
Vol.:(0123456789)1 3

International Journal of Biometeorology (2023) 67:1017–1030 
https://doi.org/10.1007/s00484-023-02475-7

ORIGINAL PAPER

The effects of intrinsic water‑use efficiency and climate on wood 
anatomy

Yixue Hong1,2 · Xiaohong Liu1,3   · J. Julio Camarero4 · Guobao Xu3 · Lingnan Zhang1 · Xiaomin Zeng1 · 
Amy Ny Aina Aritsara5 · Yu Zhang1 · Wenzhi Wang6 · Xiaoyu Xing7 · Qiangqiang Lu1,8

Received: 7 June 2022 / Revised: 5 April 2023 / Accepted: 11 April 2023 / Published online: 18 April 2023 
© The Author(s) under exclusive licence to International Society of Biometeorology 2023

Abstract
Climate warming may induce growth decline in warm-temperate areas subjected to seasonal soil moisture deficit, whereas 
increasing atmospheric CO2 concentration (Ca) is expected to enhance tree growth. An accurate understanding of tree 
growth and physiological processes responding to climate warming and increasing Ca is critical. Here, we analyzed tree-
ring stable carbon isotope and wood anatomical traits of Pinus tabuliformis from Qinling Mountains in China to understand 
how lumen diameter (LD) determining potential hydraulic conductivity and cell-wall thickness (CWT) determining carbon 
storage responded to climate and Ca. The effects of climate and Ca on intrinsic water-use efficiency (iWUE) were isolated, 
and iWUE values due to only-climate (iWUEClim) and only-CO2 effects (iWUECO2) were obtained. During a low-iWUE 
period, the influences of climate on earlywood (EW) LD and latewood (LW) CWT prevailed. During a high-iWUE period, 
CO2 fertilization promoted cell enlargement and carbon storage but this was counteracted by a negative influence of climate 
warming. The limiting direct effects of iWUEClim and indirect effects of climate on EW LD were greater than on LW CWT. 
P. tabuliformis in temperate forests will face a decline of growth and carbon fixation, but will produce embolism-resistant 
tracheids with narrow lumen responding to future hotter droughts.
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Introduction

Leaf stomata balance the carbon assimilation of photosyn-
thesis and water loss during transpiration, thus determining 
carbon and water cycle in forests (Giguere-Croteau et al. 
2019; Wang et al. 2021). On the one hand, climate warm-
ing with increasing drought stress has a negative effect on 
tree growth, increasing the risk of growth decline and tree 
mortality (Allen et al. 2010, 2015), notably for semi-arid for-
ests in warm-temperate areas (Liu et al. 2013a; Drake et al. 
2015). On the other hand, the concentration of CO2 in the 
atmosphere (Ca) has continuously increased from ~ 277 ppm 
in 1750 (Joos and Spahni 2008) to 421.4 ppm in 2023 (data 
from Global Monitoring Laboratory, https://​gml.​noaa.​gov/​
ccgg/​mbl/​crvfit/​crvfit.​html). The ongoing increase of Ca 
is expected to reverse the negative effect caused by global 
warming on trees by enhancing growth or by improving 
intrinsic water-use efficiency (iWUE), i.e., the ratio between 
photosynthetic rate (A) and the stomatal conductance of 
water vapor (gs), through the so-called CO2 fertilization 
effect (Pan et al. 2011; Schimel et al. 2015).
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Tree-ring studies provide the opportunity to explore the 
response of tree radial growth to climate warming and ris-
ing Ca because tree-ring stable carbon isotope ratios (δ13C) 
provide information about the tree physiological processes 
of carbon gain and leaf water loss over long-term scales (Liu 
et al. 2019; Wang et al. 2021). Increased Ca promotes the 
metabolic activity of the RuBisco enzyme, which increases 
A (Huang et al. 2007). Meanwhile, the leaf stomata of C3 
plants tend to close in response to elevated Ca, thus reducing 
water loss, which leads to a decrease in gs and intercellular 
CO2 concentration (Ci) (Battipaglia et al. 2013) and to an 
increase iWUE (McCarroll and Loader 2004). Therefore, 
the long-term variations of iWUE can be estimated through 
the determination of tree-ring δ13C (Saurer et al. 2004; Frank 
et al. 2015; Wang et al. 2021). Recently, increases in iWUE 
have been found in several forests around the world (Peñue-
las et al. 2011; Kannenberg et al. 2021; Saurer et al. 2014). 
Although some studies have reported that increased tree 
growth benefited from CO2 fertilization (e.g., Lu et al. 2018; 
Wang et al. 2018), most studies concluded that iWUE did 
not translate into growth enhancement (e.g., Mediterranean 
areas Andreu-Hayles et al. 2011; González Muñoz et al. 
2015; Brito et al. 2016), humid subtropical, temperate, and 
tropical areas (Nock et al. 2011; Li et al. 2017, 2019)). Par-
ticularly, several studies concerning temperate forests sub-
jected to seasonal soil moisture deficit found that improved 
iWUE did not necessarily lead to growth increases owing 
to the complex response of trees to drought stress (Peñue-
las et al. 2008; Levesque et al. 2014; Frank et al. 2015; 
Fernández-de-Uña et al. 2016; Giguere-Croteau et al. 2019; 
Marchand et al. 2020; Belmecheri et al. 2021; Heilman et al. 
2021). The lack of growth enhancement may be related to 
warming-induced drought stress and its interaction with 
rising CO2 levels (Andreu-Hayles et al. 2011; Gagen et al. 
2011). Yet, tree growth in response to elevated CO2 concen-
tration and the dynamic interaction between atmospheric 
CO2 and warming climate trends remain unclear, especially 
in temperate forests subjected to episodic seasonal droughts.

