Plant Soil
https://doi.org/10.1007/s11104-020-04612-2

REGULAR ARTICLE

Inundation depth affects ecosystem CO, and CH,4 exchange

®

Check for
updates

by changing plant productivity in a freshwater wetland

in the Yellow River Estuary

Mingliang Zhao - Guangxuan Han - Haitao Wu - Weimin Song - Xiaojing Chu -
Juanyong Li - Wendi Qu - Xinge Li - Siyu Wei - Franziska Eller - Changsheng Jiang

Received: 26 January 2020 / Accepted: 16 June 2020
© Springer Nature Switzerland AG 2020

Abstract

Aims Climate change (extreme rainfall) and water man-
agement activities have led to variation in hydrological
regimes, especially inundation, which may alter the
function and structure of wetlands as well as wetland-
atmosphere carbon (C) exchange. However, the degree
to which different inundation depths (standing water
depth above the soil surface) affect ecosystem CHy
fluxes, ecosystem respiration (R..,) and net ecosystem
CO, exchange (NEE) remains uncertain in wetland
ecosystems.

Highlights

1. Variations in ecosystem CH, and CO, exchange at different
inundation depths are addressed

2. Inundation depth increased the reed density, height, leaf area
index and biomass

3. Ecosystem CH, and CO, exchange exhibited parabolic
responses to inundation depth

4. Plant traits correlated with ecosystem C exchange under
different inundation depths

5. Inundation decreased the global warming potential during the
growing season
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Methods We conducted a field inundation depth manip-
ulation experiment (no inundation, i.e. only natural pre-
cipitation; 0, water-saturated; 5, 10, 20, 30 and 40 cm
inundation depth) in a freshwater wetland of the Yellow
River Delta, China. The CH, fluxes, R.., and NEE were
measured with a static chamber technique during the
growing seasons (May—October) of 2018 and 2019.

Results Inundation depth significantly increased plant
shoot density, above-water level leaf area index
(WLAI), above-water level plant shoot height
(WHeight), aboveground and belowground biomass of
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the dominant grass Phragmites australis in both years.
Meanwhile, inundation depth increased the CH, fluxes,
Reco (except for 0 cm) and NEE compared to no inun-
dation, which could be attributed partly to the increased
plant productivity (shoot density, WLAI, WHeight, bio-
mass). Additionally, the CH,4 fluxes, R, or NEE ex-
hibited parabolic responses to inundation depth. Fur-
thermore, global warming potential (GWP) was signif-
icantly decreased under different inundation depths dur-
ing the growing season, especially from 5 to 40 cm
inundation depth in 2019. NEE was the largest contrib-
utor to the seasonal GWP, which indicates that the
inundated wetlands are a net sink of C and have a
cooling climate effect in the Yellow River Delta.
Conclusions Inundation depth substantially affects the
magnitude of CH, fluxes, R.., and NEE, which were
correlated with altered plant traits in wetland ecosys-
tems. Inundation depth could mitigate greenhouse gas
emissions in the P. australis wetlands during the grow-
ing season. Inundation depth-induced ecosystem C ex-
change should be considered when estimating C seques-
tration capacity of wetlands due to climate change and
water management activities, which will assist to accu-
rately predict the impact of hydrological regimes on C
cycles in future climate change scenarios.

Keywords Inundation depth - Plant productivity - Net
ecosystem CO, exchange - Ecosystem respiration -
Ecosystem CH, fluxes

Introduction

Wetlands occupy only 5-8% of the Earth's total land
surface (Mitsch and Gosselink 2007), but are widely
recognized as high-carbon (C) ecosystems in the bio-
sphere, because wetlands hold 20-30% of the estimated
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1500 Pg of the global soil C pool (Nahlik and Fennessy
2016). Therefore, wetlands play an important role in
regulating the C cycle at a global scale (Xiao et al.
2019). The hydrological regime is a key process in
wetland ecosystems, which not only affects the structure
and function of wetland ecosystems but also controls the
C sink and source of wetlands (Webb and Leake 2006;
Jimenez et al. 2012; Rasmussen et al. 2018). Hydrolog-
ical regimes have been altered by global climate change
in terrestrial ecosystems during recent years, resulting in
increases in intensity and frequency of extreme rainfall,
thereby increasing the risk of prolonged inundation
(IPCC 2013; Trenberth 2011; Westra et al. 2014). These
alterations in hydrology (e.g. inundation) increase the
likelihood of changes in wetland ecosystem structure
and function, affecting ecosystem C exchange (e.g.
carbon dioxide (CO,) and methane (CH,4); Han et al.
2015; Sanchez-Rodriguez et al. 2019). Thus, it is im-
portant to understand how the wetland-atmosphere C
exchange responds to changes in hydrological condi-
tions, such as inundation, which may potentially pose a
large feedback to ongoing climate change (Han et al.
2015; Zhao et al. 2019).

