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Abstract
Aim: Palaeoclimate legacies have been reported to influence microbial communities 
and carbon (C) stocks even after thousands of years. However, the direct and indirect 
influences of climate legacies on microbial C processes remain poorly understood and 
thus limit our capacity to predict how climate legacies regulate C cycling. Here, we 
conducted microbial, soil and vegetation surveys along a continental latitudinal tran-
sect of 4200 km covering a wide range of forest biomes. With these data, we evalu-
ated the potential capacity of climate legacies to predict direct and indirect variations 
in microbial metabolic quotient (MMQ) across and within three main forest biomes: 
tropical, subtropical and temperate forests.
Location: North–south transect (4200 km), China.
Time period: 2019.
Major taxa studied: Soil microbes.
Methods: We used molecular ecology technology to determine microbial biomass and 
diversity, in addition to a soil incubation experiment to measure MMQ.
Results: Palaeoclimate explained a unique portion of the variation in the continental 
distribution of MMQ, which showed a hump-shaped pattern with latitude. Locations 
with increased isothermality (an index of temperature) over the last 20,000 years also 
showed the highest MMQ in the present day. Moreover, we found multiple indirect 
effects of climate legacies on MMQ caused either by changes in key soil properties, 
such as soil organic carbon and ammonium (NH4

+), in lower latitudinal regions or by 
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1  |  INTRODUC TION

Globally, soils in terrestrial ecosystems contain much more carbon 
(C) than the atmosphere, supporting key ecosystem services such 
as climate regulation (e.g., CO2), soil fertility and plant production 
(Delgado-Baquerizo, Karunaratne, et al.,  2018; García-Palacios 
et al.,  2021). The amount of organic C stored in the soil is regu-
lated by soil microbes, which are in control of the formation and 
decomposition of soil organic C (SOC) (Chen et al., 2019; Crowther 
et al.,  2019; Rillig et al.,  2019). Microbial respiration, which is a 
key process of SOC decomposition, depends on microbial bio-
mass, activity and community composition (Crowther et al., 2019; 
Wang et al., 2018). To gain a better understanding of the role of 
the microbial community in biogeochemical processes, the mi-
crobial metabolic quotient (MMQ) was established (Anderson & 
Domsch, 1993) as an important quantitative surrogate describing 
net organic carbon oxidation per unit microbial biomass. Owing 
to an increasing loss of the carbon storage capacity of soils in re-
cent decades, accurate MMQ modelling associated with SOC de-
pletion and C fluxes is crucial for predicting rapid changes in SOC 
stocks on a global scale (Davidson & Janssens, 2006; Heimann & 
Reichstein, 2008; Johnston & Sibly, 2018). Although some of the lo-
cally important drivers of MMQ have been identified in temperate 
forests (e.g., Spohn & Chodak, 2015) and other ecosystems (e.g., 
Francaviglia et al., 2017; Xu et al., 2017), there are still some major 
gaps in our knowledge about the factors regulating MMQ at the 
continental scale, which imposes a critical uncertainty when pre-
dicting the changes in soil C cycling at a large spatial scale (Hartman 
& Richardson, 2013).

Temperature is one of the most important drivers of MMQ 
(Hagerty et al.,  2014; Li et al.,  2019; Xu et al.,  2017), and soil mi-
crobes are known to adapt rapidly to changing temperatures (Dacal 
et al., 2019; Zhou et al., 2012). Warming can cause an increase in 
microbial activity and turnover rate (Guo et al.,  2018; Hagerty 
et al., 2014), which can result in more C being respired as CO2 and 
less C being incorporated into microbial biomass. The soil microbial 
community composition can also shift towards dominance of mi-
crobial species with faster turnover under high temperatures, thus 
affecting MMQ (Xu et al., 2017). Besides this, some previous stud-
ies showed that microbial communities in warming soil could retard 

soil carbon losses, which was supported by the theory of thermal 
adaptation (Bradford et al., 2019; Dacal et al., 2019). Therefore, we 
hypothesized that microbial communities originating from soils with 
long-term exposure to high temperatures (tropical or subtropical 
forests) might have lower MMQ at constant temperatures (Dacal 
et al., 2019; Johnston & Sibly, 2018), whereas communities originat-
ing from soils exposed to lower temperatures (e.g., temperate forest) 
and those with increasing temperature variability might have higher 
MMQ.

