellow Sea 
in eastern China (Fig.1). It is a typical semi-closed 

Fig.1 The area (red rectangle) and sampling site (red star) of this study, and the sampling sites L1 and L2 of Wang et al. 
(2003) (blue stars)
Modified after Yang et al., 2003a; Li et al., 2014; Liu et al., 2019a.
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bay with abundant inputs of wastewater and 
sediments from more than ten rivers, including the 
Baisha River, Yanghe River, Dagu River, and Licun 
River (Wang et al., 2017). It is an excellent area for 
studying the coastal sea with strong influences from 
both terrestrial and human activities (Dai et al., 
2007). A continuous surface sediment column lifted 
by a gravity tube through R/V Science with an 
approximately 60 cm long was sampled in 2019 
from Jiaozhou Bay, China (120°22′48″E; 36°02′01″N; 
water depth: 15 m; Fig.1), which is very close to the 
sampling location of a ca. 79-cm long sediment 
column named D4 obtained in 2003 (120° 15′55″E; 
36°01′14″N; Li et al., 2011). By using 210Pb dating, 
Li et al. (2011) acquired the depositional rates 
before 1992 and after 1992 were 3.96 cm/a and 
1.63 cm/a, respectively. In this study, we also used 
these depositional rates, and calculated the depositional 
age of our sediment column, which can be 
dated back to ca. 30 years ago. To identify the 
compositional variation, the sediment column was 
separated into 1–2-cm long slices, and 38 sample 
slices were obtained in total. All the samples were 
stored in polyethylene for further testing. Dried 
sediments were carefully hand-crushed to fine-
grained powders using an agate mortar and dried at 
105 °C in oven before analysis.

3 ANALYTICAL METHOD

3.1 Grain size analysis

Granulometric analysis was done by using the Cilas 
1190L instrument after the ultrasonic dispersion. The 
measurement range was 0.04–2 500 µm, and the grain 
sizes were <4 µm for clay, 4–63 µm for silt, and >63 µm 
for sand (Wentworth, 1922; Liu et al., 2019b).

3.2 Sequential extraction

The modified sequential selective extraction 
procedure was operated to separate five operationally 
defined fractions (Poulton and Canfield, 2005; 
Henkel et al., 2016): exchangeable and carbonate 
fraction (F1), easily reducible oxides fraction (F2), 
reducible oxides fraction (F3), magnetite fraction 
(F4), and residual fraction (F5).

Briefly, about 200 mg of homogenized sediment 
samples were weighed and loaded into a 15-mL 
centrifuge tube, and F1 fraction was extracted with 
10 mL of 1-mol/L Na-acetate (adjusted to pH=4.5 
with acetic acid), shaken for 24 h at 22 °C. F2 
fraction was extracted with 10 mL of 1-mol/L 
hydroxylamine-HCl in 25% v/v acetic acid for 48 h. 

F3 fraction was extracted with freshly-prepared 
citrate-buffered sodium dithionite (50-g/L Na-
dithionite+0.02-mol/L sodium citrate buffer solution 
at pH=4.8) for 2 h. Extraction of F4 fraction was 
completed by leaching with 0.2-mol/L ammonium 
oxalate/0.17-mol/L oxalic acid for 6 h. Finally, the 
residual fraction contained primarily silicate minerals, 
the residue from the fourth step was dissolved with 
mixed acid (HCl-HNO3-HF). After each extraction 
step, solution was centrifuged and the supernatants 
filtered through 0.2-μm polyether sulfone filters into 
15-mL metal-free tubes.