Inundation creates anaerobic conditions in the
flooded soil that exert a physiological stress on wetland
plants depending on the inundation-tolerance of a spe-
cies (Liu et al. 2018; Zhao et al. 2018). For less
inundation-tolerant plants, this stress limits photosyn-
thetic leaf area due to partial submergence of shoots and
leaves (Schedlbauer et al. 2010; Jimenez et al. 2012). At
the same time, the diffusion rate of CO, in water is
slower than in air (Matsuda et al. 2017), which results
in reduced leaf photosynthesis due to slow uptake of
CO, into leaves. In addition, the photosynthesis of sub-
merged leaves can be limited mainly through hindering
the light transmission, especially when the above sur-
face water is deep and/or turbid (Han et al. 2015).
Moreover, inundation causes an oxygen deficiency to
roots and disrupts the connection with the atmosphere
(Garssen et al. 2015). Consequently, anoxic conditions
inhibit root respiration and plant photosynthesis, which
has a negative impact on plant growth (Sairam et al.
2008). In addition to ecosystem CO, uptake, inundation
may also reduce ecosystem respiration. On the one
hand, inundation results in partial plant stomatal closure
and transpiration cessation below the water surface and
restrains plant respiration (Han et al. 2015; Zhao et al.
2019) and microbial respiration, attributed to lowered
diffusion of oxygen, limited aerobic microbial activity,
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C mineralization and decomposition rates (Jimenez et al.
2012; McNicol and Silver 2014). On the other hand, due
to the slow diffusion rate of CO, in water, the diffusive
boundary layer resistance could limit rates of CO, emis-
sion through the water surface (Han et al. 2015). There-
fore, the effect of hydrological regimes on CO, uptake
and emission are unequal, which can result in remark-
able alterations in ecosystem C balance.

Wetlands often act as a net source of CHy, especially
wetland ecosystems that are inundated to a high degree,
which is strongly related to the higher activity of me-
thanogenic bacteria, lower oxidation rates and transport
of CH,4 from the anaerobic zone to the atmosphere
(Cheng et al. 2007; Koelbener et al. 2010; Bridgham
et al. 2013). On the one hand, inundation could promote
inundationtolerant plant growth, such as Phragmites
australis and Typha domingensis, which provide organ-
ic substrates for methanogens by biomass decomposi-
tion and root exudation, consequently enhancing CH,4
emissions in a flooded, anaerobic environment (Cheng
et al. 2007; Koelbener et al. 2010; Yang et al. 2013).
Moreover, these vascular plants can transport CH,4 from
the root zone to the atmosphere through dead culms,
thereby bypassing the oxidizing layers and enhancing
CH, emissions. On the other hand, aerenchyma of vas-
cular plants can transport O, to the rhizosphere and
promote the oxidation of CH,4 in a micro-aerobic envi-
ronment under inundated conditions (Henneberg et al.
2012; Bridgham et al. 2013).

However, there are only a few studies on the effects
of inundation on ecosystem CO, and CH,4 exchange in
different types of wetlands, and the outcomes from these
studies are conflicting. For example, inundation weak-
ened the ecosystem CO, sink and ecosystem respiration
strength in a Florida Everglades marsh with a short-
hydroperiod (Schedlbauer et al. 2010; Zhao et al.
2019) and in a supratidal wetland of the Yellow River
Delta (Han et al. 2015). On the contrary, inundation
increased ecosystem CO, sink, respiration and CHy
fluxes with increasing vegetation biomass in a temperate
fen after inundation (Minke et al. 2016). Although many
studies have focused on the effects of hydrological
conditions (especially groundwater table) on ecosystem
CO, and CH,4 exchange in different wetlands
(Jungkunst and Fiedler 2007; Olefeldt et al. 2017;
Ratcliffe et al. 2019; Wang et al. 2017; Yang et al.
2014), less effort has been conducted to understand the
effect of inundation intensity and especially different
inundation depths. This suggests that more

investigations are required to elucidate the regulatory
mechanisms governing the influence of inundation
depths on ecosystem CO, and CH,4 exchange in wetland
ecosystems.

The Yellow River Delta is one of the most active
regions of land-ocean interaction among the many river
deltas in the world. The interaction of groundwater,
precipitation and seawater intrusion has produced a
variety of wetland types, plant communities, and eco-
logical functions under different hydrological condi-
tions (Han et al. 2015). During the rainy season, differ-
ent inundation depths are observed, which depend on
the intensity of precipitation. In recent years, the fre-
quency and intensity of extreme rainfall have increased
(Han et al. 2018), which indicates that the inundation
frequency of wetlands is also increasing. Furthermore,
the Chinese government has used freshwater from the
Yellow River to restore the degraded wetlands in the
Yellow River Delta wetlands in the past 20 years (Yang
et al. 2017), which also caused more wetland soils to be
inundated. These changes in inundation depth caused by
extreme rainfall and water management activities may
modify wetland-atmosphere CO, and CH, exchange.
Therefore, we conducted a field inundation depth ma-
nipulation experiment in a freshwater wetland in the
Yellow River Estuary during the growing season in
2018 and 2019. Our objectives were (1) to understand
how changes in inundation depth affects plant traits and
(2) to illustrate how ecosystem CO, and CH,4 exchange
respond to changes in inundation depth.