Long-term climate legacies representing continuous changes in 
temperature and precipitation over millennia were good at predicting 
global variations in soil microbial diversity and carbon stocks across 
terrestrial ecosystems (Delgado-Baquerizo, Bissett, et al.,  2017; 
Delgado-Baquerizo, Eldridge, et al.,  2017; Ding et al.,  2019; Ye 
et al., 2019; Zhou et al., 2022). However, much less is known about 
the underlying causes and processes whereby soils with contrasting 
temperature legacies differ in MMQ in the context of global warm-
ing. It has been shown that climate legacies are still influencing the 
distribution of soil carbon and microbial communities (Delgado-
Baquerizo, Bissett, et al., 2017; Ding et al., 2019), with strong effects 
on plant community assembly and productivity (Delgado-Baquerizo, 
Karunaratne, et al., 2018; Lyons et al., 2015; Svenning et al., 2015). 
Thus, climate legacies can affect MMQ directly and/or indirectly by 
changing plant traits [e.g., root C and nitrogen (N) contents] and/
or soil chemical properties (e.g., SOC and ammonium N contents) 
(Delgado-Baquerizo, Eldridge, et al., 2017; Monger et al., 2015). Also, 
climate legacies play important roles in regulating current soil micro-
bial distributions (Delgado-Baquerizo, Bissett, et al., 2017) whereby 
microbial ecological clusters are similar to those of the plant commu-
nity (Delgado-Baquerizo, Eldridge, et al., 2018). As such, climate leg-
acies can also regulate MMQ indirectly by shaping the soil microbial 
community. Furthermore, current SOC accumulation in soils is one 
function of ecosystem development with a long-term climate his-
tory (Delgado-Baquerizo, Eldridge, et al., 2017; Delgado-Baquerizo, 
Karunaratne, et al.,  2018; Schlesinger,  1990). In this respect, we 
expect that climate legacies could be related indirectly to current 
MMQ by shaping the rates of SOC accumulation during millennial 
pedogenesis. Deciphering how long-term temperature legacies in-
fluence soil microbes and their capacity to regulate the SOC cycle 
through MMQ is fundamental to prediction and assessment of the 

plant traits in higher latitudinal regions. Furthermore, MMQ was positively related to 
bacterial richness but negatively to fungal richness across forest biomes.
Main conclusions: Climate legacies associated with continuous changes in temperature 
over the last 20,000 years influenced MMQ across forest biomes. Our findings demon-
strate that including climate legacies in climate carbon models is essential for better pre-
diction of the microbe-driven ecosystem processes under global environmental change.

K E Y W O R D S
carbon cycling, climate legacy, forest ecosystem, microbial diversity, microbial metabolic 
quotient, plant attribute
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impacts of the ongoing global environmental change on terrestrial 
ecosystems.

To test these hypotheses, we measured variables related to the 
microbial communities (bacterial and fungal biomass, diversity and 
potential functions), plant communities (species identity, community 
biomass production and fine root traits) and soil properties (mul-
tiple chemical variables) along a continental latitudinal transect of 
4200 km covering a wide range of forest biomes. By doing this, we 
were able to evaluate the potential capacity of climate legacies to 
predict the variations in MMQ across and within three main forest 
biomes: tropical, subtropical and temperate forests. Specifically, we 
compared direct and indirect driving mechanisms of climate legacies 
influencing MMQ in warmer ecosystems (tropical and subtropical 
forests) and in colder ecosystems (temperate forests).

2  |  MATERIAL S AND METHODS

2.1  |  Site description and sampling

We conducted soil and vegetation surveys at 26 sites belong-
ing to long-term ecological research stations across Eastern China 
(Supporting Information Figure S1). The selected sites cover a broad 
spectrum of latitudinal forest biomes including temperate, subtropi-
cal and tropical forests. Mean annual temperature (MAT) ranged 
from −5.8 to 22.4°C (Supporting Information Figure S1). At each site, 
one or two native forest types were selected. In each forest type, 
we established five or six plots (15 m × 15 m). A minimum distance of 
10 km was kept between two plots. Latitude, longitude and eleva-
tion for each plot were recorded. In each plot, 20 soil cores from the 
top 10 cm of soil were collected within a 50 cm radius of individual 
dominant trees and after removal of the litter layer, then pooled 
per plot. The dominance of tree species was determined by using 
abundance and basal area data from the database of the National 
Ecosystem Research Network of China (http://www.cnern.org.cn/
index.jsp). Root samples were taken from these dominant tree spe-
cies per plot and site. In planted forests, we sampled the three most 
abundant species. In naturally regenerated forests, we sampled the 
top eight species with the highest abundances. Finally, we collected 
13 soil samples from tree plantations, which were monocultures of 
Cunninghamia lanceolate and Pinus massoniana in tropical or sub-
tropical regions. Given that the age at maturity for C. lanceolate and 
P. massoniana is 25–30 and 40 years, respectively, we selected plan-
tations with an age >50 years to decrease the anthropogenic effect 
on soil microbial processes for soil sampling. In total, 85 dominant 
tree species were recorded and sampled along this latitudinal tran-
sect. Living fine roots from each soil core were collected. To ensure 
the accuracy of fine root sampling from the chosen trees, we initially 
sampled thick roots and traced the root branches to the focal tree, 
then separated fine roots from thick roots. The collected soil sam-
ples were stored in a cooling box in the field, then frozen at −80°C in 
the laboratory for later DNA extraction and phospholipid fatty acid 
measurements. For physical and chemical analyses, soils were sieved 

to 2 mm and stored at 4°C. To avoid the effect of low sequencing ef-
forts on our results, a total of 141 soil samples were considered for 
final statistical analysis.

