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As one of the most widely grown crops in the world, rice is not only a staple food but also a source of calorie 
intake for more than half of the world’s population, occupying an important position in China’s agricultural 
production. Thus, determining the inner potential connections between the genetic mechanisms and 
phenotypes of rice using dynamic analyses with high-throughput, nondestructive, and accurate methods 
based on high-throughput crop phenotyping facilities associated with rice genetics and breeding research 
is of vital importance. In this work, we developed a strategy for acquiring and analyzing 58 image-based 
traits (i-traits) during the whole growth period of rice. Up to 84.8% of the phenotypic variance of the rice 
yield could be explained by these i-traits. A total of 285 putative quantitative trait loci (QTLs) were detected 
for the i-traits, and principal components analysis was applied on the basis of the i-traits in the temporal 
and organ dimensions, in combination with a genome-wide association study that also isolated QTLs. 
Moreover, the differences among the different population structures and breeding regions of rice with 
regard to its phenotypic traits demonstrated good environmental adaptability, and the crop growth and 
development model also showed high inosculation in terms of the breeding-region latitude. In summary, 
the strategy developed here for the acquisition and analysis of image-based rice phenomes can provide a 
new approach and a different thinking direction for the extraction and analysis of crop phenotypes across 
the whole growth period and can thus be useful for future genetic improvements in rice.

Introduction

Rice (Oryza sativa L.) is one of the most widely grown crops 
and is a staple food for over half the population throughout the 
world, with consumption increasing dramatically in recent 
years; rice crops have contributed importantly to food security 
[1–3]. Enhancing the process of breeding elite varieties with 
increased yields, high qualities, and strong disease resistance 
is critical to ensure the safety of rice production and to satisfy 
the global food supply–demand balance while facing the chal-
lenge of feeding a rapidly growing population under the back-
ground of dramatic climate change [4,5].

With the development of molecular biology, the advent of 
next-generation technology and high-density single-nucleotide 
polymorphism (SNP) genotyping technologies have greatly 
propelled rice function genomics studies [6–8]. With the rapid 
accumulation of a large amount of rice genome resequencing 

data, exploring how to link genotypes with phenotypes is a pre-
requisite for precise rice breeding design [6,9]. However, tradi-
tional phenotyping methods that rely on manual methods are 
time-consuming, costly, and have poor repeatability in plants 
and are thus far behind the development of genotyping; in addi-
tion, destructive methods in general cannot obtain the contin-
uous measurements or observations of the dynamic development 
process and are unable to meet the actual needs of breeding [9]. 
The lag of the innovative technological development of plant 
phenotyping has indeed become a bottleneck in crop breeding 
research and development.

Recently, high-throughput plant phenotyping platforms 
[10–12] that are highly efficient, nondestructive, and practical 
have appeared as a solution in crop breeding research to bridge 
the developmental gap between genotype and phenotype anal-
yses of crops [13,14]. In previous studies, some high-throughput 
plant phenotyping platforms, including the Scanalyzer series, 
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rice automatic phenotyping platform (RAP), or other plat-
forms, have been applied in crop plants, such as maize, rice, 
wheat, and sorghum [15–19]. Using commercial software or 
open-source image analysis pipelines, many image-based 
traits (i-traits) and dynamic shoot growth characteristics were 
nondestructively quantified, thus displaying the unique advan-
tages of this method and the potential for further developments 
in crop genetics and breeding studies [18,20].

It has been widely recognized that the dynamic plant growth 
and development processes can be evaluated on the basis of 
high-throughput phenotyping facilities. The approaches and 
standards for quantifying plant phenotypes have gradually 
attracted much attention from breeding researchers. In recent 
years, with the emergence of innovative artificial intelligence 
methods, such as machine learning, which has been widely 
applied in the image process of phenotyping analysis, remark-
able achievements have been made because of the powerful 
adaptability and image processing capabilities of such methods 
[21–23]. At present, customizing and designing phenotype anal-
ysis pipelines with suitable image-processing algorithms for 
different morphological structures of plants is the basis for 
exploring observable, quantifiable phenotypes and for improving 
the accuracy and efficiency of phenotype analyses.

