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A B S T R A C T   

Organisms including microorganisms from aquatic, grassland and glacier ecosystems have been found to regulate 
the lipid composition of their membranes to acclimate to warming. However, little evidence exists for whether 
soil microbes in forest ecosystems acclimate to temperature variations through this biochemical mechanism. 
Here, using phospholipid fatty acid (PLFA) analysis of forest soils subjected to seasonal, latitudinal, and artificial 
incubation temperature variations, we identified that the lipid composition of soil microbial cell membranes 
changed significantly with alterations in temperature. Specifically, saturated fatty acids without branches 
(SAFAs) increased while unsaturated fatty acids (UNFAs) decreased with increasing temperature in a linear 
fashion. The slope of SAFAs increase (or UNFAs decrease) with temperature was steeper for the long-existing 
latitudinal temperature gradient than for the short-term incubation temperature gradient, suggesting that 
longer-term warming may result in larger alterations in lipid constitute of soil microbial membranes. Our results 
provide evidence that forest soil microorganisms would preserve saturated fatty acids at warmer temperatures 
and therefore may acclimate to global warming by modifying the lipid composition of their cell membranes to 
adjust membrane fluidity.   

Global surface air temperature is predicted to increase by 0.3–4.8 ◦C 
toward the end of this century (IPCC, 2021). This global climatic change 
has been found to alter soil microbial community structure and func
tions, for example, to enhance microbial respiration and potentially 
release more carbon dioxide into the atmosphere (Butler et al., 2012; 
Grimm et al., 2013). However, soil microorganisms have also been 
found to acclimate to warming physiologically (e.g., downregulation of 
respiration) and structurally (e.g., alteration of community composi
tion), which can lower the temperature sensitivity of microbial respi
ration (Bradford et al., 2008; Crowther and Bradford, 2013; Karhu et al., 
2014; Wei et al., 2014; Tian et al., 2022) . The microbial 
community-level thermal response was ascribed to a shift in microbial 
community composition (Wei et al., 2014; Li et al., 2021), increased 
network complexity and stability (Yuan et al., 2021), and altered sub
strate quality and quantity (Moinet et al., 2021). But the physiological or 
biochemical mechanisms underlying the thermal response of soil 

microorganisms remain elusive. Due to the evolutionary trade-offs be
tween the structure and function of both enzymes and membranes 
(Bradford, 2013), understanding the response pattern of physiological 
traits to warming at the community-level is critical for improving ex
planations of microbial thermal acclimation and predictions of soil 
carbon dynamics. 

Organisms can acclimate to temperature changes biochemically by 
altering their membranes’ lipid composition, for example, in plants 
(Larkindale and Huang, 2004), animals (Hofmann and Todgham, 2010), 
phytoplankton (Hixson and Arts, 2016), and microbes in lakes or oceans 
(Hall et al., 2010; Sollich et al., 2017), known as the homeoviscous 
adaptation theory (Sinensky, 1974; Ernst et al., 2016). Soil microbial 
membranes contain a broad diversity of fatty acids (Zelles, 1999; Wixon 
and Balser, 2013) with distinct thermal properties, for instance, the 
melting point of membrane lipids is in the order of unsaturated fatty 
acids (UNFAs) < saturated fatty acids with branches (BRFAs) <
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saturated fatty acids without branches (SAFAs) (Hall et al., 2010; 
Slotsbo et al., 2016). Soil microorganisms are therefore thought to be 
capable of acclimating to temperature changes by altering the lipid 
composition and fluidity of their membranes as do the other organisms 
mentioned above (Wixon and Balser, 2013). Some previous studies had 
found that the lipid constitute of microbial membrane was shifted by 
experimental warming in grassland (Shen et al., 2020) and glacier soils 
(Bajerski et al., 2017; Hassan et al., 2020); little is known about the 
membrane lipid composition of microorganisms in forest soils with 
different temperature histories (e.g., climatic regions and seasonal 
variation) and their responses to warming. 