2.2  |  Climatic data

A total of 19 standardized climate variables (Supporting Information 
Table S1) were obtained from the Worldclim database (www.world​
clim.org) for every site. In the case of mid-Holocene and Last Glacial 
Maximum climates, we used estimates provided by the community 
climate system model (Bystriakova et al., 2014). We used data at a 
spatial resolution of 2.5′, because this is the highest resolution avail-
able for the Last Glacial Maximum period. Bioclimatic data are also 
available at this resolution for current and mid-Holocene climates, 
allowing direct comparison among bioclimatic data at different peri-
ods. In all cases, climatic data were at a spatial resolution of 30″ for 
the present and mid-Holocene, which allowed us to compare data at 
resolutions of 2.5′ and 30″ for these two periods. We calculated the 
climate legacy as the mathematical difference between the present 
climate and Last Glacial Maximum, for each climate variable and site 
as follows:

where Pi is the predictor of the current climate and Pj of the Last Glacial 
Maximum.

2.3  |  Vegetation measurements

The normalized difference vegetation index (NDVI) was used as 
a proxy for net plant primary productivity as done by Delgado-
Baquerizo, Karunaratne, et al. (2018). The NDVI data were obtained 
from the Moderate Resolution Imaging Spectroradiometer aboard 
NASA's Terra satellites (http://neo.sci.gsfc.nasa.gov/).

2.4  |  Soil and fine root chemical analysis

A total of 16 soil chemical properties were measured, namely soil 
pH, soil moisture, SOC, total N, ammonium (NH4

+) and nitrate 
(NO3

−), total phosphorus (P), plant-available P, exchangeable K+, 
Na+, Ca2+, K+ and Mg2+ contents, and ratios of C:N, C:P and N:P. 
Soil pH was measured using a ratio of 1:2.5 (weight:volume) of soil 
and 1 mol L−1 KCl solution. Soil organic C and total N content were 
measured using a C/N analyser (Elementar, Germany). The NH4

+ 
and NO3

− of soil samples were extracted using 2 mol L−1 KCl solu-
tion, then determined by colorimetry. Soil total P was measured di-
rectly through colorimetry. Plant-available P in soils was analysed 
colorimetrically with a Molybdate Blue method after soils were ex-
tracted with 1 mol L−1 NH4F solution. Contents of exchangeable Na+, 
Ca2+, K+ and Mg2+ and other variables were analysed with standard 

(1)Climate legacy =
(

Pi − Pj
)

,
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protocols and reported by Wang et al. (2018). Fine roots (Supporting 
Information Figure  S2) for each dominant tree species were dried 
after the removal of rhizosphere soil, and their C and N contents 
were measured using standard protocols (Cornelissen et al., 2003). 
The fine root samples were dried for 72 h at 60°C for measure-
ment of the fine root C and N concentration with a C/N analyser 
(Elementar, Germany).

2.5  |  Measurement of soil MMQ

The soil MMQ (in milligrams of C per gram of MBC per hour) was cal-
culated as the ratio of the microbial respiration to microbial biomass 
(Anderson & Domsch, 1993). For measurement of microbial respira-
tion, c. 20 g (dry weight) of fresh soil for each soil sample (with 60% 
water-holding capacity) was placed into 100 ml rectangular glass 
containers, then incubated for 7 days at the MAT of the correspond-
ing site. When differences in the MAT between sites were <1°C, the 
soils collected from these sites were incubated at the average tem-
perature of their MAT. Using a constant incubation temperature (e.g., 
25°C) can result in inaccurate simulations of common scenarios of 
periodic and continuous temperature changes (Conant et al., 2008; 
Karhu et al., 2014; Zhu & Cheng, 2011); therefore, we used incuba-
tion with diurnally varying temperature, which better reflects field 
conditions and thus the microbial respiration in the field. To meas-
ure microbial respiration, we connected each 100 ml rectangular soil 
container to an infrared gas analyser (Li-Cor 820) in a closed-loop 
configuration. The CO2 production rate by microbial respiration was 
measured by the Li-Cor 820. Microbial biomass C was determined by 
the fumigation extraction method (Vance et al., 1987). Subsamples 
of sieved soil were fumigated with ethanol-free CHCl3 for 24 h, then 
extracted with 0.5 M K2SO4 solution. MBC was calculated as the dif-
ference in extractable dissolved organic carbon between fumigated 
and unfumigated soils using a correction factor of 0.45.

2.6  |  Microbial biomass and enzyme 
activity analyses

Microbial biomass was determined through phospholipid fatty acid 
(PLFA) analysis as described by Bardgett et al. (1996). Phospholipids 
were extracted from 1.5 g of fresh soil and analysed using an Agilent 
6890 Gas Chromatograph. Gram-positive bacteria were identified 
by the terminal and mid-chain branched fatty acids (i15:0, a15:0, 
i16:0, i17:0 and a17:0), and Gram-negative bacteria by cyclopropyl 
saturated and monosaturated fatty acids (16:1ω7c, cy-17:0, 18:1ω7c 
and 8cy-19:0) (Rinnan & Baath, 2009). The fatty acids 18:2ω6,9 and 
18:1ω9 were considered to represent saprotrophic and ectomy-
corrhizal fungi (Kaiser et al.,  2010). The total PLFA concentration 
was calculated from the identified PLFAs (15:0, 14:0, 16:1, 16:1ω5, 
16:0, 17:1ω8, 7Me-17:0, br17:0, br18:0, 18:1ω5, 18:0 and 19:1; and 
those listed above). The ratios of fungal to bacterial (F:B) PLFA and 

Gram-positive to Gram-negative (GP:GN) PLFA were taken to rep-
resent the relative abundance metrics of these groups. The bio-
marker of 16:1w5c was used to indicate arbuscular mycorrhizal fungi 
(Olsson, 1999).