3.3 Element analysis

The geochemical analysis for this study was 
performed at the Laboratory of Oceanic Lithosphere 
and Mantle Dynamics, Institute of Oceanology, 
Chinese Academy of Sciences. Major elements and 
trace elements were analyzed using Agilent-5100 
inductively coupled plasma optical emission 
spectrometer (ICP-OES) and Agilent-7900 quadrupole 
inductively coupled plasma mass spectrometer (ICP-
MS), respectively. For major element analysis, the 
alkali fusion method was adopted. Then, 40–50-mg 
dried powder sample and 250 mg of metaboric acid 
were mixed in a platinum crucible and heated in a 
muffle furnace at 1 050 °C for 0.5 h for melting. 
After quickly being transferred to 5% nitric acid, the 
sample solution was thoroughly mixed using 
ultrasonic. Finally, the uniform sample solution was 
diluted to be roughly 2 000 times the sample weight 
(Kong et al., 2019). The international standards used 
were GSP-2, AGV-2, BCR-2, W-2a, and BHVO-2, 
indicating both the accuracy and precision of major 
element analysis better than 5%. For trace element 
analysis, anti-aqua regia was mixed with 50-mg 
dried sample powder in high-pressure bombs 
(Teflon cups jacketed by stainless vessels) for 
dissolution (Chen et al., 2017). The monitoring 
standards used were GSP-2, AGV-2, BCR-2, W-2a, 
and BHVO-2. The precision of trace element 
analysis is better than 5%, and the accuracy is 
better than 10%. The test results of major elements 
and trace elements are given in Supplementary 
Table S1.

4 RESULT

4.1 Grain size

The sediment types in Jiaozhou Bay were mainly 
sandy silt and silt. The silt content was relatively 
high, ranging from 65% to 74%, with an average 
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content of 68%; while the clay content was 20%–29%, 
with an average of 23%; the content of sand was the 
lowest, between 2%–14%, with an average of only 
8% (Fig.2; Supplementary Table S2).

4.2 Major elements and REEs

The analyzed sediments in Jiaozhou Bay were 
characterized by high SiO2 (61.86%–70.88%), 
followed by intermediate Al2O3 (12.10%–15.27%), 
Fe2O3 (3.93%–5.73%), and other elements were less 
than 3% (Supplementary Table S1). Total REE 
(ΣREE) concentrations ranged from 160×10-6 to 
209×10-6 with an average value of 180×10-6 
(Table 1; Supplementary Table S1).

4.3 REEs in different fractions

The results of sequential extraction of sediment 
samples from Jiaozhou Bay show that the residual 
fraction is the dominant hosted fraction of REEs, and 
the proportion in this fraction exceeds 50% (Fig.3; 
Supplementary Table S3), reflecting the relatively 
simple sedimentary environment in this area, mainly 

from the supply of terrigenous, and the contribution 
of other sources is relatively low (Zhu et al., 2012; 
Burdige and Komada, 2020; Jung et al., 2021).

Fig.2 The ternary diagram of grain size classification for 
Jiaozhou Bay sediments (green stars)

Table 1 The comparison of average REE contents in the sediments from different areas (×10-6)