To date, either tree-ring width or basal area increment 
(BAI) are used as proxies of tree growth in most dendrochro-
nological studies exploring CO2 fertilization (Soulé et al. 
2015; Wieser et al. 2018; Liu et al. 2019). In addition to 
tree-ring width analysis, xylem anatomical traits are poten-
tial proxies to reflect the key functions and ecophysiologi-
cal processes of trees, because some anatomical variables 
(e.g., lumen diameter (LD), cell wall thickness (CWT)) are 
strongly related to radial growth, hydraulic conductivity, 
and carbon allocation (Fonti et al. 2010; Camarero et al. 
2015; Cuny et al. 2015; Pellizzari et al. 2016; Castagneri 
et al. 2020). For example, trees invest more carbon to form 
embolism-resistant conduits with small conduit diameter and 
thick cell-wall in response to drought (Hacke et al. 2015). 
The formation of large conduits with wide lumen and thin 

walls is also observed during drought and leads to higher 
hydraulic conductivity, but these conduits are more vulner-
able to embolism (Eilmann et al. 2009). Thus, LD and CWT 
are important indicators for the assessment of tree growth 
dynamics and forest carbon cycling (Cuny et al. 2015; Fonti 
and Babushkina 2016; Castagneri et al. 2020). In conifer 
tree rings, earlywood (EW) and latewood (LW) are formed 
in the early and late growing seasons, respectively. Thus, 
wood formation processes (e.g., cell enlargement, cell wall 
thickening, and maturation) are affected by seasonal climate 
conditions (Fritts 1976; Vaganov et al. 2006; Castagneri 
et al. 2017). However, how the interactive effects of CO2 
and climate variation impact on EW and LW anatomical 
characteristics and their related hydraulic function and car-
bon allocation is still poorly understood.

The Qinling Mountains are located in central China and 
represent the transitional climate boundary between the sub-
tropical and temperate zone in China meaning that Qinling 
Mountains play a major role in Chinese geographical and 
climatic patterns, biota divisions and natural resources dis-
tribution (Ma et al. 2019). Qinling Mountains is a typical cli-
mate and ecology-sensitive area. Since the 1960s, there has 
been a warming and drying trend in these areas, especially 
a climate shift since the 1990s (Gao et al. 2018) which has 
greatly influenced regional tree growth. Warming and drying 
climate and episodic seasonal drought events have caused 
the decline of conifers due to drought stress in the Qinling 
Mountains (Liu et al. 2013b, 2018). Here, we put forward 
that a combination of tree-ring xylem anatomy measure-
ments and iWUE estimate from Pinus tabuliformis in the 
Qinling Mountains can provide an insight into possible CO2 
fertilization effects from an ecophysiological point of view. 
We analyze tree-ring xylem anatomy characteristics influ-
encing tree-ring width, hydraulic conductivity, and carbon 
allocation, and quantify iWUE which reflects the balance 
between carbon assimilation and water vapor loss. We aim 
to explore how CO2 fertilization and climate variability and 
their interaction affect tree-ring anatomy because it is critical 
for the sustainable management of threatened or protected 
temperate conifer forests. We hypothesized that the fertiliza-
tion effect caused by increasing atmospheric CO2 concentra-
tion could not compensate the inhibiting effect caused by 
climate warming on xylem anatomy characteristics.

Materials and methods

Study area

The western Qinling Mountains are mainly influenced by 
the east Asian monsoon, characterized by cold and dry cli-
mate conditions in winter, but warm and humid conditions 
in summer. The intra-annual climate performs simultaneous 



1019International Journal of Biometeorology (2023) 67:1017–1030	

1 3

rain and heat and negative water balance in spring and sum-
mer (Fig. S1).