Furthermore, enzyme activity was determined by detecting 
invertase, β-glucosidase, urease and calatase activities. Invertase 
activity was determined with 35.06 mM of saccharose in 2 M of ac-
etate buffer. β-Glucosidase activity was determined by measuring 
the rate of p-nitrophenol formation during soil incubation with p-
nitrophenyl-β-d-glucopyranoside. Urease activity was determined 
through the colorimetric determination of ammonium. Catalase ac-
tivity was determined as the capacity to decompose H2O2 at 20°C 
after 10 min of soil incubation with 30% H2O2 and subsequent titra-
tion with 0.05 N of KMnO4. More detailed information about these 
measurements can be found in the paper by Wang et al. (2018).

2.7  |  Microbial DNA extraction and 
amplicon sequencing

Total genomic DNA from soil samples weighing 0.5  g was ex-
tracted using a PowerSoil DNA Isolation Kit (MoBio Laboratories, 
USA) following the manufacturer's instructions. Triplicate ex-
tractions were implemented for each soil sample. The DNA con-
centration and the degree of purity were checked on 1% agarose 
gels, then DNA was diluted to 1  ng μl−1 with sterile water. The 
DNA samples were sent to Novogene (Beijing, China) for analy-
sis using the MiSeq sequencing platform. For bacteria, the V4 
region of 16S ribosomal RNA genes was amplified using the 
primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′) (Delgado-Baquerizo, Eldridge, 
et al.,  2018). For fungi, the ITS2 region was amplified using the 
primer pair gITS7F (5′-GTGARTCATCGARTCTTTG-3′) and ITS4R 
(5′-TCCTCCGCTTATTGATATGC-3′) (Ihrmark et al.,  2012). More 
detailed information about amplicon sequencing and bioinformatic 
analyses can be found in the paper by Liu et al. (2020). Three sam-
ples were removed owing to low sequencing yields, and the other 
samples were subsampled to 25,000 and 6000 sequences per sam-
ple for 16S and ITS, respectively. To identify potential microbial eco-
logical functions across forest biomes, the operational taxonomic 
units obtained were compared against the FAPROTAX 1.1 database 
to predict potential metabolic functions of the bacterial community 
(Louca et al., 2016). The functional groups of soil fungi were identi-
fied using FUNGuild (Nguyen et al., 2016) and FungalTraits (Põlme 
et al., 2020).

2.8  |  Statistical analysis

The pairwise distance matrix was calculated using the Euclidean 
metric in the “vegan” R package (Oksanen,  2013). Tree species 
identity was transformed to dummy variables in principal compo-
nents analysis (PCA), also using the “vegan” package. The microbial 

(2)MMQ = net organic carbon oxidation∕microbial biomass C.
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operational taxonomic unit table was Hellinger-transformed to per-
form further multivariate analyses. The Kruskal–Wallis test was per-
formed to test the significant difference in MMQ among vegetation 
types (tropical, subtropical and temperate forests) and functional 
types (broadleaved, coniferous and a mix of broadleaved and conif-
erous trees).

To represent vegetation identity, we used the most important 
components (total explanations >85%), which were calculated from 
PCA. The PCA was performed using the “vegan” package, and the 
selected important components were included in further analysis. 
To test and quantify the relative importance of environmental pre-
dictors for MMQ, all determined predictors were classified into five 
categories, namely “current climate”; “palaeoclimate”; “vegetation 
attributes” [plant identity, net primary production (NPP), fine root N 
and C content]; “soil properties” (SOC, total N, total P, plant-available 
P, pH, moisture, exchangeable K+, Na+, Ca2+, Mg2+, NH4

+, NO3
−, C:N, 

C:P and N:P); and “microbial attributes” (microbial PLFAs, invertase, 
β-glucosidase, urease, microbial richness, microbial community 
composition and microbial functional potentials). The importance 
of each category for MMQ was evaluated through variance parti-
tioning using the “varpart” function of the “vegan” R package. The 
“forward.sel” function was used to avoid redundancy and resulting 
multicollinearity in variation partitioning analysis. The classification 
random forest analysis was performed to identify the important 
predictors of microbial diversity as applied by Delgado-Baquerizo, 
Bissett, et al.  (2017). These analyses were conducted using the  
“rfPermute” R package (Archer, 2013).