Element

La

Ce

Pr

Nd

Sm

Eu

Gd

Tb

Dy

Ho

Er

Tm

Yb

Lu

∑REEaverage

Ce/Ce*

Eu/Eu*

LaN/SmN

LaN/YbN

JZB

38.58

78.48

8.28

30.96

5.82

1.19

4.67

0.75

4.22

0.87

2.50

0.38

2.54

0.38

179.61

1.08

0.70

4.28

10.91

JZB upper

38.87

78.81

8.28

30.83

5.78

1.18

4.63

0.71

4.16

0.86

2.46

0.38

2.50

0.37

179.83

1.08

0.70

4.34

11.16

JZB lower

38.02

77.83

8.29

31.21

5.90

1.20

4.77

0.77

4.33

0.89

2.59

0.40

2.61

0.39

179.20

1.08

0.69

4.16

10.44

CJR

53.40

98.80

11.00

34.40

6.22

1.47

5.68

0.84

4.64

0.94

2.67

0.39

2.38

0.37

223.20

1.00

0.76

5.55

16.10

YR

33.50

54.10

6.47

21.20

3.96

0.85

3.68

0.55

3.04

0.61

1.67

0.25

1.50

0.26

131.64

0.90

0.68

5.46

16.02

BHS

31.60

62.72

7.56

28.24

5.12

1.07

4.43

0.68

3.82

0.77

2.18

0.34

2.22

0.35

151.10

0.99

0.69

3.98

10.21

YS

33.51

66.89

7.99

29.77

5.68

1.14

4.86

0.74

4.04

0.86

2.29

0.35

2.22

0.35

160.69

1.00

0.66

3.81

10.82

ECS

33.53

64.67

7.82

29.19

5.43

1.11

4.88

0.73

4.09

0.79

2.34

0.34

2.19

0.34

157.45

0.98

0.66

3.98

10.98

HR

76.90

141.00

16.50

44.20

7.50

1.55

6.15

0.90

4.83

0.92

2.53

0.36

1.99

0.34

305.67

0.97

0.70

6.62

27.72

SDL

31.43

65.76

6.50

26.59

4.97

1.08

4.31

0.67

3.94

0.75

2.69

0.34

2.22

0.36

151.61

1.13

0.71

4.08

10.14

UCC

30.00

64.00

7.10

26.00

4.50

0.88

3.80

0.64

3.50

0.80

2.30

0.33

2.20

0.32

146.37

1.08

0.65

4.31

9.78

JZB: Jiaozhou Bay; CJR: Changjiang River (Yang et al., 2003b); YR: Yellow River (Yang et al., 2003b); BHS: Bohai Sea (Mi et al., 2020); ECS: East 

China Sea (Mi et al., 2020); YS: Yellow Sea (Mi et al., 2020); HR: Hanhe River (Yang et al., 2003b); UCC: upper continental crust (Taylor and McLennan, 

1995); SDL: Shandong Loess (Jia et al., 2016). LaN/SmN and LaN/YbN (N: normalized by chondrite which is from Sun and McDonough, 1989). The 

sediments in the upper part of Jiaozhou Bay are from 1995 to 2019; the sediments in the lower part of Jiaozhou Bay are from 1988 to 1995.
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5 DISCUSSION

5.1 The conservation of REEs during the sedimentary 
processes

Due to complex sedimentary processes, geochemical 
compositions of sediments are likely affected by 
other factors, including the influences of grain size 
and chemical weathering. Thus, it is necessary to 
exclude the influences of other factors to better 

constrain the provenance.
The grain size of Jiaozhou Bay sediments in this 

study did not change significantly (Fig.2). Compared 
with major element contents, REE contents are 
poorly correlated with the grain size (Supplementary 
Table S4), and the REE ratios (e.g., LaN/SmN and 
LaN/YbN, N: normalized by chondrite which is from 
Sun and McDonough (1989)) have no correlation 
with the grain size (Fig.4a–b; Supplementary Table 
S4). Thus, it reflects that REE contents, especially 
REE ratios, have not been affected by varying grain 
size.

To identify the effects of chemical weathering on 
geochemical compositions of sediments from 
Jiaozhou Bay, the CIA value proposed by Nesbitt 
and Young (1982) is used, which is expressed as 
[Al2O3/(Al2O3+Na2O+K2O+CaO*)]×100, where CaO* 
is the amount of CaO incorporated in the silicate 
fraction of the rock and all values are molecular 
proportions. The method to correct the CaO content 
proposed by McLennan (1993) is used, i.e., n(CaO0)=
n(CaO)–10×n(P2O5)/3. If n(CaO0)<n(Na2O), then 
n(CaO*)=n(CaO0); otherwise n(CaO*)=n(Na2O), 
where “n” represents molecular proportions.

In Fig.5, the weathering trend of sediments from 

Fig.3 The average percentage of REE contents in the five 
fractions
The contents of each fraction are the average analysis results of 

multiple samples, and the percentage of each fraction is its 

percentage of the five fractions. F1: exchangeable and carbonate 

fraction; F2: easily reducible oxides fraction; F3: reducible oxides 

fraction; F4: magnetite fraction; F5: residual fraction.