Materials and methods
Site description

This study was carried out in the Yellow River Delta
Ecological Research Station of Coastal Wetland (37°45'
50” N, 118°5924" E, elevation: ~2.5 m above sea
level), Chinese Academy of Sciences, which is located
in Kenli County, Shandong Province, China. The site is
located in supratidal wetlands of the Yellow River Del-
ta. It has a warm-temperate and continental monsoon
climate. The mean annual temperature is 12.9 °C. An-
nual precipitation averages 550-640 mm, ~74% of
which occurs from June to September. After extreme
rainfall, the wetlands are often inundated to different
water levels, which will last for nearly 1-2 months.
During the extreme rainfall-driven inundation, the
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cumulative rainfall reached nearly 230 and 300 mm in
2018 and 2019, respectively (the weather data comes
from the research station). The hydrology of the site is
affected by the interactions of groundwater, precipita-
tion and seawater. Meanwhile, the hydrology of the
region is influenced by the use of freshwater from the
Yellow River (Yang et al. 2017) to restore degraded
wetlands in the Yellow River Delta National Nature
Reserve. The groundwater table is shallow with an
average depth of 1.14 m. The soil type gradually varies
from fluvo-aquic to saline soil, and soil texture is mainly
sandy clay loam with 6.54 g kgf1 soil organic matter
content at 0—20 cm depth. The vegetation is relatively
homogeneous and strongly dominated by common reed
(Phragmites australis) with other associated species
including Suaeda salsa, Tamarix chinensis, Imperata
cylindrica, and Tripolium vulgare.

Experimental design

The experiment consisted of seven soil surface in-
undation depths, including control (no inundation,
only natural precipitation, CK), 0 (water-saturated),
5, 10, 20, 30 and 40 cm inundation depth, respec-
tively. Each treatment was replicated four times, and
each replicate plot (2 m length X 2 m width x 0.5 m
height) was separated by cement barriers at a 40 cm
distance. Soil and vegetation were rarely damaged
during installation of the cement barriers. There was
an opaque plastic water tank (80 cm diameter and
120 cm long) at the position of 1.5 m above the
ground connected to each plot with tubes. The float
ball, installed at the end of the tube, controlled the
water level in each plot. When the water levels fell,
the valve body would sink down and the water
would flow into the plot. The water could not be
stopped until the water level reached the fixed inun-
dation depth (Fig. S1). The water came from a small
lake (below 1 mS cm™ ') near the experimental site
(originally from the Yellow River which runs into
the Bohai Sea) and a pump was used to pump the
water into the tank after filtration to prevent the
inflow of large particles and algae into the tank
and tubes. There was a small hole in the wall of
each plot, which was used to drain the excess water
out of the plot after rain. The inundation treatments
were applied from April to October of each year
starting in 2017 and the vegetation of each plot
was dominated by P. australis.

@ Springer

Measurements of ecosystem CO, and CH, exchange

The ecosystem C exchanges including net ecosystem
CO, exchange (NEE), ecosystem respiration (R.,) and
CH,4 fluxes were all measured with an LGR
Ultraportable Greenhouse Gas Analyzer (UGGA, Los
Gatos Research, Inc., San Jose, USA) that measures gas
concentrations continuously and automatically. The
LGR analyzer was attached to transparent (NEE, CHy4
flux) and opaque (Re,) cylindrical chambers (Plexi-
glas), which were put over patches covered by
P. australis inside each plot. The static chambers
consisted of transparent acrylic plastic with three parts:
a base frame (30 cm in diameter, 10, 10, 15, 20, 30, 40,
50 cm in height for the seven treatments, respectively), a
removable middle box (30 cm in diameter, 100 cm in
height) and a removable top box (30 cm in diameter,
100 cm in height). The base frames were installed into
the soil to 5 cm depth, with 5 cm of the frame emerging
above the water surface (Wei et al. 2020), in the center
of each plot in May 2018. The removable middle box
was only used when the height of the vegetation was
higher than 100 cm. The removable middle or top box
was carefully placed on the top of the base frame and
sealed with a sealing strip at the joints in order to
maintain the chamber sealed during the measurement.
Two battery driven fans (8 cm in diameter, 12 V) were
installed inside the top of each chamber to generate
turbulence inside the chamber during sampling. The
gas fluxes (NEE, R..,, CH4 flux) were measured once
amonth in 2018, twice a month in 2019 (from 8:00 a.m.
to 11:00 a.m.) during the growing season (from May to
October). For each measurement, chambers were sealed
for 3 min, and CO, and CH, fluxes were measured.

Measurements of shoot density, WLAIL, WHeight,
biomass

During the growing season, above-water level leaf area
index (WLAI) of P. australis was measured using an
ACCUPAR LP-80 ceptometer (METER Group, Pull-
man, WA, USA). Because the LAI is dependent on the
spatial and illumination characteristics of the scanned
location, four scans were made for each plot in the four
cardinal directions. Consequently, the average of the
four measurements was considered as the WLAI value
for each plot. In addition, we measured the P. australis
density and above-water level height (WHeight) per m”
in the plots when measuring the ecosystem CH, fluxes,



Plant Soil

R0, and NEE. The biotic factors were measured once a
month in 2018 and twice a month in 2019. Before
biomass harvest, the water in each plot was removed.
Aboveground biomass (AGB) was clipped at the sedi-
ment surface from a 0.25 m* quadrat in each plot, oven
dried at 65 °C for at least 2 days until no weight loss
occurred anymore, and weighed. One soil core (10 cm in
diameter) of 0—40 cm was excavated in each plot. The
root samples from the core were washed by wet sieving
under gently flowing water to remove attached soil and
debris, then oven dried at 65 °C for 2 days, and weighed
to determine the belowground biomass (BGB).