In this study, we developed a strategy for the acquisition 
and analysis of i-traits in rice based on a high-throughput 
visible light imaging platform during the whole growth 
period. We extracted the rice phenotypic traits at the individ-
ual plant, panicle, culm, and grain levels of crops and further 
analyzed these traits at the temporal scale to obtain organ–
time i-traits in rice during the whole growth period to explore 

the potential association between phenotype and genotype. 
We found that these i-traits could be used as good predictors 
of the final yield, and multiple differences among rice geno-
types of different population structures and breeding regions 
of i-traits were also illustrated. Combined with genome-wide 
association studies (GWAS), we also demonstrate that further 
analyses performed in organ–time dimensions based on traits 
obtained by high-throughput phenotyping have potential as 
a feasible research direction in the fields of genomics and rice 
breeding.

Material and Methods

Plant materials and experimental design
In our study, 93 rice accessions, including 32 indica and 61 japon-
ica rice accessions with 4 replications, were planted in a green-
house located at the Institute of Genetics and Developmental 
Biology, Chinese Academy of Sciences in Beijing. Specific infor-
mation on the rice accessions is shown in Table S1. All rice 
accessions (4 replications per accession) were screened across 
all growth stages (every ~7 d, from 42 to 182 d after sowing). 
The growth conditions were recorded as follows: seed ger-
mination lasting approximately 24 h (at 25 to 32 °C), airing 
buds above 20 h (at 20 °C), and then transplantation into a 
greenhouse in Changping. Fertilizer was applied at sowing 
with 2 g of compound fertilizer and 3 kg of soil per pot. Eight 
grain-related traits were determined by a yield traits scorer 
(YTS-RICE-4D, Wuhan GreenPheno Co. Ltd., China). In 
addition, to evaluate the measurement accuracy, the culm 

Fig. 1. High-throughput rice plant phenotyping results. (A) Images of rice acquisitions. (B) Dynamic shoot growth during all growth stages. (C) Group clustering and regional 
division of different rice genotypes. (D) Data analysis of i-traits.

https://doi.org/10.34133/plantphenomics.0058


Tang et al. 2023 | https://doi.org/10.34133/plantphenomics.0058 3

dry weight, panicle dry weight, and individual plant dry weight 
were also measured destructively after harvest.

Image analysis and trait extraction
The phenotyping facility used in this study (ScanLyzer, LemnaTec 
GmbH, Germany) captured side-view RGB images of growing 
plants and culm images after the panicles were harvested (Fig. 1A 
and B). An image analysis pipeline of i-traits in rice [18] during 
the whole growth period was used to obtain 7 plant-related 
traits, 10 plant growth-related traits, and 6 culm-related traits. 
Using the deep learning network of SegNet [24] to segment the 
rice panicles, 5 panicle-related traits and 10 panicle growth-
related traits were also obtained. With these plant and panicle 
traits observed during all growth stages (Fig. 1B), 12 phenolog-
ical traits were also analyzed (Table). The experimental arrange-
ment of the rice material is shown in Fig. S1, the variation in 
phenological traits is exemplified in Fig. S2, and the dynamic 
processing method is shown in Movie S1.

Biomass modeling and performance evaluation of 
the phenotyping platform
The dry weights of the culm, panicle, and aboveground shoot 
parts were measured destructively after harvest. With the total 
projected areas of 3 different organs—culmTPA (total pro-
jected area of the plant culm), PanicleTPA (Total projected 
area of the panicles), and PlantTPA (total projected area of 
the whole plant)—in the last shoots before harvest, 6 models 
(including linear, quadratic, exponential, power, Gaussian, 
and triangular sine models) were applied to obtain the pre-
dicted dry weight of the culm, panicle, and aboveground shoot 
parts. The model accuracy was evaluated by comparing the 
coefficient of determination (R2), mean absolute percentage 
error (MAPE), root mean square error (RMSE), and mean 
absolute error (MAE) between the predicted and actual dry 
weights. A 5-fold cross-validation approach [25] was also used 
to test the prediction accuracy by assessing the R2, MAPE, 
RMSE, and MAE values. Statistical analyses of the 6 models 

Table. Definitions of extracted image-based traits. a, b, and c represented coefficients of quadratic polynomials.