Fig.4 Co-variation diagrams of median grain size with LaN/SmN and LaN/YbN for sediment samples from Jiaozhou Bay 
(a & b); co-variation diagrams of CIA with LaN/SmN and LaN/YbN for sediment samples from Jiaozhou Bay (c & d)
CIA: the chemical index of alteration.
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Jiaozhou Bay is parallel to the ideal theoretical 
weathering trend (Nesbitt and Young, 1989), which 
indicates the insignificant influence of K metasomatism 
(Fedo et al., 1995). Furthermore, as the lack of 
correlation between CIA and the grain size 
(Supplementary Table S4) (Bouchez et al., 2010), 
these CIA values can effectively represent the 
intensity of chemical weathering for Jiaozhou Bay 
sediments. The CIA values of the Jiaozhou Bay 
sediments in this study (CIA values are 55–60; 
Supplementary Table S1) are lower than those of 
average shale (about 65–70; McLennan, 1993), 
Bohai Sea (about 52–78; Liang et al., 2020) and the 
Yellow Sea (about 65–86; Cao et al., 2021; Chen 
et al., 2022). According to the classification of 
weathering degree by Nesbitt and Young (1982), the 
Jiaozhou Bay sediments experienced a low degree 
of chemical weathering (Nesbitt and Young, 1982; 
Silva et al., 2016; Blake et al., 2017; Pei et al., 
2020). In addition, the REE ratios (e.g., LaN/SmN 
and LaN/YbN) are not correlated with CIA (Fig.4c–d; 
Supplementary Table S4). This further indicates 
these REE ratios have not been affected by chemical 
weathering during the sedimentary processes.

Because REEs are resistant to chemical weathering 
and not affected by grain size during the sedimentary 
processes, REEs can greatly inherit from the 
provenance. This is also supported by the dominance 
of residual fraction for the conservation of REEs 

among all the five fractions (Fig.3). Therefore, 
REEs can be convincingly used to trace the 
sediment provenance.

5.2 Provenance of Jiaozhou Bay sediments

The geochemical characteristics of sediments 
from Jiaozhou Bay are further compared with those 
from neighboring rivers and seas. In Fig.6a, the 
sediments from Jiaozhou Bay in this study have low 
(La/Sm)UCC and (Gd/Yb)UCC ratios (UCC: normalized 
by upper continental crust which is form Taylor and 
McLennan (1995)), which geochemical characteristics 
are highly consistent with those of the Shandong 
loess (Fig.6a–b). Considering that coastal rivers 
(such as the Dagu River and Baisha River) are the 
main input of sediments to Jiaozhou Bay (Fig.1) 
(Fu et al., 2007; Chen et al., 2019; Liu et al., 2020a), 
we further compared geochemical characteristics of 
sediments from Jiaozou Bay with bedrocks in the 
drainage basin of rivers entering the bay. The 
geochemical characteristics of Jiaozhou Bay 
sediments are similar to those of Dagu River and 
Changyi-Anqiu and Pingdu (Dagu River-Jiaolai 
River), followed by Laoshan (Licun River) (Fig.6c). 
As REEs are mainly hosted by the residual fraction, 
the similarity of REE ratios between the residual 
fraction and those of Jiaolai River-Dagu River (Fig.6c) 
also supports that sediments of Jiaozhou Bay are 
mainly derived from Jiaolai River-Dagu River.

Fig.5 The chemical weathering trends of A-CN-K and A-CNK-FM
Red circles: the upper Jiaozhou Bay sediments from 1995 to 2019; blue triangles: the lower Jiaozhou Bay sediments from 1988 to 1995. Ka: kaolinite; 

Chl: chlorite; Gi: gibbsite; Sm: smectite; IL: illite; Pl: plagioclase; Ks: K-feldspar; Fel: feldspar; Bi: biotite; A: Al2O3; CN: CaO*+Na2O; K: K2O; CNK: 