Global warming potential (GWP)

In the estimation of GWP, CO, is used as a refer-
ence gas. The CH, emissions are converted to the
equivalent amounts of CO, based on the GWP val-
ue. The growing season CH, emission was convert-
ed to CO, equivalents by multiplying with a GWP
factor of 28 (based on a 100-year time horizon). A
positive GWP indicates a release of greenhouse gas-
es (GHGs) to the atmosphere and a potential climate
warming effect, while a negative GWP indicates
GHG uptake from the atmosphere and a potential
climate cooling effect (Tian et al. 2015). We calcu-
lated the GWP of the different inundation depths by
using the following equation (IPCC 2013):

GWP(CO,equivalent) = CO; x 1 + CH4 x 28

Statistical analysis

In each year, NEE, R..,, CH, fluxes, GWP and
biotic factors (shoot density, WLAI, WHeight,
AGB and BGB) were subjected to one-way
ANOVA and significant differences between differ-
ent inundation depths were examined with the Tur-
key’s multiple range test. Multiple regressions were
performed for the relationships between seasonal
mean CHy fluxes, Re.,, NEE and inundation depth
or biotic factors under different inundation depths.
Two-way analysis of variance (ANOVA) was con-
ducted to analyze the NEE, R..,, CH, fluxes, GWP
and biotic factors, including inundation depth, years
and their interactions. In all tests, a significance
level of 0.05 was used. Statistical analyses were

conducted using software package SPSS version
13.0 (SPSS Inc., Chicago, IL, USA).

Results

Changes in shoot density, WLAI, WHeight and biomass
under different inundation depths

Inundation depth significantly affected all biotic fac-
tors (Figs. 1 and 2 Table 1). The reed shoot density
gradually increased from early April to late August,
and then decreased until the end of growing season
in 2018 and 2019 (Fig. S2a and b). Inundation
significantly increased plant shoot density compared
with the control, but there was no significant differ-
ence between the different inundation depths
(Fig. 1a and b). The above-water level reed height
(WHeight) gradually increased in the early growing
season in 2018 and 2019, and then reached a peak in
late August. After that, WHeight did not change any
more (Fig. S2¢ and d). Inundation significantly in-
creased WHeight relative to the control (P <0.05,).
The highest WHeight was 212.6 cm and 212.2 cm at
10 cm inundation depth and gradually decreased
from 20 to 40 cm inundation depth in both years
(Fig. lc and d). The seasonal dynamics of above-
water level leaf area index (WLAI) under different
inundation depths showed a similar pattern through-
out both growing seasons. The WLAI gradually
increased in the early growing season, then reached
a peak in late July. By August, WLAI decreased in
all treatments as a consequence of leaf senescence
(Fig. S2e and f). Inundation significantly increased
WLAI compared to the control (P <0.05) but no
significant changes in WLAI were found from 10
to 40 cm inundation depth. The highest WLAI was
3.79 and 3.94 under 20 cm inundation depth in 2018
and 2019, respectively (Fig. le and f). Inundation
significantly increased the AGB and BGB compared
to the control (P <0.05, Table 1), but had no signif-
icant effects from 0 to 40 cm inundation depth in
either year (Fig. 2). BGB accounted for 59% and
61% of total biomass in 2018 and 2019, respective-
ly. Overall, nonlinear relationships between
WHeight, WLAI, biomass and inundation depth
can be observed (Figs. 1 and 2). Additionally, there
was no significant difference in shoot density,
WHeight, AGB and BGB between the two years
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Fig. 1 Variations in (a, b) plant
density, (¢, d) plant height relative
to water level (WHeight) and (e,
f) above-water level leaf area
index (WLALI) at different
inundation depths during the
growing season in 2018 and
2019. Data (means + SE, n=4)
followed by different letters
indicate significant differences
(P<0.05)

Fig. 2 Variations in (a, b)
aboveground biomass (AGB) and
(¢, d) belowground biomass
(BGB) at different inundation
depths during the growing season
in 2018 and 2019. Data (means +
SE, n=4) followed by different
letters indicate significant
differences (P < 0.05)
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Table 1 Results (F values) of two-way ANOVA on the effects of
Inundation depth (ID), year (Y) and their interactions on plant
shoot density, above-water level leaf area index (WLAI), plant
height relative to water level (WHeight), aboveground biomass

(AGB) and belowground biomass (BGB), ecosystem CHy fluxes
(CHy), ecosystem respiration (R.,), net ecosystem CO, exchange
(NEE) and Global warming potential (GWP)

Effect Density WLAI WHeight AGB BGB CH4 Reco NEE GWP

ID 15.12%%* 5438k 213.84#% 9.36%** 7.18%%% 26.32%%% 28,82 39.26%** 988k
Y 0.02 6.97* 0.65 0.65 0.27 147.36%%* 61.68%** 388.48%%* 382.8%**
IDxY 0.06 0.36 1.50 0.21 0.24 4.91%%* 0.74 9.55%* 11.61%%%*

and no significant interactive effect between inunda-
tion depth and year (Table 1).