In this study, we sampled soils subjected to seasonal, latitudinal, and 
experimental variations in temperature to examine how the lipid 
composition of the soil microbial cell membrane varies with tempera
ture. For the seasonal temperature gradient, we collected samples from a 
subtropical forest at Dinghu Mountain (DHM) in southern China in 
January (winter), April (spring), July (summer), and October (autumn) 
in 2014, where the monthly mean soil temperature was 15.4, 23.3, 30.7, 
and 27.8 ◦C, respectively. For the latitudinal temperature gradient, soil 
samples were collected in five zonal forests of eastern China spanning 
23◦ N to 42◦ N in October 2014: Changbai Mountain (CBM; monthly 
mean soil temperature 7.2 ◦C), Dongling Mountain (DLM; 7.3 ◦C), 
Baotianman Mountain (BTM; 11.6 ◦C), Jinggang Mountain (JGM; 
23.6 ◦C) and DHM (27.8 ◦C) (see more details about the five forests in He 
et al., 2017). Soils of the laboratory incubation were collected from a 
subtropical evergreen broadleaved forest at the Heshan National 
Ecosystem Observation and Research Station (HSM) in May 2011 and 
incubated under five temperatures (10, 17, 24, 31, and 38 ◦C) for 30 
days (see Zhou et al., 2017). 

The lipid composition of microbial cell membranes was assessed by 
phospholipid fatty acid (PLFA) profiles according to a modified method 
(Bossio et al., 1998). Briefly, total lipids were extracted from 8 g of 
freeze-dried soil in a mixture of chloroform/methanol/phosphate 
(1:2:0.8, v/v/v). After extraction, the resulting fatty acid methyl esters 
were prepared according to the MIDI protocol and detected by gas 
chromatography-mass spectrometry (Agilent Technologies, CA, USA). 
The results were analyzed using the MIDI Sherlock Microbial Identifi
cation System (MIDI Inc., Newark, USA). The standard nomenclature 
was used to describe fatty acids (Gifford et al., 2012). Each PLFA con
centration was calculated based on the 19:0 (Methyl Nonadecanoate, 
C20H40O2) internal standard concentrations, and the relative concen
tration was represented by the mole percentage (mol %) of total PLFAs. 
We divided the soil microbial PLFAs into three categories: unsaturated 
fatty acids (UNFAs:14:1ɷ5c, 15:1ɷ6c, 16:1 OH, 16:1 ɷ5c, 16:1ɷ7c, 
17:1 ɷ8c, 18:1ɷ7, 18:1ɷ9c and 18:2ɷ6c), saturated fatty acids with 
branches (BRFAs: 14:0 iso, 15:0 iso, 15:0 anteiso, 16:0 iso, 17:0 iso, 17:0 
anteiso, 18:0 iso, 19:0 iso), and saturated fatty acids without branches 
(SAFAs: 14:0, 15:0, 16:0, 17:0, 18:0, 20:0), to characterize the lipid 
composition of the microbial cell membrane (Hall et al., 2010; Shen 
et al., 2019; Zosso et al., 2021). 

Before analysis, the normality assumption was assessed using the 
Kolmogorov-Smirnov test, and the homogeneity of variances was eval
uated with the Levene’s test. Linear regression was used to illustrate the 
relationships between soil temperature and the relative content of mi
crobial lipids under the three temperature gradients. One-way ANOVA 
was used to detect the differences among SAFAs, BRFAs, and UNFAs 
under each forest with Tukey’s HSD test or, when variances were un
equal, Tamhae’s T2 test was applied. All these statistics were performed 
in SPSS 22.0 software (SPSS Inc., Chicago, USA). 

Under all three types of temperature gradients, the relative contents 
of SAFAs, BRFAs, and UNFAs showed distinct variation patterns with 
soil temperature. The relative contents of saturated fatty acids, espe
cially SAFAs, increased significantly with increasing temperature, 
whereas the relative contents of UNFAs decreased significantly with 
increasing temperature, both in a linear fashion (Fig. 1). The relative 
content of BRFAs also increased linearly under the latitudinal and 