CaO*+Na2O+K2O; FM: FeO(T)+MgO. Black solid line: the ideal theoretical weathering trend of different parent rocks. 1: average granite; 2: average 

adamellite; 3: average granodiorite; 4: average tonalite; 5: average gabbro.
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Furthermore, we classified data of the collected 
bedrocks into four groups based on their relevant 
distributions, i.e., Moshui River-Baisha River, Licun 
River, Dagu River-Jiaolai River, Yanghe River, and 
calculated the contribution of different areas to 
Jiaozhou Bay sediments. The provenance index (PI) 
(Yang et al., 2000) is expressed as PI= Σ|Cix–Ci1|/
(Σ|Cix–Ci1|+Σ|Cix–Ci2|+Σ|Cix–Ci3|+Σ|Cix–Ci4|), where i 
represents a ratio of two elements, Cix stands for the 
sediments in Jiaozhou Bay, Ci1, Ci2, Ci3, and Ci4 are 
Moshui River-Baisha River, Licun River, Dagu 
River-Jiaolai River, and Yanghe River, respectively. 
The PI reflects the general degree of similarity in 
chemical composition of different components. The 
smaller the PI value is, the larger the contribution is. 
We used the LREE/HREE ratio (e.g., La/Yb) to 

calculate different areas contribution in this study. 
According to the sediment samples from Jiaozhou 
Bay and the residual fraction (Table 2), it can be 
found that the Dagu River-Jiaolai River accounts are 
the highest proportion, followed by Licun River, 
Moshui River-Baisha River, and Yanghe River, 
which is generally consistent with the order 
sediments loaded in the four areas (Sheng et al., 
2014; Bi et al., 2015).

With increasing depths, LaN/SmN and LaN/YbN 
ratios generally remain constant until the depths of 
roughly 40 cm, and show an obvious change beyond 
this depth (Fig.7), reflecting a slightly stronger 
fractionation of LREE from M-HREE (11 vs. 10 for 
the average LaN/YbN ratio, respectively; Table 1). 
This change likely reflects that the relative 

Fig.6 Discrimination diagram of (Gd/Yb)UCC vs. (La/Sm)UCC (a & c), and chondrite-normalized REE pattern of sediments 
of Jiaozhou Bay and other sources (b)
a & c is modified after Rao et al., 2017 and Zhao et al., 2018, and chondrite used to normalize in (b) is from Sun and McDonough, 1989. UCC: 

normalized by upper continental crust (Taylor and McLennan, 1995); JZB: Jiaozhou Bay; residual fraction: the residual fraction of sediment in 

Jiaozhou Bay; CJR: Changjiang River (Yang et al., 2003b); YR: Huanghe River (Yang et al., 2003b); BHS: Bohai Sea (Mi et al., 2020); ECS: East 

China Sea (Mi et al., 2020); YS: Yellow Sea (Mi et al., 2020); HR: Hanhe River (Yang et al., 2003b); SDL: Shandong Loess (Jia et al., 2016); UCC: 

upper continental crust (Taylor and McLennan, 1995); Changyi-Anqiu (Li et al., 2020c); Jimo (Pang, 2015; Hou et al., 2016; Cao, 2018; Gu, 2019; 

Li et al., 2020b; Zhu et al., 2021); Wulian (Chen et al., 1993; Qiu and Wang, 1999); Zhucheng (Su et al., 1997; Meng et al., 2006; Cao, 2018); 

Congjiatun-Hujiaxie (Song et al., 2020); Haiyang (Guo et al., 2002; Wang et al., 2018; Ma et al., 2021); Jiaozhou (Meng et al., 2006; Kuang et al., 

2012; Cao, 2018); Dagu River (Zhang, 2014); Laiyang (Pang, 2015); Pingdu (Meng, 2016); Laoshan (Gu, 2019); Anqiu (Cao, 2018); Taolin 

(Zhang, 2017); Lingshan Island (Zhang, 2017); and L1 and L2 in Jiaozhou Bay (Wang et al., 2003).
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contributions of different source materials varied at 
the depths of ca. 40 cm. The upper and lower parts 
of the Jiaozhou Bay sediments have obvious parallel 
distribution in Fig.5, which also indicates the 
variation of mineral proportions.