Structural equation modelling was used to determine the under-
lying pathways of the observed effects of environmental predictors 
on MMQ. Structural equation modelling is widely used in large-scale 
studies, because it allows the partitioning of causal relationships 
among multiple variables and the separation of direct and indirect ef-
fects of model predictors (Delgado-Baquerizo, Bissett, et al., 2017). 
Owing to the large number of predictors used, we conducted a 
classification random forest analysis to preselect the most import-
ant variables for each category for the structural equation model 
(SEM). The measured variables for climate, soil properties, microbial 
properties and vegetation traits included in this model were initially 
divided into “composite variables”, then included in the SEM (Tian 
et al., 2021). The SEM was conducted using the R packages “piece-
wiseSEM” (Lefcheck, 2016), “nlme” and “lme4” (Bates et al., 2017). 
The piecewiseSEM could also account for random effects of sam-
pling sites by providing “marginal” and “conditional” contributions 
of environmental predictors in driving MMQ. Fisher's C test (when 
0 ≤ Fisher's C/d.f. ≤ 2 and .05 < p ≤ 1.00) was used to confirm the 
goodness of the modelling results. The prior model was constructed 
as in the study by Delgado-Baquerizo, Bissett, et al. (2017). We then 
modified our models according to the significance (p < .05) and the 
goodness-of-fit of the model.

In order to identify the most important biomarkers of MMQ, 
the random forests model was used to identify the most import-
ant biomarkers for the bacterial and fungal communities, separately. 
The importance of features was determined over 100 iterations. 

The number of marker taxa was determined using 10-fold cross-
validation implemented with the “rfcv” function of the R package 
“randomForest” with five repeats (Breiman, 2001).

3  |  RESULTS

The MMQs showed a hump-shaped pattern with latitude (Figure 1a). 
Temperate and subtropical forest soils had higher MMQs than tropi-
cal forest soils (Figure 1b). Coniferous forest soils with relatively low 
SOC content (Supporting Information Figure S2b) had higher MMQs 
than broadleaved forest and broadleaved-coniferous forest soils 
with relatively high SOC quality (Figure 1b).

Initially, we used variation partitioning to identify the predictors 
of MMQ at the continental scale. Most variations in MMQ [adjusted 
R2 (R2adjust) = 59.6–86.9%] were attributed to the unique and shared 
effects of palaeoclimate, current climate, environmental variables 
(including geography, plant attributes and soil properties) and mi-
crobial attributes across all biomes (Figure 2). In particular, palaeo-
climate predicted more unique and shared variations in MMQ than 
did current climate (Figure 2), with the maximum temperature of the 
warmest month (MTWM) being the most useful predictor of past 
or current climates in explaining MMQ across all biomes (Table 1; 
Supporting Information Table  S2), tropical and subtropical forests 
(Supporting Information Table S3) and temperate forests (Supporting 
Information Table S4).

Among environmental drivers, vegetation attributes had the 
potential to predict unique variations in MMQ across all biomes 
(Table  1; Supporting Information Table  S2), and this potential 
tended to be more important in temperate forests (Supporting 
Information Table  S4) than in tropical and subtropical forests 
(Supporting Information Table  S3). Fine root C and N contents 
were more predictive of MMQ in tropical or subtropical forests 
(R2adjust = 41%; Supporting Information Table S3) than in temperate 
forests (R2adjust  =  3%; Supporting Information Table  S4), whereas 
plant identity was more important for explaining MMQ in temper-
ate forests (R2adjust = 40%; Supporting Information Table S4) than in 
tropical or subtropical forests (R2adjust = 9%; Supporting Information 
Table  S3). These results suggest that the importance of different 
plant attributes in regulating variations in MMQ varied among the 
biomes. Moreover, we also detected biome-dependent associations 
between MMQ and soil properties. Although soil C:N could predict 
variations in MMQ well across all biomes, particularly in temperate 
forests (R2adjust  =  25%; Supporting Information Table  S4), the pri-
mary predictor for MMQ was NH4

+ across all biomes (R2adjust = 31%; 
Supporting Information Table S2) and in tropical or subtropical for-
ests (R2adjust = 53%; Supporting Information Table S3).

Among microbial attributes, Gram-negative bacterial biomass 
(GN) and the microbes with the potential function of driving soil 
N cycles (Supporting Information Table S5; nitrite respiration; e.g., 
Rhodoplanes, Pseudomonas and Clostridium) or recalcitrant C de-
composition (chitinolysis; e.g., Lysobacter) were found to be good 
predictors of MMQ across all biomes and for subtropical forests 
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(Figure  3; Supporting Information Tables  S2 and S3; Figure  S2). 
Ascomycota richness was found to be more important in temper-
ate forests (R2adjust  =  22%; Supporting Information Tables  S4 and 
S6–S8) than in others. Thus, soil microbial properties played dif-
ferent roles in shaping the variation in MMQ in different forest 
biomes. Specifically, MMQ showed positive relationships with the 
richness of bacteria and some associated phyla (Figure  3a–c), but 
negative links with the richness of fungi and their associated phyla 
(Figure 3e–g). Furthermore, we detected an important role of fungal 
community composition in shaping the variations of MMQ across 
and within all biomes (Figure 3j), and Gram-negative bacteria were 
found to be important across all biomes and in subtropical forests 
(Figure 3k). From the above results, we conclude that the underly-
ing mechanisms of climate legacies influencing MMQ differ among 
diverse forest biomes.