Organ–temporal  
dimensions

Character classification Abbreviation Trait definition

Organ dimension Plant-related traits PlantH Height of the whole plant

PlantTPA Total projected area of the whole plant

PlantHWr Ratio of the height and width of the whole plant

PlantTPAHr Ratio of the total projected area and height of whole plant

PlantYpar Ratio of the yellow projected area and total projected 
area of the whole plant

PlantYPA Yellow projected area of the whole plant

PlantGPA Green projected area of the whole plant

Panicle-related traits PanicleTPA Total projected area of panicles

PaicleEndTPA Value of the final total projected area of panicles

PanicleTpar Ratio of the projected panicle area and whole plant area

PanicleYpar Ratio of the yellow projected area and total projected 
area of panicles

PanicleYPA Yellow projected area of panicles

Culm-related traits culmH Height of the plant culm

culmTPA Total projected area of the plant culm

culmTPAHr Ratio of the projected area and height of the plant culm

culmGpar Ratio of the green projected area and total projected area 
of the plant culm

culmYpar Ratio of the yellow projected area and total projected 
area of the plant culm

culmPHr Ratio of heights of the culm and whole plant

Grain-related traits AveGL Mean value of the grain length

AveLW Mean value of the grain length/width ratio

AveGW Mean value of the grain width

TFN Total spikelet number

Wper1000 1,000-grain weight

W Yield per plant (filled grain weight)

SF Spikelet fertility

GN Filled grain number

(Continued)
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were performed with LabVIEW 2015 (National Instruments, 
USA) and Python 3.8. The detailed statistical analysis results 
are shown in Tables S2 to S7, and related technical documen-
tation is also shown in Note S1.

Growth-related trait extraction
To determine the best plant growth model based on 2 plant-re-
lated traits, the PlantTPA and the ratio of the yellow projected 
area to the PlantTPA (PlantYpar), 6 models (including linear, 

Table.  (Continued)
Organ–temporal  
dimensions

Character classification Abbreviation Trait definition

Temporal dimension Phenological traits GP Days to harvest from sowing

HS Days to the beginning of heading from sowing

PlantSD Days to the onset of plant senescence from sowing

PlantHD Days to the maximum whole-plant height from sowing

PlantTPAD Days to the maximum total projected whole-plant area 
from sowing

PlantYparD Days to the maximum ratio of the yellow projected area to 
the total projected area of the whole plant from sowing

PlantYPAD Days to the maximum whole-plant yellow projected area 
from sowing

PlantGPAD Days to the maximum green projected area of the whole 
plant from sowing

PanicleTPAD Days to the maximum total projected area of the whole 
plant from heading

PanicleTparD Days to the maximum ratio of the projected panicle and 
whole-plant areas from heading

PanicleYparD Days to the maximum ratio of the yellow projected area to 
total projected area of panicles from heading

PanicleYPAD Days to the maximum yellow projected area of panicles 
from heading

Panicle growth-related 
traits

PanicleTPAG Value of daily growth of the total projected panicle area

PanicleTparG Value of daily growth of the ratio of the projected areas of 
panicles and the whole plant

PanicleYparG Value of daily growth of the ratio of the yellow projected 
area and total projected area of panicles

PanicleYPAG Value of daily growth of the yellow projected area of 
panicles

PanicleTPA_a TPA_panicle = at2 + bt + c

PanicleTPA_b TPA_panicle = at2 + bt + c

PanicleTPA_c TPA_panicle = at2 + bt + c
PanicleYpar_a ypar_panicle = at2 + bt + c

PanicleYpar_b ypar_panicle = at2 + bt + c

PanicleYpar_c ypar_panicle = at2 + bt + c
Plant growth-related 

traits
PlantHG Daily growth value of the height of the whole plant

PlantTPAG Daily growth value of the total projected area of the whole 
plant

PlantYparG Daily growth value of the ratio of the yellow projected 
area to the total projected area of the whole plant

PlantYPAG Daily growth value of the yellow projected area of the 
plant

PlantTPA_a TPA_plant = at2 + bt + c

PlantTPA_b TPA_plant = at2 + bt + c

PlantTPA_c TPA_plant = at2 + bt + c
PlantYpar_a ypar_plant = at2+bt+c

PlantYpar_b ypar_plant = at2 + bt + c

PlantYpar_c ypar_plant = at2 + bt + c
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quadratic, exponential, power, Gaussian, and sine triangular 
models) were evaluated. Similarly, 2 panicle-related traits, includ-
ing the PanicleTPA and the ratio of the yellow projected area 
to the PanicleTPA (PanicleYpar), were used to determine the 
best panicle growth model. The 6 models were implemented 
using LabVIEW 2015 (National Instruments, USA) and MATLAB 
2018b (MathWorks, USA), and related technical documenta-
tion is also shown in Note S1. On the basis of the best growth 
model, 6 plant growth-related traits and 6 panicle growth-related 
traits could be derived (Table 1).