Pinus tabuliformis is one of the dominant tree species in 
the western Qinling Mountains. We conducted the field sam-
pling in Zhangjiazhuang forest farm (ZJZ, 34° 08′ N, 106° 
31′ E, 1,400 m a.s.l.), western Qinling Mountains. The mean 
annual temperature of ZJZ is 11.6 °C, with monthly means 
ranging from − 0.4 °C in January to 22.7 °C in July, and 
the mean annual precipitation is 627 mm, with up to 96.5% 
falling in spring and summer-early autumn (March to Octo-
ber). The meteorological data is obtained from the Fengxian 
meteorological station (33° 55′ N, 106° 33′ E). In ZJZ, P. 
tabuliformis is primarily distributed on southern slopes at 
elevations of 1400–2000 m a.s.l. (Wang et al. 2009). The 
soil type is forest brown soil, with a thickness of ~ 30–50 cm.

Field sampling and dendro‑sample processing

For each tree, we collected four tree-ring core samples on 
the opposite sides of the stem (two cores for the north–south 
direction, two cores for the east–west direction) with a 
5.15-mm-diameter increment borer (Haglöf, Långsele, Swe-
den). From previous tree-ring δ13C analysis, four cores from 
different trees can guarantee the reliable values represent-
ing the site isotope chronology (Liu et al. 2012, 2015). In 
total, we sampled 104 tree cores from 26 mature trees, more 
information about tree ring growth was provided in Fig. S2. 
After air-drying and sanding the cores, tree rings were visu-
ally cross-dated and tree-ring width was then measured at 
0.01 mm resolution using a Lintab-TSAP system (Rinntech, 
Heidelberg, Germany). Cross-dating was checked using the 
COFECHA software (Holmes 1983). Whole-ring width was 
detrended by fitting a cubic spline smoothing function with a 
50% frequency cutoff at 67% of the series length to remove 
size/age-related trends and mean raw and standard chronolo-
gies were developed by using the dplR package in R (Bunn 
2008). Ten trees were used for anatomical analyses, includ-
ing four trees for stable carbon isotope (δ13C) measurements 
corresponding to those most correlated to the mean standard 
whole-ring width chronology. The mean longevity of these 
ten trees was 66 years and mean diameter was 32.3 cm. The 
dendro-anatomical and isotopic analysis was performed on 
the rings corresponding to the period from 1970 to 2017.

Dendro‑anatomical analysis

The method of dendro-anatomical analysis referred to Hong 
et al. (2021). First, the ten cores were divided into 4–5 cm-
long pieces and put in the boiling water for about 15 min 
to soften the wood. Then, the pieces were cut perpendicu-
lar to the axially oriented xylem with a sliding microtome 
(WSL-LAB-Microtome, WSL, Birmensdorf, Switzerland) 
(Schneider and Gärtner 2013) for obtaining flat wood 

surfaces. Compared with taking micro-section, the method 
of obtaining flat wood surfaces can avoid distortion and 
cell damage resulting from sectioning thin fragile samples 
(Liang et al. 2013). Third, the wood surfaces of pieces were 
stained with safranin (1% in distilled water) and these pieces 
were glued on a wooden sample holder. The micro surfaces 
were scanned using a confocal laser scanning microscope 
(FV1200, Olympus, Tokyo, Japan) (Liang et al. 2013) at 
100 × magnification, with a resolution of 1.25 pixels µm−1. 
The images of each year were obtained and merged using 
the software Adobe Photoshop CC 2019 (Adobe Systems 
Inc., San Jose, CA, USA). The images were then processed 
with WinCell Pro 2018 (Regent Instruments Inc., Québec, 
QC, Canada), which allowed measuring LD and CWT of all 
tracheids within each annual ring. Generally, 30 cell rows 
per ring were measured, resulting in > 7 millions of analyzed 
tracheids.

According to Mork’s index (with a modified value of 0.83 
as an efficient threshold) (Samusevich et al. 2020), the EW 
and LW were distinguished along the radial axis for each 
ring. For each core, we calculated the mean LD and mean 
CWT of EW and LW, respectively. To assess the climate 
influence on anatomical traits, the size/age-related trends 
were removed from these series using a similar detrending 
procedure as with tree-ring width data. The mean LD and 
CWT detrended individual series were averaged using a bi-
weight robust mean to obtain the mean series (Fig. S3).