We performed piecewiseSEM to determine how long-term cli-
mate legacies drove the variation in MMQ at the continental and 

regional scales. Initially, the random forest model was used to se-
lect the best predictors across all biomes (Supporting Information 
Table S6) and in subtropical (Supporting Information Table S7) and 
temperate forests (Supporting Information Table  S8) separately. 
Our models provided solid evidence that climate legacies consis-
tently had larger positive effects on MMQ than the current climate 
across all biomes (Figure 4; Supporting Information Figures S3–S5) 
and within tropical and subtropical forests (Supporting Information 
Figure S4a). Among climate legacies, isothermality (ISO) and mean 
diurnal ranges (MDR), which are indices of temperature, were 
the best predictors of the variations in MMQ (Figures  4 and 5; 
Supporting Information Table  S6). Specifically, climate legacies 
had both direct and indirect effects on MMQ, showing larger in-
direct effects by regulating soil properties (e.g., SOC and NH4

+) 
across all biomes (Figure 4) and in tropical and subtropical forests 
(Figure S4a), whereas in temperate forests MMQ was regulated by 
vegetation attributes (Figure S4b).

F I G U R E  1  Soil microbial metabolic 
quotient (MMQ) varies with latitudinal 
gradient and forest types. (a) Spatial 
mapping of MMQ across sampling regions 
using ordinary kriging interpolation. (b) 
The significant difference in MMQ among 
three forest types. Kruskal–Wallis tests 
were performed to test the significant 
difference in MMQ among three forest 
types. The significance level was regarded 
as p < .05.
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We also used a random forest machine-learning method to de-
termine accurately the biomarkers of soil microbes involved regulat-
ing the spatial variations in MMQ. The cross-validation error curve 

stabilized when the 30 and 46 most relevant families of bacteria and 
fungi, respectively, were tested (Supporting Information Figure S6). 
Among them, the biomarkers closely linked to rhizosphere conditions 

F I G U R E  2  Relative contribution of the different predictors used to model microbial metabolic quotient (MMQ). The bars represent 
results from variation partitioning modelling aiming to identify the percentage variance of the MMQ explained by palaeoclimate and 
current climate variables across or within biomes. Environmental drivers included soil properties, plant attributes and geographical location. 
Significant predictors were selected at the level of p < .05. The p-values associated with the most important predictors can be found in the 
Supporting Information (Tables S2–S4).

Biomes Variable
Adjusted 
R2 F p-value

Across all biomes Plant principle component 1 .12 19.48 .001

Fine root carbon .09 15.42 .001

NH4
+-N .31 63.46 .001

Soil total phosphorus .14 34.85 .001

Gram-negative bacteria biomass .42 102.62 .001

MTWM-current .28 52.91 .001

MTWM-mid .22 39.43 .001

PS_last .11 23.54 .001

Tropical + subtropical Fine root nitrogen .26 23.72 .001

NH4
+-N .54 81.1 .001

Soil total phosphorus .22 59.96 .001

Gram-negative bacteria biomass .66 136.79 .001

MTWarmQ-current .4 45.27 .001

MTWM-last .39 44.18 .001

Temperate Plant principle component 1 .18 14.9 .002

Plant principle component 2 .12 11.32 .002

soil C:N ratio .26 24.25 .001

Ascomycota richness .23 20.54 .001

MTWM-current .13 10.3 .002

MTWM-mid .18 15.21 .001

Note: The significance level was regarded as p < .05 (for other significant predictors see Tables S2–
S4). MTWM-current, max temperature of warmest month for current climate; MTWM-mid, max 
temperature of warmest month for mid-Holocene climate; MTWarmQ-current, Mean temperature 
of warmest quarter for current climate; MTWM-last, max temperature of warmest month for Last 
Glacial Maximum climate; PS-last, precipitation seasonality for Last Glacial Maximum climate.

TA B L E  1  The best predictors selected 
from variation partitioning modelling for 
soil microbial metabolic quotient across all 
forest biomes or within each forest biome
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(Bacteroidetes and Actinobacteria) or that prefer a high-N niche 
(Actinobacteria and Proteobacteria) (Supporting Information 
Figure S6a) and the biomarkers of fungi (Tremellales and Eurotiales) 
depending on woody debris (Supporting Information Figure  S6b) 
were identified as the most important predictors of MMQ.