Grain yield prediction using phenotypic traits
With all these i-traits considered in 6 different trait groups 
(plant-related trait group, panicle-related trait group, culm-
related trait group, phenological trait group, panicle growth-
related trait group, and plant growth-related trait group; Table 1), 

linear stepwise regression was used to evaluate the variance 
explained in terms of the yield. The linear stepwise regression 
analysis was implemented with IBM SPSS statistic software 
(IBM Corp., USA) with the stepping method criterion. Variables 
were added into the model or removed compared to the preset 
criterion of setting 0.05 and 0.1 as the entry and removal values 
of the use probability of F, respectively, and related technical 
documentation is also shown in Note S1.

Correlation analysis between grain-related and other 
phenotypic traits
To assess the correlation relationship between grain-related traits 
and other phenotypic traits during all growth stages, 7 trait 
matrices were prepared and examined using the Mantel test [26]. 
We computed the pairwise distances between samples on the 
basis of the grain-related trait group and 6 other trait groups (the 

Fig. 2. Correlations between manual measurements and automatic measurements. (A to C) Scatterplot of automatic measurements versus manual measurements for whole 
plant, panicle, and culm separately. (D) Scatterplot of yield predictions with all i-trait groups.
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plant-related trait group, panicle-related trait group, culm-related 
trait group, phenological trait group, panicle growth-related trait 
group, and plant growth-related trait group). We used Euclidean 
distances for the data to obtain distance matrices and computed 
partial Mantel correlations between the grain-related traits and 
6 trait groups (9,999 permutations) based on the vegan R soft-
ware package (R Foundation for Statistical Computing, Austria).

Kruskal–Wallis test and pairwise  
multiple comparisons
To compare all the i-traits among the different rice population 
structures and breeding regions, the Kruskal–Wallis test was 
used to determine whether the independent groups based on 
different classification criteria were the same or different. When 
the value of the Kruskal–Wallis test was calculated as statistically 
significant (P < 0.05), pairwise multiple comparisons among 
the groups were further performed to locate the source of sig-
nificance with the Wilcoxon test for at least one of the compared 
groups that differed from the others. The Kruskal–Wallis test 
and Wilcoxon test were implemented on the ggsignif R software 
package (R Foundation for Statistical Computing, Austria), and 
related technical documentation is also shown in Note S1.

Principal components analysis
Principal components analysis (PCA) was performed using the 
correlation matrix of trait values in the pca R software packages 
(R Foundation for Statistical Computing, Austria) by setting 
“scale = TRUE.” Twenty-six traits, including 7 plant-related 
traits, 5 panicle-related traits, 6 culm-related traits, and 8 grain-
related traits, were used to compute the PCs (Organ_PC). 
Furthermore, 32 traits, including 10 plant growth-related traits, 
10 panicle growth-related traits, and 12 phenological traits, were 
used to compute the PCs (Time_PC). The first 2 Organ_PCs 
and the first 2 Time_PCs explained 63.5% and 58.9% of the 
total variance in the organ and temporal dimensions, respec-
tively, and were retained for GWAS. GWAS was performed as 
described subsequently. The detailed statistical analysis results 
of PCA are shown in Tables S8 and S9, and related technical 
documentation is also shown in Note S1.

Genome-wide association study
Sequencing data of rice accessions were mapped to the rice refer-
ence genome Nipponbare (IRGSP 1.0) [27] with BWA [28]. Reads 
with mapping qualities lower than 30 and potential polymerase 
chain reaction duplicates were removed with SAMtools [29]. 
Potential misaligned reads caused by insertions/deletions were 
realigned with GATK [30]. Then, nucleotide variants were called 
and filtered using the UnifiedGenotyper and VariantFiltration 
tools in GATK. Biallelic SNPs with missing rates less than 0.1 and 
minor allele frequencies over 0.05 were used for the GWAS. 
GWAS was performed using EMMAX [31] with a mixed linear 
model, and the results were visualized with the R package ggplot2. 
A neighbor-joining tree was constructed with the same SNPs as 
GWAS using the R package ‘ape’ [32] and visualized with the R 
package ‘ggtree’ [33].