Stable carbon isotope analysis

Whole wood was used for δ13C analyses because it shows 
the same iWUE trend as α-cellulose δ13C (Belmecheri 
and Lavergne 2020). For each core, each tree ring of the 
1970–2017 period was split into EW and LW parts with a 
dissecting scalpel under a binocular microscope. Then, the 
sample was put in 2 ml centrifuge tube and was milled with 
a ball mill (JXFSTPRP-24, Jingxin, Shanghai, China) to the 
fine powder. The powder samples of 70–75 µg in weight 
were wrapped in tin capsules and rolled into strips for stable 
carbon analysis. Then, the δ13C of each sample was meas-
ured by an elemental analyzer (EA Isolink) linked to a mass 
spectrometer (Thermo Fisher Science, Bremen, Germany). 
The δ13C was expressed with reference to the Vienna Pee 
Dee Belemnite (VPDB) standard and calculates as:

where Rsample and Rstandard are the ratios of 13C/12C of the 
sample and the VPDB standard, respectively. During the iso-
tope measurement, the δ13C of each sample was calibrated 
according to VPDB (-24.25‰ for δ13C). The analytical 
error (the standard deviation) of isotope measurements was 

(1)δ13 C = (
Rsample

Rstandard

− 1) × 1000
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0.04‰ based on the repeated measurement of the standards. 
Suess effect caused by fossil fuel burning was removed fol-
lowing the procedure provided by Belmecheri and Lavergne 
(2020).

Calculations of iWUE

The carbon isotope discrimination (Δ13C) between the 
air carbon isotope (δ13Ca) and tree-ring carbon isotope 
(δ13Cp) can be expressed by Farquhar et al. (1989) as 
follows:

The carbon isotope discrimination of C3 plants is 
also related to the intercellular and atmospheric CO2 
concentration:

where a (~ 4.4‰) represents the CO2 discrimination caused 
by the CO2 diffusion from the atmosphere into the leaf cell 
intercellular; b (~ 27‰) represents the fractionation dis-
crimination of ribulose bisphosphate (RuBP) carboxylase 
against 13CO2; Ci and Ca represent the CO2 concentration 
in the intercellular spaces and the atmosphere, respectively.

The intrinsic water-use efficiency (iWUE) can be cal-
culated by Δ13C, which quantifies the amount of carbon 
assimilated per unit of leaf area per unit of time for per 
unit of water cost. The iWUE is the ratio of the photosyn-
thetic assimilation rate (A) to the stomal conductance for 
water vapor (gs):

The separated influences of CO2 and climate on iWUE 
were calculated based on Voelker et al. (2016) and Liu 
et al. (2019). The percent change value in iWUE due to 
CO2 and climate and the percent change value in iWUE 
due to only climate (iWUEClim) were first calculated and 
the difference between these two values was the percent 
change value in iWUE due to only CO2 (iWUECO2). Based 
on the theoretical regulation of plant gas exchange in 
response to increasing Ca, three scenarios were consid-
ered: (i) constant Ci, (ii) constant Ci/Ca, and (iii) constant 
Ca—Ci (Saurer et al. 2004). These three scenarios repre-
sent different response degrees of increase in Ci to increase 
in Ca: (i) not at all, (ii) in a proportional way, (iii) at the 
same rate. More detailed explanations for these three sce-
narios were presented in previous studies (Saurer et al. 
2004; Linares and Camarero 2011).

(2)△13 C =
δ13Ca − δ13Cp

1 + δ13Cp∕1000

(3)△13 C = a + (b−a)(Ci∕Ca)

(4)iWUE =
A

gs
=

Ca(1 − Ci∕Ca)

1.6
=

Ca(b −△13C)

1.6(b − a)

Climate data and statistical analysis

We used the instrumental records from the Fengxian mete-
orological station (33° 55′ N, 106° 33′ E, 1097 m a.s.l, 
1970–2017) which is located near the sampling site. The 
meteorological dataset of Fengxian station was obtained 
from the China Meteorological Administration (http://​www.​
cma.​gov.​cn/​en/).

The shift years in iWUE for EW and LW were detected 
by cpt.np function in changepoint.np R package (Killick 
and Eckley 2014). Structural equation models (SEMs) were 
used to explore the influences of iWUECO2 and iWUEClim 
and climate and their interactions on EW and LW anatomy. 
Firstly, we developed two initial models based on the pub-
lished literature and a priori knowledge (Fig. 1). According 
to previous findings on P. tabuliformis by Hong et al. (2021), 
LD of EW and CWT of LW were mainly affected by spring 
(March–May) and summer (June–August) climate variables, 
respectively. In these two initial models, climate variables 
(i.e., precipitation and maximum temperature of spring and 
summer) were used to represent the early- and late-grow-
ing season climate conditions, respectively. To develop the 
final SEMs, we started with the initial models with initial 
hypothesized relationships. The initial model for EW LD 
hypothesized that spring temperature, precipitation and 
iWUECO2 had positive effects on EW LD while iWUEClim 
had negative effect on EW LD (Fig. 1a). Besides, the initial 
model for LW CWT hypothesized that spring temperature, 
summer temperature and iWUEClim had negative effects on 
LW CWT while iWUEClim had negative effect on LW CWT 
(Fig. 1b). Secondly, a number of alternative simplified mod-
els sharing the same structure as that of initial models were 
built by removing non-significant (P > 0.05) paths one by 
one according to the performance of the overall model fit 
and the P values of the path’s standard coefficient. Finally, 
the optimal models were selected according to model-fit 
statistics (goodness-of-fit index, comparative fit index, root 
mean square error of approximation) and by minimizing the 
Akaike information criterion. SEMs were performed using 
the lavaan package in R (Rosseel 2012).