We compared the upper and lower parts (with a 
limit of roughly 40 cm) with the four areas. For the 
composition change of the sampling profile roughly 
1995, it is speculated that it may be caused by the 
increased contribution of Dagu River-Jiaolai River 
and Licun River. However, this change is also 
influenced by other factors. Compared with HREEs, 
L-MREEs are more enriched in active fraction (non-
residual fraction) (Fig.3), which may be caused by 
the adsorption of carbonates and iron-manganese 

oxides. Since the early 1990s, because of the 
construction of reservoirs and the related evolution 
of aquaculture, the amounts of sediments 
transported by rivers have been greatly reduced, and 
solid waste discharge has become an important 
source of sediment injected into Jiaozhou Bay (Li et 
al., 2006; Wang, 2009; Xing et al., 2017). 
Furthermore, LREEs are preferentially absorbed by 
organic matter (He et al., 2004; Hathorne et al., 
2015; Liu et al., 2019a; Yu et al., 2021). Thus, the 
increase of LaN/YbN ratio with depths may also 
reflect the effect of rapid increasing organic matter 
in the bay after the 1990s (Fig.7) (Wang et al., 2017, 
2021b; Yuan et al., 2018; Cao et al., 2020).

We also compared with the sediments from other 
locations of Jiaozhou Bay. The locations of 
sediment columns L1 and L2 previously reported 
(Wang et al., 2003) are close to our sampling 
location. They have low (La/Sm)UCC and (Gd/Yb)UCC 
ratios, which geochemical characteristics are also 
similar with those of the Jiaozhou Bay sediments in 
this study and the Dagu River-Jiaolai River (Fig.6c). 
Combined with their consistent values of provenance 
index, sediments from L1 and L2 could be also 
mainly derived from the Dagu River-Jiaolai River, 
with some contributions of Licun River, Moshui 
River-Baisha River, and Yanghe River (Table 2).

6 CONCLUSION

In this study, the REEs in a newly collected 
sediment column from Jiaozhou Bay were systematic 
analyzed. During the sedimentary processes, the 
ratios of REE in Jiaozhou Bay sediments was not 
affected by grain size or chemical weathering, and 
the information characteristics of the provenance 
area were completely preserved. By further 
comparing the REEs of the total and residual 
fractions of the sediments in Jiaozhou Bay with the 
bedrock of the main river input areas, it was found 
that Dagu River-Jiaolai River is the main source 
materials input of Jiaozhou Bay, followed by Licun 

Table 2 The provenance index (PI) of different areas

Areas

Jiaozhou Bay

Residual fraction of Jiaozhou Bay

Jiaozhou Bay upper

Jiaozhou Bay lower

L1, L2

Licun River

0.125

0.155

0.114

0.137

0.150

Moshui River-Baisha River

0.390

0.356

0.389

0.376

0.361

Dagu River-Jiaolai River

0.004

0.063

0.011

0.027

0.054

Yanghe River

0.482

0.426

0.485

0.459

0.434

The smaller the PI value is, the larger the contribution is.

Fig.7 Variations in LaN/SmN and LaN/YbN of sediment 
samples from Jiaozhou Bay with increasing depths 
The age models were estimated by previously reported study (i.e., 

3.96 cm/a before 1992 and 1.63 cm/a after 1992 as proposed by Li 

et al. (2011) using 210Pb to dating D4).
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River, Moshui River-Baisha River, and Yanghe 
River. Compared with the systematic variations of 
element ratios along the sampling profile, the 
change of source materials and related compositions 
around 1995 (roughly 40-cm depth) may be caused 
by the increased contribution from Dagu River-
Jiaolai River and Licun River due to the construction 
of reservoir, and related change of aquaculture (e.g., 
rapid accumulation of organic materials).
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