Results

Panicle segmentation and biomass modeling
After the side-view RGB image was acquired, the rice panicle 
was segmented with SegNet. A total of 154 panicle images were 
manually labeled and used as the training set, 40 images were 
used as the validation set, and 10 images were selected randomly 
as the testing set to evaluate the segmentation performance with 
4 indicators, including the intersection over union (IoU), preci-
sion, recall, and F-measure. The detailed segmentation evalua-
tion results of the 10 randomly selected images are listed in Table 
S10, showing that the mean IoU, precision, recall, and F-measure 
values were 0.83, 0.89, 0.92, and 0.91, respectively. The manual 
segmentation results extracted using Adobe Photoshop 2021 
(Adobe, USA) and the automatic segmentation results of the 3 
rice varieties are shown in Fig. S3.

To model the final panicle biomass, we further manually 
measured the dry weight of the panicle after harvest, and 6 mod-
els (including linear, quadratic, exponential, power, Gaussian, 
and sine triangular models) were compared using the PanicleTPA 
in the last shoot before harvest. Compared to other models, the 
quadratic model had a higher R2 value and lower values of other 
indices in the panicle dry weight modeling results, and the aver-
age R2 value between the predicted and manual dry weights was 

Fig. 3. Correlation analysis results based on i-traits. (A) Correlation analysis results of all i-traits. (B) Results of the Mantel tests between the grain-related traits and plant-
related traits.
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0.72 (Fig. 2B). A detailed statistical summary of the 6 models is 
shown in Table S2, and the model accuracy was also tested by a 
5-fold cross-validation approach (Table S3).

After the dry weight of the culm and the dry weight of the 
whole plant were obtained after harvest, the 6 models were 
compared using the culmTPA and PlantTPA, and similar results 
were found: The quadratic model had a higher R2 value. The 
average R2 values between the predicted dry weight and man-
ually measured dry weight of the whole plant and culm were 
0.86 (Fig. 2A) and 0.67 (Fig. 2C), respectively. Detailed statis-
tical summaries of the 6 models for culm biomass and plant 

biomass are shown in Tables S4 and S6. The model accuracy in 
terms of the culm biomass and plant biomass was also tested 
by a 5-fold cross-validation approach, as shown in Tables S5 
and S7, respectively.

Temporal–organ developmental trait extraction
Exploring the growth and senescence trends of plants and pan-
icles would be meaningful and interesting for rice breeding. On 
the basis of PlantTPA, PlantYpar, PanicleTPA, and PanicleYpar 
during all growth stages, 6 growth models representing plant 
growth, plant senescence, panicle growth, and panicle matura-
tion were applied and compared (Tables S11 to S14). It was 
proven that the quadratic model fitted the trend curve best, 
with a relatively high R2 value and low MAPE and SDAPE values. 
The R2 values of the plant growth, plant senescence, panicle 
growth, and panicle maturation models were 0.944, 0.916, 
0.846, and 0.95, respectively. On the basis of the quadratic 
model, 6 panicle growth-related traits and 6 plant growth-related 
traits were derived (Table 1) and can reflect the dynamic 
changes in plant growth or panicle maturation. For example, 
PlantTPA_a reflected the growth speed and biomass (Fig. S4A) 
and PanicleYpar_a reflected the maturation speed (Fig. S4B).

Yield prediction using i-traits
It would be worthwhile for plant breeders to explore whether 
the existing traits obtained in i-traits can be used to predict the 
final rice yield. In this study, the rice yield was modeled using 
6 groups of i-traits (the plant-related trait group, panicle-related 
trait group, culm-related trait group, phenological trait group, 
panicle growth-related trait group, and plant growth-related 
trait group; Table 1) with linear stepwise regression. The results 
showed that the explanatory ability of the yield variance reached 
84.8% for the 8 traits (Fig. 2D). Compared to the other 5 groups, 
up to 65% of the phenotypic variance in yield could be explained 
by the panicle growth-related trait group, which performed 
better than the other groups. The specific details of these results 
are shown in Tables S15 to S20. The selected traits based on the 
i-trait group displayed some interesting features about the rice 
yield. For example, the maximum value of the total projected 
panicle area showed a strong positive correlation (PanicleTPA; 
r = 0.804), indicating that the final rice yield would be influ-
enced by the total projected area. Positive correlations were 
also found between the yield and some growth-related traits, 
such as PanicleYpar_a (r = 0.522), which would reflect a chang-
ing panicle maturity pattern and, thus, influence the final yield. 
The correlations between all the i-traits are shown in Fig. 3, and 
the results of the Mantel test are shown in Table S21.