4  |  DISCUSSION

In the present study, we measured MMQ based on the MAT of 
the sites where the soil was collected rather than using the same 

temperate for all soils. Therefore, we believe that our experiment 
provides more realistic and close-to-nature results than those of 
some previous studies (e.g., Spohn & Chodak, 2015). We found that: 
(1) MMQ changed in a nonlinear manner along the latitudinal tran-
sect, with higher MMQ in temperate and subtropical forests than 
in tropical forests; and (2) the underlying mechanisms of variation 
in MMQ were related mainly to climate legacies, either by biome-
specific direct effects or indirectly, via changes in vegetation attrib-
utes, soil chemical or microbial properties. Previous studies, such as 
the study by Xu et al. (2017), demonstrated that the variation in MMQ 
is determined by multiple factors by synthesizing the published data 

F I G U R E  3  Soil microbial biomass and diversity predict microbial metabolic quotient (MMQ) in different forest biomes. Random forest 
modelling was performed to select the best microbial predictors. Forest biomes are indicated by different colours. Significant associations 
between MMQ and microbial diversity (operational taxonomic unit richness) and functional potentials are reported within each panel. The 
characters “+” and “−” represent positive and negative relationships between microbial properties and MMQ. The significance level was 
regarded as p < .05.

 14668238, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/geb.13609 by Shenyang Institute O

f A
pplied, W

iley O
nline L

ibrary on [19/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



    |  115LIU et al.

across different ecosystems (e.g., deserts, forests, croplands and 
grasslands), but they did not consider the role of climate legacy in 
regulating MMQ. Thus, our findings advance our understanding of 
the relative importance of microbial processes and functions in the 
global soil C cycle and their dependence on the palaeoclimate.

Our first hypothesis, that forest soils with lower temperature 
variability (e.g., mean diurnal ranges or isothermality) and those 
with decreasing temperature variability over millennia have a higher 
MMQ than others, was confirmed, in part. We were able to show 
that MMQ was higher in subtropical and temperate forest soils than 
in tropical forest soils, but we found no difference in MMQ between 
subtropical and temperate forests. Thus, our results confirm, in part, 
the compensation hypothesis, which states that spatial variation 
in MMQ across biomes decreases with increasing MAT (Bradford 
et al., 2019), showing a negative response of microbial respiration 
rates to warming. The difference in MMQ across different forest 
biomes was probably attributable to the differences in soil micro-
bial community composition and activity, which is supported by the 
positive correlations between MMQ and microbial biomass found in 
our study (Supporting Information Figure S2e–h). Differences in soil 
microbial community composition across forest biomes might result 

in different MMQs because fungi have higher C use efficiency (CUE) 
than bacteria (Sinsabaugh et al.,  2013; Takriti et al.,  2018). Given 
that MMQ is the ratio of microbial respiration to microbial biomass, 
a higher MMQ can be indicative of more C being respired and re-
leased to the atmosphere as CO2 and less C being incorporated into 
microbial biomass for growth (i.e., a higher MMQ represents lower 
a CUE for microbes). Moreover, communities with higher MMQ can 
have either a high metabolic rate per unit biomass or high biomass 
production, indicating a trade-off between maintenance of their me-
tabolism and growth (Xu et al., 2017). Therefore, our results suggest 
that in tropical forests with lower MMQ, soil microbes might have a 
higher CUE than in subtropical and temperate forests, which might 
favour SOC sequestration in tropical forests because of a higher 
MMQ accompanied by more rapid SOC decomposition and C loss.

In line with our expectations, climate legacies, especially 
temperature legacies, directly affected MMQ across all for-
est biomes (Figure  3) and in tropical and subtropical forests 
(Supporting Information Figure  S4a) but did not in temperate 
forests (Supporting Information Figure  S4b). These results in-
dicate that the effects of climate legacies on MMQ were biome 
dependent, supporting close linkages between climate legacies 

F I G U R E  4  PiecewiseSEM accounting for the direct and indirect (plant traits, soil properties and microbial properties) effects of climate 
legacies on microbial metabolic quotient (MMQ) across all biomes. Plant traits, soil properties, microbial properties, current climate and 
climate legacy are composite variables. Numbers adjacent to the measured variables are their coefficients with composite variables. 
Numbers adjacent to arrows are path coefficients and are the directly standardized effect size of the relationship. The thickness of the arrow 
represents the strength of the relationship. Acronyms for climate are shown in the Supporting Information (Table S1). The conditional and 
marginal R2 represent the proportion of variance explained by all predictors without and with accounting for random effects of “sampling 
site”. Relationships between residual variables of measured predictors are not shown. Significance levels of each predictor are *p < .05, 
**p < .01 and ***p < .001. The variables rootC and rootN are carbon and nitrogen contents in fine roots, while PC1 and PC2 are the two 
most significant principal components of plant identity. Abbreviations: Ascomy, Ascomycota richness; Bactero, Bacteroides richness; β-glu, 
β-glucosidase; GN, biomass of Gram-negative bacteria; NMDS-1, fungal community composition. For results for tropical and subtropical 
forests and for temperate forests separately, see the Supporting Information (Figure S4a,b).
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and MMQ. Previous studies have shown that climate legacies can 
have a strong impact on plant communities and productivity, SOC 
stocks and microbial community composition (Delgado-Baquerizo, 
Bissett, et al., 2017; Delgado-Baquerizo, Karunaratne, et al., 2018; 
Liu et al., 2022; Lyons et al., 2015; Svenning et al., 2015), which is 
in line with our findings. Thus, we assume that the climate lega-
cies on MMQ in different forest biomes were probably caused by 
differences in plant traits, soil properties and microbial character-
istics in our study. Therefore, further research is needed to test 
whether climate legacies can also have direct effects on microbial 
processes, such as MMQ.