Results

Trends of climate variables

EW iWUE and LW iWUE showed different years of a shift 
in 1989. The difference of the shift years between EW iWUE 
and LW iWUE maybe related to the different climatic factors 
affecting EW and LW. Spring temperature showed a sig-
nificant increasing trend after 1989 (P < 0.01 for minimum, 
mean, and maximum temperatures; Fig. 2a), while summer 
temperature did not show significant increases after 1993 

http://www.cma.gov.cn/en/
http://www.cma.gov.cn/en/
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(P > 0.05 for minimum, mean, and maximum temperatures; 
Fig. 2b). There were no significant changes after the shift 
years (1989 for spring, 1993 for summer) for both spring 
(P > 0.05; Fig. 2a) and summer (P > 0.05; Fig. 2b) precipita-
tion. For vapor pressure deficit (VPD), there was a positive 
and significant trend in spring (P < 0.05, Fig. 2a), but not in 
summer (P > 0.05; Fig. 2b). For relative humidity, spring 
(P > 0.05; Fig. 2a) and summer (P > 0.05; Fig. 2b) relative 
humidity showed decreasing trends after the shift years, but 
they were not significant.

Changes in iWUE and the contributions of climate 
and CO2

The EW and LW iWUE values presented a signifi-
cant increasing trend during 1970–1988 (slope = 0.602, 

P < 0.001) and 1970–1992 (slope = 0.413, P < 0.05), 
respectively (Fig. 3a). Compared with the former periods, 
the EW and LW iWUE showed steeper positive trends dur-
ing 1989–2017 (slope = 1.116, P < 0.001) and 1993–2017 
(slope = 1.263, P < 0.001), respectively. Thus, according to 
the magnitude of slopes before and after the shift years (1989 
for EW iWUE, 1993 for LW iWUE), we defined the follow-
ing low-iWUE periods (EW: 1970–1988, LW: 1970–1992) 
and high-iWUE periods (EW: 1989–2017, LW: 1993–2017), 
respectively. The EW iWUE and LW iWUE showed consist-
ent high frequency variations (first-order differences) in the 
period 1970–1988 (r = 0.494, P < 0.05; Fig. 3b), but showed 
contrasting variations in the period 1989–2017 (r =  − 0.283, 
P > 0.05).

In the low-iWUE periods for EW (1970–1988) and LW 
(1970–1992), the changes in iWUE attributed to variation 

Fig. 1   The initial model shows 
hypothesized relationships indi-
cating the effects of climate and 
intrinsic water-use efficiency 
[iWUE (including iWUECO2, 
iWUEClim)] on a earlywood 
lumen diameter (EW LD) and 
b latewood cell wall thickness 
(CWT). Paths with a single 
arrow ( →) represent unidirec-
tional relationships between 
variables. Paths with double-
headed arrow ( ↔) represent 
correlated relationships among 
variables. The red paths denote 
positive ( +) relationships, and 
the green paths indicate the 
negative (-) ones. Abbrevia-
tions: Tem, temperature; Pre, 
precipitation
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Fig. 2   Temporal variation of relative humidity, precipitation, mean 
temperature, mean maximum temperature, and mean minimum tem-
perature, and vapor pressure deficit (VPD) in a spring (March–May) 
and b summer (June–August) during the period 1970–2017. Piece-
wise linear regressions were used to fit the variational trend of two 

subperiods (yellow lines: 1970–1988, 1989–2017; blue lines: 1970–
1992 and 1993–2017). The climate values are means and the shaded 
areas represent standard errors of regressions. Significance levels of 
regressions: ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001
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in CO2 and climate were positive (Fig. 4a). There was low 
difference between the changes in iWUE caused by the vari-
ation only by CO2 (EW: slope = 0.311, LW: slope = 0.325) 
and the changes in iWUE caused by the variation only by 
climate (EW: slope = 0.362, LW: slope = 0.128) (Fig. 4a). 
Specifically, the contribution of CO2 to iWUE was almost 
equal to the contribution of climate to iWUE for EW, while 
the contribution of CO2 to iWUE was higher than that of 
climate to iWUE for LW (Fig. 4b). However, in the high-
iWUE periods, the changes in iWUE attributed to varia-
tion in climate (EW: slope = 0.792, LW: slope = 0.910) 
were higher than those attributed to variation in CO2 (EW: 
slope = 0.471, LW: slope = 0.483) (Fig. 4a). Besides, the 
contribution of climate to iWUE was much higher than that 
of CO2 to iWUE for both EW and LW (Fig. 4b). In addition, 
EW iWUE (1970–1988) and LW iWUE (1970–1992) trends 
closely followed the predicted changes in a scenario with 
constant Ci/Ca (Fig. 4c). However, EW iWUE (1989–2017) 
and LW iWUE (1970–1992) trends followed the predicted 
changes in a scenario with constant Ci.