Variations in phenotypic traits with  
different latitudes
The specific climate conditions of breeding regions necessitate 
crop varieties with good environmental adaptability, and crop 
growth and development models also show high inosculation 
with the latitude of the breeding region [34]. Here, the breeding 
region was divided into different latitude levels (Fig. 4A and C) 
to analyze whether an adaptation between the phenotypic traits 
of the elite rice cultivars and regional latitude was present. 
Overall, among japonica rice varieties, the heading stage 
(HS), which greatly contributes to the climatic and regional 
adaptability of japonica rice, showed a significant negative 

Fig.  4.  Division of breeding regions and distribution of phenotypes in indica rice 
and japonica rice. (A) Division of the breeding regions of japonica rice varieties at 
different latitudes. (B) Distribution of the HS and PlantTPA values of japonica rice in 
breeding regions at different latitudes. (C) Division of the breeding regions of indica 
rice varieties at different latitudes. (D) Distribution of the TFN and PlantTPA values 
of indica rice in breeding regions at different latitudes.
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correlation with the regional latitude (P < 0.001) [35], as did 
the plant biomass (PlantTPA; P < 0.001) (Fig. 4B). These results 
indicated that, among the 61 analyzed japonica accessions, the 
rice accessions with higher latitudes had earlier HSs and larger 
plant biomasses. Among the indica rice cultivars, significant 
differences were also observed between the latitude and total 
spikelet number (TFN; P < 0.001) and between latitude and 
the plant total projected area (PlantTPA; P < 0.001). These 
results indicated that, among these 32 indica accessions, the 
higher-latitude rice accessions had smaller spikelet numbers 
and larger plant biomasses (Fig. 4D).

Variation in phenotypic traits with different  
rice genotypes
The neighbor-joining tree and the division of the breeding 
region of all rice varieties are shown in Fig. 5A and B. Indica 
rice genotypes showed earlier senescence as a result of the 
Kruskal–Wallis test than the 2 japonica cultivar groups at the 
whole plant level and leaf level, as has been supported in pre-
vious studies [36]. HS (days to harvest from sowing), AveLW 
(mean value of the grain length/width radio), PanicleYPA (yel-
low projected area of panicles), and PlantYpar showed signifi-
cant differences with the Kruskal–Wallis test within the 4 
genotype groups (P < 0.05), while the pairwise comparison 
results among them differed. There were statistically significant 
differences between HS and PanicleYPA in different subspe-
cies, but there were no significant differences between the 

Indica-2 group and the Japonica-1 group, potentially because 
of the similar genotypes of samples in these 2 groups (Fig. 5C). 
AveLW showed a significant difference between the indica and 
japonica subspecies groups, and Indica-1 grains were more 
elongated than the grains of the other 3 groups (Fig. 5C).

GWAS with i-traits
On the basis of these phenotypic data, we performed a GWAS 
with 87 accessions genotyped with 2,546,013 SNP markers. The 
significance threshold of the P value for each trait was deter-
mined by a permutation test (200 times; false discovery rate < 
0.01). A total of 285 putative QTLs were detected for 33 traits 
(Table S22), including 255 for the raw phenotype traits and 30 
for the organ–temporal dimension i-traits defined by the PCA. 
Although the small sample size limited the power and resolu-
tion of the association analysis, we were still able to detect some 
known quantitative trait loci, including GSE5 [37] and GS3 
[38], which determined the rice grain shape (Fig. 6A). This 
suggests that we may be able to unearth novel genetic loci with 
relative confidence from this small population. We thus focused 
on some i-traits that are difficult to acquire by conventional 
methods but have strong biological implications.