Effects of inundation depth on ecosystem CO, and CH,4
exchange

The CH, fluxes, R, and NEE showed distinct seasonal
patterns under different inundation depths during the
growing season in 2018 and 2019 (Fig. S3). Ecosystem
CH, fluxes gradually increased during the early growing
season, and then reached a peak in August and rapidly
declined thereafter (Fig. S3a and b). With the
P. australis canopy fully developed, Re., and NEE
reached a peak in late July in both years under the
different inundation depths. From August to October,
the R, and NEE rapidly decreased with the decrease of
solar radiation, temperature and WLAI (Fig. S3c—f).
Inundation depth significantly affected the magni-
tudes of CHy4 fluxes, R.., and NEE in 2018 and 2019
(Fig. 3). The CHy4 fluxes, Re., and NEE exhibited a
parabolic curve against the inundation depth (Fig. 4).
Compared to the control, inundation significantly in-
creased CH, fluxes (P < 0.05), but affected CH, fluxes
from 10 to 40 cm inundation depth to a minor degree
(Fig. 3a and b). Inundation significantly increased R,
in both years relative to the control (P < 0.05), except for
0 cm inundation depth, while only minor differences in
Reeo Were found from 5 to 40 cm inundation depth in
2018, and among 5, 20, 30 and 40 cm inundation depth
in 2019 (Fig. 3c and d). Inundation significantly in-
creased NEE during the growing season in both years
(P <0.05). However, inundation depth had little effect
on NEE among 5, 10 and 20 cm inundation depth in
2018, and among 5, 10, 20, 30 and 40 cm inundation
depth in 2019 (Fig. 3e and f). In addition, the CH,4 fluxes
in 2018 were higher than those in 2019, whereas R,
and NEE in 2018 were lower than those in 2019
(P<0.001; Table 1). The inundation depth of 40 cm

had the highest, albeit still negative, GWP and the
inundation depth of 5 cm resulted in the lowest GWP
(closely followed by 10 cm) during the growing season
in 2018, while there was little difference in GWP among
the other inundation depths (Fig. 5a). During the grow-
ing season in 2019, inundation significantly decreased
GWP compared to the control. However, only minor
differences in GWP were found from 5 to 40 cm inun-
dation depths, which overall decreased with increasing
inundation depth (Fig. 5b). Our study also showed that
NEE was the largest contributor to total seasonal GWP
during the growing season in the Yellow River Delta
(Table S1). In addition, the GWP in 2018 was much
lower than that in 2019 (Fig. 5).

Relationships between ecosystem CO, and CHy
exchange and WLAI, WHeight, and biomass

NEE was negatively, and R, was positively correlated
with the WLATunder different inundation depths during
the growing season in 2018 and 2019 (P < 0.05), where-
as there was no significant relationship between CH,
fluxes and WLAI (Fig. 6). Additionally, CH, fluxes,
Reeo and NEE were significantly related to WHeight
during the growing season in both years (Fig. 7). CHy
fluxes and R, showed a weak, but significant, positive
correlation with AGB in both years (Fig. 8a—g), while
BGB was only positively correlated with CH, fluxes in
2018 (Fig. 8b). NEE had a weak, but significant, nega-
tive correlation with AGB, but only in 2018 (Fig. 8k).

Discussion
Effects of inundation depth on plant growth

Inundation regime is regarded an important hydrologi-
cal factor affecting plant species diversity and
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productivity in wetland ecosystems (Schile et al. 2011;
Liu et al. 2018). In order to avoid the adverse effects of
inundation, inundation-tolerant plants, such as
P. australis, elongate their shoots to escape from sub-
mergence and restore leaf contact with the atmosphere
(Striker et al. 2012; Voesenek et al. 2006). In the present
study, inundation significantly increased WHeight of
P. australis (Fig. 1), which indicated an escape strategy
to cope with inundation. Meanwhile, inundation signif-
icantly increased shoot density, WLAI and biomass
production (Figs. 1 and 2), suggesting that more energy
and carbohydrates produced by photosynthesis will sup-
plement the growth for plants to tolerate deep and long-
lasting inundation (Chen et al. 2019). Additionally,
BGB plays an important role in the accumulation of
organic carbon in wetland ecosystems (Tripathee and
Schéfer 2015). About 59 and 61% of the biomass of
P. australis was allocated below ground under the dif-
ferent inundation depth. This suggests that a large part
of the soil organic C may derive from roots, which will
benefit long-term carbon sequestration under anaerobic
conditions. Although many wetland plants can tolerate
inundation, a situation in which inundation exceeds
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Inundation depth (cm)

Inundation depth (cm)

plant tolerance is not beneficial to plant growth (Xue
et al. 2018). For example, plant biomass of
Bolboschoenus planiculmis was inhibited when inunda-
tion exceeded 10 cm inundation depth (An et al. 2018).
Also, more than 91 cm inundation depth significantly
decreased the leaf, belowground and total biomass of
Typha domingensis (Chen et al. 2010). However, inun-
dation depth had little effect on biomass in either of the
investigated years (Fig. 2), which indicated that
P. australis is tolerant to a broad range of inundation
conditions.