Relationships between iWUE, climate, 
and anatomical traits

In the low-iWUE period, spring precipitation positively 
affected EW LD (path coefficient: 0.50) while EW iWUECO2 
and EW iWUEClim both showed no significant influences on 
EW LD (Fig. 5). In contrast, spring temperature negatively 

affected LW CWT (path coefficient: − 0.51) while LW 
iWUECO2 and LW iWUEClim both had no significant influ-
ences on LW CWT.

In the high-iWUE period, EW iWUECO2 had a signifi-
cant positive effect (path coefficient: 0.67) but EW iWUEClim 
had a strong negative effect (path coefficient: -0.87) on 
EW LD, and the total iWUE effect on EW LD was nega-
tive (path coefficient: − 0.20). Spring temperature had an 
indirect effect via EW iWUEClim on EW LD (path coef-
ficient: − 0.67). The total effects of iWUE (direct effects) 
and spring temperature (indirect effect) on EW LD was 
negative (total effect: − 0.86). However, LW iWUEClim neg-
atively affected LW CWT (path coefficient: − 0.62) while 
LW iWUECO2 positively affected LW CWT (path coefficient: 
0.47). Ultimately, the total effect of LW iWUE was negative 
(path coefficient: − 0.15). Summer temperature showed an 
indirect effect via LW iWUEClim on LW CWT (path coef-
ficient: − 0.25). The total effects of iWUE (direct effect) and 
summer temperature (indirect effect) on LW CWT were 
negative (total effect: − 0.40).

Discussion

In this study, we quantified the direct and indirect influences 
of climate and iWUE on wood anatomy in low- and high-
iWUE periods. We provided a new perspective to evaluate 
the influences of iWUE and climate on tree physiological 

Fig. 3   a The temporal trends 
of intrinsic water-use efficiency 
(iWUE) for earlywood (EW) 
and latewood (LW) during 
1970–2017. b The first-order 
differences of iWUE for EW 
and LW. Significance levels of 
regressions’ slopes and cor-
relations (r) between variables: 
ns., not significant; *P < 0.05; 
**P < 0.01; ***P < 0.001
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processes that are closely related to tree growth, potential 
hydraulic functions, and carbon allocation from a high-
resolution scale (cellular scale) by taking into account the 
potential indirect effects of climate via iWUE on these phys-
iological processes.

In the low-iWUE period (1970 to ~ 1989) with a relatively 
cool climate, wood anatomical traits of P. tabuliformis were 
affected by spring precipitation and temperature without 
relevant impacts of CO2 fertilization (Fig. 5). Specifically, 
spring precipitation had a direct and positive influence on 
cell enlargement of EW, which was supported by previous 
studies (Zhang et al. 2018; Hong et al. 2021). Favorable 
spring water status leads to positive turgor pressure and 
thus promoted cell enlargement in the early growing season 
(Hsiao 1973). This finding was also consistent with previous 
studies showing a positive water balance during the early 

growing season not only promoted cell enlargement and tree 
growth but also improved hydraulic conductivity (Wagner 
et al. 2012; Pacheco et al. 2016; Castagneri et al. 2017; 
Huang et al. 2020; Hong et al. 2021). However, high spring 
temperatures had a negative effect on LW cell-wall thicken-
ing, indicating less carbon fixation in LW formation (Hong 
et al. 2021). During the low-iWUE period, the climate was 
relatively wet and cool (Fig. 2), which was beneficial for 
EW tracheid radial enlargement and LW cell-wall thicken-
ing. In addition, although the contribution of CO2 to iWUE 
was dominant during the low-iWUE periods of EW and LW 
(Fig. 4b), the impact of iWUE on wood anatomy was not 
significant, probably as a result of the relatively low CO2 
concentration caused relatively low iWUE.

In the high-iWUE period (~ 1989–2017) with a relatively 
warm climate, considering the strong influences of climate 