Temperature legacies had substantially indirect effects on 
MMQ, primarily by changing key soil properties across all forest bi-
omes (Figure 3) and in tropical and subtropical forests (Supporting 
Information Figure S4a) and by changing plant community composi-
tion in temperate forests (Supporting Information Figure S4b). These 
results suggest that the underlying mechanisms of indirect effects of 
climate legacies on MMQ varied in different forest biomes. Forest 
ecosystems are composed of unique geographical units with vari-
ous climate, plant, edaphic and microbial traits (Anderson,  1992), 
meaning that different factors influence MMQ. Although limited 
studies have shown the effects of climate legacies on soil properties 

(Delgado-Baquerizo, Eldridge, et al., 2017; Ding et al., 2019), less is 
known about how climate legacies affect MMQ indirectly. We found 
that climate legacies had strong positive and indirect effects on 
MMQ, mainly by changing SOC and NH4

+ contents across all forest 
biomes (Figure 3) and in tropical and subtropical forests (Supporting 
Information Figure  S4a). Soil NH4

+, SOC and pH showed strong 
positive correlations with MMQ during millennial climate changes 
(Supporting Information Figure  S3b–d) in subtropical forests with 
high ecosystem productivity because of optimized temperate and 
precipitation. This is mainly because resource quality (i.e., SOC and 
NH4

+) is commonly considered to be a limiting factor for microbial 
diversity and metabolic processes during long-term climate changes 
(e.g., Vitousek, 2004).

Climate legacies also affected MMQ indirectly by altering plant 
traits (e.g., plant identity and fine root N content) in temperate 
forests, but not in other forest biomes. A possible explanation 
could be that spatial variations in plant cover were more associ-
ated with increases in soil microbial diversity in higher latitudinal 
regions as a function of millennial climate changes (Delgado-
Baquerizo, Karunaratne, et al., 2018). Of course, plants not only 
provide C sources for soil microbes via litter and root exudates but 
also affect microenvironmental conditions (Gessner et al.,  2010; 

F I G U R E  5  Relationships between current climate (a,c), climate legacies (b,d) and microbial metabolic quotient (MMQ). The Akaike 
information criterion was used to select the best model.
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Tedersoo & Bahram,  2019), especially in low-productivity eco-
systems, where temperatures are often low (Delgado-Baquerizo, 
Eldridge, et al., 2018).

Vegetation attributes regulated the spatial variation in MMQ 
indirectly, by modifying soil chemical properties and microbial com-
munity composition and diversity (Figure 4; Supporting Information 
Figure S4), which is in line with previous studies showing that vege-
tation attributes altered organic matter through litter or root input, 
edaphic properties and soil microbial characteristics (e.g., Bardgett 
& van der Putten, 2014; Gessner et al., 2010). Strong correlations 
between microbes with functions of chemoheterotrophy and hy-
drocarbon degradation and fine root N content across forest bi-
omes or within specific biomes (Supporting Information Figure S3) 
might explain, in part, why bacterial and fungal biomasses regulated 
MMQ positively. Our findings are supported by previous laboratory 
incubation studies showing that the SOC decomposition rate was 
closely linked to the size of microbial biomass C pools (Hartman & 
Richardson, 2013).

Soil microbial community composition and activity controlled 
MMQ directly, owing to the fact that bacteria and fungi have dif-
ferent CUE (Sinsabaugh et al., 2013; Takriti et al., 2018). As stated 
above, the effects of plant traits on MMQ were caused by changing 
soil microbial characteristics. Our piecewiseSEM results (Figure  3; 
Supporting Information Figures S4 and S5) and previous evidence 
showed that climate legacy can leave a strong signature in the contem-
porary distribution of microbial communities indirectly, through its 
influence on plant diversity and soil properties (Delgado-Baquerizo, 
Eldridge, et al., 2017). Thus, variations in soil properties such as SOC 
and nutrient availability can have strong effects on microbial com-
munity distributions (Fierer, 2017; Tedersoo et al., 2014) and change 
slowly during ecosystem development (Wardle et al., 2004), which 
can explain the effects of climate legacy on the spatial variations in 
microbial metabolic processes (e.g., MMQ) nowadays.

In conclusion, using a natural forest platform with a large range 
of forest biomes, we have explored the variations in MMQ at re-
gional and continental scales and revealed that their underlying 
mechanisms are forest biome dependent. Our findings provide the 
first continental-scale evidence that the palaeoclimate legacy, par-
ticularly temperature, influences MMQ directly. Furthermore, our 
study highlights the importance of indirect effects of climate legacy 
on MMQ through shaping plant traits, soil properties and microbial 
community composition and activity. Furthermore, our findings pro-
vide important insights into the fundamental role of microbial pro-
cesses in driving soil organic C stocks across diverse forest biomes. 
Our results also suggest that considering climate legacies in contem-
porary climate models will improve our ability to predict soil C cycles 
and dynamics under the ongoing global environmental change.
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