The senescence of rice plants is accompanied by chlorophyll 
degradation and plant yellowing. The ratio of the yellow pro-
jected area provides a good indicator for measuring plant senes-
cence. Two QTLs on chromosome 2 (Fig. 6B) and chromosome 
4 (Fig. 6C) were detected for PlantYpar and culmYpar (ratio of 

Fig. 5. Division of the breeding regions and distribution of phenotypes in different rice genotypes. (A) Group clustering results of different rice genotypes. (B) Group divisions 
of different rice genotypes. (C) HS, AveLW, PanicleYPA, and PlantYpar values corresponding to different rice genotype groups.
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the yellow projected area to the culmTPA), respectively. For 
both QTLs, the major allele in the indica subpopulation con-
tributed to higher levels (Fig. 6D and E), which is consistent 
with the observation that indica rice exhibits earlier senescence 
in both whole plants and leaf organs than japonica rice [36]. 

These findings provide potential markers for further research 
on rice senescence and breeding.

Performing GWAS on the PC values of raw traits may disclose 
genetic loci contributing to integrated variables that could be 
overlooked by using individual traits [39]. We then performed 

Fig. 6. GWAS of traits. (A to C) Manhattan plots of AveLW, culmYpar, and PlantYpar. (D and E) Boxplots showing the phenotype distributions of the 2 genotypes on the lead 
SNP of culmYpar and PlantYpar. Accessions from the 2 major subspecies, indica (IND) and japonica (JAP), are displayed separately to exclude the impacts of the population 
structure. Genotype 0 indicates the reference genome (Nipponbare (NPB)) allele, and genotype 1 indicates an alternative allele. (F) Representative indica and japonica rice 
accessions exhibiting different culmYpar and PlantYpar values.

Fig. 7. PCA and GWAS results with organ dimension traits. (A) Loading plot of Organ_PC1 and Organ_PC2. The proportions of variances in Organ_PC1 and Organ_PC12 are 
shown in parentheses. (B and C) GWAS results for Organ_PC1 (B) and Organ_PC2 (C) shown using the organ dimension traits. In the Manhattan plots, the horizontal dashed 
lines represent significant thresholds. The arrows indicate peaks that were further analyzed.
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GWAS on the PCA results of organ- and time-related traits, and 
the specific details of the results are shown in Tables S8 and S9. 
For the Organ_PC traits, the first 2 PCs (Organ_PC1 and 
Organ_PC2) explained 40.3% and 23.3% of the total trait vari-
ance, respectively (Fig. 7A). Many traits related to plant and 
panicle architecture showed high positive loading on Organ_
PC1, including the plant yellow projected area (PlantYPA), total 
spikelet number (TFN), plant height (PlantH), culmTPA, and 
PlantTPA. Organ_PC2 may be related to panicle growth and 
maturity. We detected 4 QTLs using Organ_PC1, all of which 
overlapped with the QTLs for raw traits such as the PlantTPA, 
culmTPA, and HS (Fig. 7B and C).

For the Time_PC traits, the first 2 PCs (Time_PC1 and 
Time_PC2) explained 34.5% and 24.3% of the total trait vari-
ance, respectively (Fig. 8A). Time_PC1 was highly related to 
the plant TPAG (daily growth value of the PlantTPA). Time_
PC2 may have been related to the panicle growth and maturity 
rates. We detected 26 QTLs for the temporal PCA values, most 
of which overlapped with QTLs for the PlantTPAG, PlantHG 
(daily growth value of the height of the whole plant), and related 
parameters. Among them, a QTL on chromosome 3, with a 
lead SNP on chromosome 3 24262598, was detected by both 
the organ and temporal PCs, indicating that this locus deserves 
further study in the future involving confirmations using larger 
panels (Fig. 8B and C).

Discussion
Confined to the limitations of traditional phenotyping involv-
ing the high labor cost, low efficiency, and high time consump-
tion, most previous GWAS studies have usually focused on 
traditional phenotypes obtained manually at a specific point in 
time, generally at the mature stage, with characteristics of rel-
ative simplicity and the serious difficulty of large-number sam-
pling; thus, with previous methods, it is almost impossible 

to perform vertical analyses in the temporal dimension. The 
growth of rice is a dynamic process, and the acquisition of 
phenotypes at the end time point is greatly affected by human 
activities, which are frequently obtained at the expense of 
integrity with destructive methods. With the development of 
high-throughput phenotype facilities, phenotype traits can be 
obtained precisely by ensuring high-throughput and nonde-
structive high-density time points that provide different research 
directions. In this study, we developed a strategy for the acqui-
sition and analysis of image-based phenomes from the indi-
vidual to organ level in rice during the whole growth period.