Fig. 4   a Percent change of 
intrinsic water use efficiency 
(iWUE) for earlywood (EW) 
and latewood (LW) since 
1970–2017. The piece-wise 
linear regressions were used 
to fit the variational trends of 
iWUE caused by variation in 
only CO2 (dotted line) or only 
climate (dash-and-dot line). The 
values in the inset table showed 
the slope of liner regressions in 
different periods (EW: 1970–
1988 and 1989–2017; LW: 
1970–1992 and 1993–2017). b 
The estimation of the contribu-
tion of only climate, only CO2, 
and climate + CO2 to changes in 
iWUE for EW and LW in dif-
ferent periods. c The temporal 
change of estimated iWUE was 
based on tree-ring δ13C. Based 
on the theoretical regulation of 
plant gas exchange in response 
to increasing atmospheric CO2 
(Ca), three models were consid-
ered: constant intercellular CO2 
(Ci), constant Ci/Ca, and con-
stant Ca-Ci (Saurer et al. 2004). 
The iWUE was held constant in 
the first 5-year mean values for 
EW and LW, respectively. The 
atmospheric CO2 concentra-
tion and δ.13C were obtained 
from Belmecheri and Lavergne 
(2020)
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on iWUE changes, the responses of EW LD and LW CWT to 
iWUE, climate, and their interaction became more complex 
than those observed during the low-iWUE period (Fig. 5). 
In this period, CO2 showed positive links with EW cell 
enlargement and LW cell-wall thickening, which promoted 
tree growth and structural carbon fixation in cell walls. 
Previous study conducted in northern Patagonia found that 
a reduction in iWUE caused by increased carbon assimi-
lation related to increasing CO2 atmospheric to an extent 
coupled with thicker cell walls, which suggested that the 
coupling response of water use-efficiency and wood anatomy 
to climate variations (Puchi et al. 2021). In this study, the 
increase in CO2 by stimulating photosynthesis is not only 
essential for the synthesis of cell-wall products, but also for 
maintaining the expansion pressure of cell turgor, which has 
been supported by previous studies (Atkinson and Taylor 
1996; Kostiainen et al. 2014; Kim et al. 2015). However, 
spring and summer showed warming trends, especially for 
spring since ~ 1989 (Fig. 2), and a warming climate accom-
panied with enhanced transpiration demand would exacer-
bate drought stress. High EW and LW iWUEClim, attributed 
to warming and drying climate conditions (Fig. 2), had 
stronger constraining effects on EW cell enlargement and 
LW cell-wall deposition than any fertilization effect due to 

rising CO2. Previous studies also reported that improved 
iWUE could not compensate for tree growth decline trig-
gered by drought stress (Linares and Camarero 2011; Lev-
esque et al. 2014; Frank et al. 2015; Urrutia‐Jalabert et al. 
2015; Fernández-de-Uña et al. 2016; Xu et al. 2018; Liu 
et al. 2019; Marchand et al. 2020; Heilman et al. 2021). The 
possibility of this phenomenon was related to the photo-
synthetic pathway of species (C3 and C4), the threshold of 
CO2 concentration and temperature tipping point of pho-
tosynthesis (Reich et al. 2018; Rahman et al. 2019; Duffy 
et al. 2021). Specifically, C4 species are less in response to 
elevated CO2 than C3 species, and this pattern would reverse 
with the extension of experimental time. Photosynthetic effi-
ciency would no longer rise or even decrease when the CO2 
concentration reaches a certain level. In addition, plant pho-
tosynthesis of leave increases with the temperature up to an 
optimum temperature while above the optimum temperature, 
foliar photosynthesis sharply decreases (Huang et al. 2019). 
Therefore, due to the increase in temperature and possibly 
exceeding the optimal foliar photosynthetic temperature in 
the high-iWUE period, A possibly reduce on the one hand, 
and the gs may further reduce on the other hand, showing 
that high iWUE could not compensate for the decline in tree 
growth caused by drought.

Fig. 5   Diagram showing the postulated effects of climate and intrin-
sic water-use efficiency (iWUE) on tree-ring wood anatomy [ear-
lywood lumen diameter (EW LD) and latewood cell wall thickness 
(LW CWT)] for two subperiods with low and high iWUE, respec-
tively. EW: 1970–1988 with low iWUE, 1989–2017 with high iWUE; 
LW: 1970–1992 with low iWUE, 1993–2017 with high iWUE. The 
schematic diagram below was constructed according to the results of 
structural equation models (SEMs) (Figs. S4 and S5). The lines with 
a single arrow ( →) represent unidirectional relationships between 
variables. Except for path linkages between iWUE and wood anat-
omy parameters, the coefficient of each line is the standardized path 