Effects of inundation depth on ecosystem CH, fluxes

An increase in inundation depth significantly increased
ecosystem CH, fluxes compared to the control during
the growing season in 2018 and 2019 (Fig. 3a and b).
For the soil CH, fluxes (Fig. S4b), inundation depth
(0 cm) significantly increased soil CH, fluxes compared
to the control due to anaerobic conditions which usually
enhance CH, production by improving anaerobic de-
composition by methanogenic bacteria and limiting
CH, oxidation in reductive conditions (Kettunen et al.
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1999). Other studies showed that inundation could have
little effect on CH, fluxes as the water column can
provide a diffusion barrier to the release of CHy from
the soil or water (Cheng et al. 2007; Li et al. 2018; Wei
et al. 2020). Moreover, growth of wetland plants (e.g.
P. australis) affects soil redox conditions, resulting in
increased CH,4 oxidation surrounding the rhizosphere
due to enhanced turnover of root material and oxygen
release (Colmer 2003; Chen et al. 2013). The above-
ground and below-ground biomass at 5 cm to 40 cm
inundation depths were larger than in the control (Fig.
2), which is likely to have resulted in more oxygen
exudation to the surrounding rhizosphere. Thus, the
more CH, was oxidized, the less soil CH,; emissions
under 5 to 40 cm inundation depths. Additionally, a
small part of soil CH, could have been oxidized when
passing through the water column (Boon and Lee 1997,
Peacock et al. 2017). Thus, inundation depths from 5 to
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Fig. 5 Variations in global warming potential (GWP) under dif-
ferent inundation depths during the growing season in (a) 2018
and (b) 2019 (means =+ SE, n =4). Different letters indicate signif-
icant differences between inundation depths (P < 0.05)

40 cm probably limited soil CH, fluxes. Our study
showed that ecosystem CH, fluxes were much higher
than soil CH, fluxes in our experiment (Fig. 3 and S4),
which indicate that soil CH, fluxes contribute little to
ecosystem CHy fluxes. Although inundation depth lim-
ited soil CH4 fluxes, inundation depth increased the
ecosystem CH, fluxes compared to the control, which
may partly be due to the increased shoot density,
WHeight, and biomass (Fig. la-d, Fig. 7a and b, Fig.
8a-c).

Increased vascular plant height, shoot density and
biomass would increase CH,4 emissions due to
higher plant productivity (Fischer et al. 2010;
Jeffrey et al. 2019). Previous studies have demon-
strated that plant productivity is a good predictor of
CH, fluxes across a wide range of wetlands (Chen
et al. 2009; Fischer et al. 2010; Mozdzer and
Megonigal 2013; Sun et al. 2018; Li et al. 2019).
In our plots, the vegetation is relatively homoge-
neous and mostly dominated by Phragmites
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australis, an inundation-tolerant vascular plant. Al-
so, a significant linear relationship was found be-
tween CH, fluxes and WHeight or biomass (Fig. 7a
and b, Fig. 8a-c). On the one hand, higher plant
productivity could capture more atmospheric CO,
and increase the production of C substrates available
for methanogenesis and can thus lead to higher CHy4
production (Li et al. 2019; Cheng et al. 2007,
Koelbener et al. 2010). On the other hand, the more
plant biomass is produced under inundated condi-
tions, the more aerenchyma conduits are present,
suggesting that more CH, could bypass from the
anaerobic zone to the atmosphere (Henneberg et al.
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2012; Bridgham et al. 2013). This is consistent with
studies in other wetlands (Chen et al. 2009; Fischer
et al. 2010; Mozdzer and Megonigal 2013; Minke
et al. 2016), which indicated that vascular plants
play an important role in CH4 emissions in wetland
ecosystems when water levels are above the soil
surface in coastal wetlands (Bridgham et al. 2013).
However, there was no significant difference in CHy
fluxes from 10 to 40 cm inundation depth (Fig. 3a
and b), which was probably because inundation
depth from 10 to 40 cm had no effect on shoot
density and biomass (Figs. la and b, and 2). We
also found that CH, fluxes in 2018 were higher than
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those in 2019 (P <0.05, Fig. 3a and b), which was
probably related to redox conditions. Under anaero-
bic conditions, anaerobic oxidation of methane may
consume 200 Tg CH4 per year in global wetland,
decreasing the potential CH,4 emissions by over 50%
(Segarra et al. 2015). Since wetland plants (e.g.
P. australis) could transport oxygen to rhizospheres
and sediments, their presence will reduce CH,4 con-
centrations (Jeffrey et al. 2019). Previous studies
showed that CH,4 emissions were negatively related
to plant biomass, which was often attributed to an
increased rhizospheric oxygenation and CH,4 con-
sumption by rhizospheric bacteria (Bhullar et al.
2013; Kao-Kniffin et al. 2010). In our study, the
mean BGB in 2019 (2434 g m ?) was higher than
in 2018 (2318 g m ?), which means that in 2019
more CH, was oxidized to a certain degree. Addi-
tionally, the CH,4 fluxes reached a peak in August
(Fig. S3a and b), mainly because the density and
WHeight reached a peak in August (Fig. S2a-d). Our
study also demonstrated a clearly parabolic response
of CH, fluxes to the gradient of inundation depth
(Fig. 4a), which was not observed in previous stud-
ies (Chen et al. 2009; Minke et al. 2016). There are