On the basis of the i-trait phenomes obtained here, up to 
84.8% of the phenotypic variance in the rice yield could be 
explained by 8 traits among all i-traits considered, and this 
traits could thus be applied to predict the final rice yield better 
than predictions performed with other trait groups. This find-
ing indicates that the i-traits obtained here can comprehen-
sively reflect the growth status of rice, with the exception of the 
final yield.

To further explore the good environmental adaptability 
of the crop growth and development model, which would 
also show high inosculation with the latitude of the breeding 
region, the breeding region was divided into different latitude 
levels, and the correlations between all the image-based phe-
notypic traits of the elite rice cultivars and the regional lati-
tude are shown in Fig. 4. Interestingly, in addition to the HS 
of japonica rice showing an increasing negative correlation 
with the region latitude, some traits showed correlations with 
the regional latitude with significant differences among rice 
accession groups, such as PanicleTPA and TFN of indica rice, 
which may explain the difference in the yields of different 
rice cultivars with the difference in the geographical envi-
ronment of the breeding region. Moreover, the differences in 
rice subspecies were analyzed using the image-based pheno-
typic traits, which, in addition to PlantYpar, indicated the 

Fig. 8. PCA and GWAS results with temporal dimension traits. (A) Loading plot for Time_PC1 and Time_PC2. The proportions of variances in Time_PC1 and Time_PC2 are 
shown in parentheses. (B and C) GWAS results for Time_PC1 (B) and Time_PC2 (C) shown using the temporal dimension traits. In the Manhattan plots, the horizontal dashed 
lines represent significant thresholds.
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senescence degree at the whole-plant and leaf level, and the 
HS, AveLW, and PanicleYPA terms also showed significant 
differences.

Combining the high-throughput rice phenotyping platform 
and GWAS to unlock the genetic information coded in rice, 
more than 255 putative QTLs for i-traits were identified, and 
the known identification of GSE5 and GS3 also most likely 
eliminated the limitation of the power of association analysis 
with a small population. The life span of rice showed a close 
relationship with plant senescence, which is also a basic prob-
lem in evolutionary ecology. PlantYpar was defined as the value 
of the ratio of the yellow projection area to the overall color 
distribution of the whole plant, regarded as an important quan-
titative index of plant senescence, and the detection of QTLs 
was thus of great significance. The indica rice displayed earlier 
senescence than japonica rice [36], and the identification of the 
QTLs of PlantYpar and culmYpar on chromosome 2 and chro-
mosome 4 offered potential markers for studying rice yield 
maximization.

Furthermore, PCA was also performed for the characteris-
tics of the rice accessions in the organ–temporal dimension, 
and GWAS using PC scores was utilized to identify genetic 
factors. For organ dimension traits, Organ_PC1 captured 40.3% 
of the whole-trait variations in the organ dimension, whereas 
Organ_PC2 captured 23.3% of the variations in which Organ_
PC1 primarily affected plant architecture and Organ_PC2 may 
have been related to panicle growth and maturity. Comparing 
the temporal dimension traits, Time_PC1 and Time_PC2 cap-
tured 34.5% and 24.3% of the total traits in the temporal dimen-
sion, respectively, which may have been related to the heading 
date and panicle growth-related traits. Among the PC values 
of the organ and temporal traits, a QTL on chromosome 3, with 
a lead SNP on chromosome 3: 24262598, was detected by 
both the organ and temporal PCs, indicating that this locus is 
deserving of further studies in the future involving confirma-
tions with larger panels. Note that performing GWAS on the 
traits integrated by PCA is a double-edged sword, as it may not 
only help resolve the potential loci associated with complex 
traits but also cause more serious confounding effects, espe-
cially when using panels with strong population structures and 
traits with complex genetic control factors. As a proof of con-
cept, this study demonstrates the potential value of this pathway 
in high-throughput phenomics studies and provides a reference 
for further similar studies in the future.

Conclusion
In summary, in this work, on the basis of a high-throughput 
phenotyping tool, we extracted phenotypic traits by further 
analyzing the traits obtained across the whole growth stages of 
rice from the individual level to the organ level and identified 
trait-related QTLs with GWAS, thus providing a new research 
direction for heterosis breeding.
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