coefficient in SEMs. Two small circles at the bottom of iWUE are 
iWUEClim (abbreviated as Clim) and iWUECO2 (abbreviated as CO2). 
The coefficients in these two circles show their separate effects on 
wood anatomy, respectively. Thus, the coefficient of lines from iWUE 
to anatomical parameters represents the sum effects of iWUECO2 and 
iWUEClim on anatomical parameters. The indirect effects of climate 
on wood anatomy are shown in blue circles. The total effects of cli-
mates and (or) iWUE are shown in green circles. The black dashed 
lines represent non-significant effects (P > 0.05). The red and blue 
solid lines represent significant (P < 0.05) positive and negative 
effects, respectively
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During the high-iWUE period, probably caused by the 
decline of gs, there was a reduction of EW LD and LW 
CWT. The scenario of constant Ci indicates the strong reg-
ulation of gs or the enhancement of A while the scenario 
of constant Ci/Ca reflects proportional regulation of A and 
gs (Saurer et al. 2004). In our study, iWUE was consistent 
with constant Ci/Ca scenarios during low-iWUE periods, 
while iWUE was consistent with constant Ci scenarios (the 
scenario that predicted the strongest response to increas-
ing Ca) in response to increasing CO2 during high-iWUE 
periods (Fig. 4c). In addition, we found that EW Ci and 
LW Ci almost remained stable, while EW Ci/Ca and LW 
Ci/Ca decreased during the high-iWUE period (Fig. S6). 
This indicated that the constraint of gs became stronger or 
A increased and thus resulted in the increasing EW and LW 
iWUE in the high-iWUE period (Saurer et al. 2004; Liu 
et al. 2014; Urrutia‐Jalabert et al. 2015). However, A may 
not increase too much or even remained relatively stable 
during ~ 1990–2017 because a reduced growth was observed 
during this period (Fig. S7). This suggests indirectly that 
decreased gs may contribute to increasing iWUE more than 
increased A for both EW and LW during the high-iWUE 
period. Thus, we considered that the decline of gs played a 
major role in the increasing EW and LW iWUE during the 
high-iWUE period, and therefore, gs was deeply affected by 
drought stress. Thus, spring drought stress probably induced 
stomata closure, the decline of gs and the increase of EW 
iWUEClim (Fig. 4a). This may be further associated with the 
formation of EW tracheids with smaller lumen. It is widely 
known that the xylem structural characteristics are closely 
related to the hydraulic function of trees. Hong et al. (2021) 
found that EW lumen size (LD) was the main anatomy-
related contributor influencing conduit wall reinforcement, a 
surrogate of xylem embolism resistance (Hacke et al. 2015). 
Moreover, plants with smaller conduits usually show lower 
hydraulic conductivity, but are less prone to drought-induced 
embolism and have better performance under higher xylem 
tension (Gleason et al. 2016; Epila et al. 2017). Thus, the 
smaller LD of EW would increase the hydraulic safety of P. 
tabuliformis at the expense of growth in the early growing 
season. For LW, a decrease in gs contributed to the increase 
of LW iWUEClim under warm summer conditions (Fig. 4a), 
which further resulted in lower carbon uptake and the forma-
tion of thin cell-wall tracheids with a lower carbon cost in 
the late growing season.

The present study allowed us to speculate on future 
xylem anatomy of P. tabuliformis in response to increas-
ing CO2 concentration and climate warming. According 
to the two mechanisms of plant mortality (i.e., hydrau-
lic failure and carbon starvation), a reduction in stomatal 
conductance rate can minimize water loss and hydraulic 
failure during drought, thereby reducing the carbon uptake 

rate (Tyree and Zimmermann 2002; McDowell et al. 2008; 
Sevanto et al. 2014). The direct iWUEClim and indirect cli-
mate negative effects on EW LD were stronger than those 
found on LW CWT (Fig. 5), indicating the improvement 
of potential hydraulic safety in the early growing season 
but a shift towards a decline in structural carbon fixation 
in the late growing season. Thus, we considered that future 
warmer and dryer climate conditions will probably lead to 
the enhancement of potential hydraulic safety in the early 
growing season and cause a decline in carbon uptake and 
fixation during the late growing season.

In conclusion, spring climate exhibited significant and 
dominant effects on EW cell enlargement and LW cell wall 
deposition during the low-iWUE periods. Relatively wet 
and cool climate conditions promoted cell enlargement 
and wall thickening before ~ 1989. However, the effects 
of rising Ca and warming climate and their interaction on 
EW and LW anatomical traits became complex afterward. 
Increased iWUECO2 could not compensate for the decline 
of cell enlargement in EW and carbon storage in LW cell 
walls related to climate. Moreover, the negative direct 
effects of iWUEClim and the indirect effects of climate 
on EW LD were stronger than those acting on LW CWT. 
This suggests that P. tabuliformis will face a potential 
risk of growth and carbon uptake decline, but the forma-
tion of narrow conduits will decrease the potential risk of 
drought-induced xylem embolism.

In our study, wood rather than α-cellulose was used for 
δ13C analysis. Trends in δ13C are little different between 
obtained from wood and obtained from α-cellulose. Besides, 
the trend of δ13C as well as iWUE obtained from wood is 
same with that of obtained from α-cellulose, which has been 
confirmed by many previous studies for multiple species.

Although we have identified the varied contribution 
of rising Ca and warming climate to xylem anatomical 
traits, more works need along similar climate gradients 
to provide a holistic understanding of temperate forests in 
response to rapid climate change. The mixed responses of 
trees to elevated Ca and warming climate should be con-
sidered into ecological models for more accurate forecasts 
of temperate forest dynamics in a warming future.
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