Fig. 1. Variation pattern of soil microbial membrane lipid contents with sea
sonal (a), latitudinal (b) and experimental temperature changes (c). The num
ber of samples analyzed was 10 for the seasonal gradient, 10 for the latitudinal 
gradient, and 3 for the incubation experiment. A set of fatty acids were chosen 
to represent the saturated fatty acids without branches (SAFAs), including 14:0, 
15:0, 16:0, 17:0, 18:0 and 20:0. The sum of 14:0 iso, 15:0 iso, 15:0 anteiso, 16:0 
iso, 17:0 anteiso, 17:0 iso, 18:0 iso, and 19:0 iso was calculated as an indicator 
of saturated fatty acids with branches (BRFAs). The unsaturated fatty acids 
(UNFAs) were indicated by the PLFAs: 14:1ɷ5c, 15:1ɷ6c, 16:1 OH, 16:1 ɷ5c, 
16:1ɷ7c, 17:1 ɷ8c, 18:1ɷ7, 18:1ɷ9c and 18:2ɷ6c. The CBM, DLM, BTM, JGM, 
and DHM represent the Changbai, Dongling, Baotianman, Jinggang, and 
Dinghu, Mountains, respectively. T10, T17, T24, T31 and T38 are the incuba
tion temperatures (10, 17, 24, 31, and 38 ◦C). 
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incubation temperature gradients, although it changed little with the 
seasonal temperature gradient (Fig. 1a). This result is in line with the 
homeoviscous hypothesis that cell membranes of soil microbes tend to 
have higher contents of saturated than unsaturated fatty acids under 
warmer conditions. Our results also indicated that soil microorganisms 
could alter the fatty acid composition of their cell membranes in 
response to both the short-term temperature variation (as in the 30-day 
laboratory incubation experiment) and the long-existing seasonal and 
latitudinal temperature gradients. The cell membranes of soil microor
ganisms play an essential role in substrate transportation, energy pro
duction and information interchange (Budin et al., 2018), and their 
fluidity would be raised when temperature rises (Hall et al., 2010). Our 
results showed that soil microbes preserved more saturated fatty acids 
under warmer environments, most likely for the purpose of lowering 
membrane fluidity and stabilizing cell structure. This strategy of soil 
microbes to maintain membrane fluidity within a defined range of vis
cosity would contribute to optimize the functions of transmembrane 
proteins for resource acquisition and substrate transportation, and 
maintain the electrochemical gradient for ATP synthesis under warmer 
conditions, and further effect on the microbial regulated processes (e.g., 
microbial respiration; Hall et al., 2010; Wixon and Balser, 2013; Budin 
et al., 2018). 

This mechanism of microbial acclimation to temperature may come 
from the long-term adaptation of soil microbes to their habitats. By 
examining the slope of the linear regression lines for SAFAs (blue lines in 
Fig. 1), we found that it increased from 0.09 under the incubation 
temperatures (Fig. 1c) to 0.15 under the seasonal temperature gradient 
(Fig. 1a), and reached 0.42 under the latitudinal temperature gradient 
(Fig. 1b). Correspondingly, the slope of the linear regression lines for 
UNFAs (green lines in Fig. 1) decreased from − 0.14 under the incuba
tion temperatures (Fig. 1c) to − 0.25 under the seasonal temperature 
gradient (Fig. 1b), and reached − 0.78 under the latitudinal gradient 
(Fig. 1b). That is also to say, the rate of SAFAs increase (or UNFAs 
decrease) with temperature was faster under the long-existing lat
itudinal temperature gradient than under the short-term incubation 
temperature gradient, suggesting long-term warming might result in 
larger changes in soil microbial membrane lipid constitute. Further
more, by comparing the two groups of the six studied forests (Fig. 2), we 
found that soil microbes in the subtropical forests originating from a 
warmer climate had significantly higher saturated fatty acid contents 
(23.74% for SAFAs and 32.28% for BRFAs) than those of the temperate 
forests (16.33% for SAFAs and 25.26% for BRFAs) originating from a 
cooler climate (Fig. 2a). In contrast, the temperate forests had signifi
cantly higher UNFAs (33.95%) than those of subtropical forests 
(19.34%; Fig. 2b). These results further suggest that soil microorganisms 
coming from warmer regions are more acclimated to high temperatures 
than those from colder areas (also see Wu et al., 2010; Wang et al., 
2016). A previous study of ours (He et al., 2017) using high throughput 
sequencing technology revealed that soil microbial community compo
sition of the same forests exhibited obvious seasonal and spatial varia
tion patterns. These, together with the results of the present study 
indicate that shifts in microbial community composition co-occur with 
lipid resynthesis under temperature variations (Wixon and Balser, 2013; 
Mooshammer et al., 2017) . Therefore, we argue that soil microorgan
isms do not endure warming in a conservative manner but take an 
aggressive strategy to adapt to it via changing the lipid composition of 
cell membranes and community composition. 

In summary, we have demonstrated that the lipid composition of soil 
microbial cell membranes varies with temperature, regardless of 
whether the changes are natural (seasonal and latitudinal) or artificial 
(laboratory incubation). The patterns showed that the relative propor
tion of saturated fatty acids without branches (SAFAs) was positively 
correlated with increasing temperature, whereas unsaturated fatty acids 
(UNFAs) were negatively correlated. This study provides evidence that 
soil microbes, similar to plants and animals, can modify the lipid 
composition of cell membranes to acclimate to altered temperature 

conditions. Whether and how this mechanism affects community-level 
microbial functions (e.g., soil organic matter decomposition and 
greenhouse gas emission) deserves further study, especially connecting 
the lipid composition of cell membranes to the soil microbial community 
through high-resolution techniques (e.g., high-throughput sequencing). 
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