40 . . . . .
170 180 190 200 210 220 230
WHeight (cm)

several potential mechanisms that could have con-
tributed to this relationship. Firstly, an increase in
inundation depth from 0 to 5 cm promoted an in-
crease in CH, fluxes during the growing season,
which is partly mainly because of increased plant
traits with increasing inundation depth. Meanwhile,
a significant positive linear correlation between
WHeight and CH, fluxes was found (Fig. 7a and
b), suggesting that the higher the WHeight, the more
CH,4 emissions. Secondly, a large part of the CHy
emissions in P. australis occurs close to the ground
(Van Der Nat et al. 1998). For example, in a
brackish-water tidal marsh of China, the main part
of P. australis CH4 emissions is in the base of plant,
especially at a height of 0-20 c¢m above the ground
(Tong et al. 2012). In a boreal lake, CH, probably
escaped through the lower part of P. australis
(<10 cm above the sediment surface) because the
lacunal CH4 concentrations were highest here (Kéki
et al. 2001). Inundation depth (20 to 40 cm) could
inhibit the path of CH,4 emissions through the sub-
merged plant shoots and cause a decline in CHy
emissions. Thus, the higher WHeight was accompa-
nied by higher CH,4 fluxes at 10 cm inundation
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depth, but at inundation depths from 20 to 40 cm
CH, fluxes declined to a certain degree.

Effects of inundation depth on ecosystem CO, exchange

During the growing season in 2018 and 2019, the R,
and NEE showed an increase as inundation depth in-
creased compared to the control (Fig. 3c-f), which was
correlated with increased WLAI, WHeight and AGB
(Figs. 6c¢c-f, 7c-f, 8e—k). The plant parts below water
level had little effect on R.., and NEE because the plant
respiration and uptake of CO, for photosynthesis were
limited (Jimenez et al. 2012) Thus, especially plant
parts above water level are important for the ecosystem
CO, exchange in wetland ecosystems. Plant respiration
is tightly coupled to C input from the above-water level
photosynthesis (Song et al. 2011; Han et al. 2012). The
leaf area determines the amount of available photosyn-
thate and the amount of light being intercepted by the
vegetation, therefore the increased WLAI could enhance
the uptake of CO, for photosynthesis on an ecosystem
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(BGB) under different inundation depths during the growing
season in 2018 and 2019. The black lines are fitted regressions,
and the light pink-shaded areas around the regression lines are
95% confidence

level (Wang et al. 2016; Acosta et al. 2017). Thus, the
difference in WLAI caused by inundation depth may
have been an important plant-related factor leading to
the variation in R, and NEE (Han et al. 2012; Song
et al. 2011). The significant correlations between R,
and NEE and plant traits indicate that biotic factors are
important for regulating CO, exchange in wetland eco-
systems (Han et al. 2014; Minke et al. 2016). For exam-
ple, in an Amazon floodplain wetland, NEE was in-
creased by 20% under high water (inundated) compared
to low water level, which was attributed to the higher
living biomass (Morison et al. 2000). In a temperate
cutover fen, R, and NEE significant increased with
increasing inundation depth from 0 to 100 cm mainly
due to the increased AGB (Minke et al. 2016). Previous
studies reported opposite results indicating that inunda-
tion decreased R, and NEE in wetland ecosystems
(Han et al. 2015; Zhao et al. 2019). The submerged
plant shoots and leaves showed a reduction in the pho-
tosynthetic rates and plant respiration (Jimenez et al.
2012). In addition, the reduced R, under inundation
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conditions was mainly due to the saturation of soils,
subsequent oxygen limitation, and inhibition of root
and soil respiration that led to lower CO, emissions
(Han et al. 2015). However, the ecosystem CO, ex-
change can vary between different plant species. For
example, Zhao et al. (2019) observed a decline in R,
and NEE as inundation depth increased from 0 to
45.6 cm in a freshwater wetland dominated by sawgrass
(Cladium jamaicense Crantz) and muhly grass
(Muhlenbergia filipes M.A. Curtis), a weak inundation-
tolerant plant. On the contrary, inundation depth (from 0
to 24 cm) enhanced R.., and NEE of Spartina
alterniflora, a stronger inundation tolerant plant (Jones
et al. 2018). Therefore, the effect of inundation depth on
different plant species needs to be considered in wetland
ecosystems. However, there was no significant differ-
ences in R.., were found from 5 to 40 cm inundation
depth in 2018, among 5, 20, 30 and 40 cm inundation
depth in 2019, no differences in NEE among 5, 10 and
20 cm inundation depth in 2018, and from 5 to 40 cm
inundation depth in 2019 (Fig. 3c-f), which mainly due
to inundation depth had little effect on plant productivity
among 5 to 40 cm inundation depth (Figs. 1 and 2).
Additionally, WLALI as discussed above, plays a very
important role in ecosystem CO, exchange. Mean
WLALI values under different inundation depths in
2018 (3.26) were lower than those in 2019 (3.42)
(P<0.05; Table 1), which probably resulted in lower
Reco and NEE in 2018 than in 2019 (P < 0.05, Fig. 3¢
and f). We also found the R.., and NEE reached a peak
in July (Fig. S3c-f), which was mainly due to the peak of
WLALI in July (Fig. S2e-f). Reco, and NEE exhibited a
parabolic pattern against the inundation depth (Fig. 4b
and c) and this nonlinear relationship has not often been
reported before (Zhao et al. 2019). The majority of
previous studies have only compared situations with
and without inundation (Han et al. 2015; Sanchez-
Rodriguez et al. 2019), but there were few studies on
the effect of different inundation depths on ecosystem
CO, exchange. In this study, we spanned a large range
of inundation depths, to be able to observe a continuous
response of R.., and NEE to different inundation
depths. We found parabolic relationship responses of
Reco and NEE to different inundation depths, which are
likely to be induced by nonlinear changes in plant
productivity. As mentioned above, the vegetation parts
above water level could be important for ecosystem CO,
exchange under different inundation depths. On the one
hand, the higher the WHeight and WLAL, the higher the

absorption capacity of light, the higher the uptake of
CO, for photosynthesis and the higher plant respiration.
On the other hand, the deeper the inundation (20, 30 and
40 cm), the more plant shoots and leaves were sub-
merged, which resulted in a partial plant stomatal clo-
sure under water and a lower photosynthesis activity of
submerged leaves (Schedlbauer et al. 2010; Han et al.
2015). Moreover, due to the slow diffusion rate of CO,
in water, the diffusive boundary layer resistance could
limit CO, emission through the water surface (Han et al.
2015). Meanwhile, CO, gas can dissolve in water,
which suggested that the deeper the inundation, the less
CO; efflux from water columns (Leopold et al. 2016).
As a result, the R.., and NEE decreased with the in-
crease of inundation depth from 20 to 40 cm. Contrary
to our results, R.., and NEE linearly decreased with
increasing water level from 0 to 45.6 cm in a freshwater
wetland where the height of the vegetation was about
73 cm (Zhao et al. 2019). This is probably due to the fact
that plant height above water level linearly decreased
with the increase in water level.

Additionally, inundation depth decreased the GWP
during the growing season compared to the control (Fig.
5), which suggested that relatively shallow inundation
depths (5 cm in 2018 and all inundation treatments in
2019) were efficient in mitigating GHG emissions in the
studied coastal wetland. The negative GWP under dif-
ferent inundation depths indicated that NEE was the
largest contributor to the seasonal GWP, mainly because
NEE values were much higher than the sum of CH,4 and
Reco (Table S1). Similar results have also been found in
a freshwater marshland (Zhang et al. 2013) and restored
deltaic wetland (Hemes et al. 2019). We also found that
GWP varied greatly between 2018 and 2019, which was
consistent with the results in a restored deltaic wetland
(Hemes et al. 2019). This variation was due to the fact
that the ecosystem C exchange showed significant dif-
ferences between years. In our experiment, only the
GWP of CO, and CH, fluxes were calculated, N,O
fluxes were not included. Therefore, long-term observa-
tions of all three GHGs are essential to evaluate the
GWP and to better quantify wetland C sources and
sinks.

Limitation of the research and outlook
Inundation depth strongly altered ecosystem CH,4 and

CO, exchange, which was coincident with affected
shoot density, height, leaf area index and biomass of
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P. australis. However, the effects of abiotic factors (e.g.
soil redox conditions, substrate and dissolved organic
carbon) on ecosystem C exchange (especially CHy
emissions) were not considered in our study. Mean-
while, we did not reinforce the impact of inundation
duration and frequency on the C sink-source status.
These limitations will increase the uncertainty about
the effect of inundation regimes on ecosystem CHy4
and CO, exchange in freshwater wetlands in the Yellow
River Estuary. Hence, future field and long-term con-
tinuous data are required to improve our knowledge on
the potential impacts of hydrological regimes (inunda-
tion depth, frequency and duration) on C sequestration
in wetland ecosystems.

Conclusions

This study demonstrated that ecosystem CH4 and CO,
exchange (CH, fluxes, R.., and NEE) increased with
increasing inundation depth in a freshwater wetland in
the Yellow River Estuary, which could partly be due to
the increased plant productivity (e.g. shoot density,
above-water level leaf area index, plant height relative
to water level and biomass) during the growing season.
However, there were only minor differences in CHy
fluxes, R, or NEE between inundation depths ranging
from 10 to 40 cm, especially in 2019. The CH, fluxes,
Reco or NEE exhibited parabolic responses to inundation
depth, which correlated with changing plant traits under
different inundation depths. In addition, NEE was the
largest contributor to total seasonal global warming
potential under different inundation depths during the
growing season. To understand the responses of ecosys-
tem CHy and CO, exchange to inundation depth is
important for accurately improving the ecosystem C
model and it also helpful to predict the ecosystem car-
bon sinks or sources under the changing hydrological
regimes with respect to climate change.
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