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A B S T R A C T   

Microplastics in remote areas has received increasing concern in recent years. However, studies on microplastics 
in alpine rivers and their affecting factors are still limited. In this study, we investigate the abundance and 
characteristics of microplastic in the surface water of five alpine rivers in Qilian Mountain, China. Utilizing sieve 
collection, digestion and density separation, along with microscopy and Raman spectroscopy analyses, micro
plastics were observed in all the water samples and the average abundance of microplastics was 0.48 ± 0.28 
items/L, which was lower than in other freshwaters. Transparent (37.3%) and fibrous (72.1%) microplastics 
were predominant. Polypropylene (53.8%) was the most frequently identified polymer type. Analysis of simi
larities (ANOSIM) and linear discriminant analysis (LDA) based on microplastic shape, color, and polymer type 
showed that there was no significant difference in the microplastic characteristics among rivers of Qilian 
Mountain. The distance decay models revealed that the similarity in microplastics characteristics was not 
affected by changes in watershed characteristics, such as geographical distance, elevation, water quality, and 
land use. This finding suggests that the primary source of microplastics in Qilian Mountain rivers could be from 
dispersed origins. The results of this study indicated that despite remote alpine rivers suffering limited anthro
pogenic impacts, they were not immune to microplastics. However, in watersheds with lower intensity of human 
activity, the abundance and characteristics of microplastics in water bodies may be more uniformly distributed 
and controlled by diffusion conditions such as atmospheric transport or riverine transport. Our investigation 
unveils novel understanding of microplastic dispersion in secluded alpine territories, emphasizing the crucial 
need for managing atmospheric transport of microplastics within conservation areas.   

1. Introduction 

Every year, millions of tons of plastic are released into the environ
ment and eventually break down into microplastics, which are particles 
smaller than 5 mm (Ibrahim et al., 2021). Microplastics enter the 
aqueous environment from other environmental media, undergo trans
port and vertical migration due to water flow and gravity, and can break 
down into smaller particles. Thus, the widespread occurrence of 
microplastics and their potential ecological risks have become a global 
concern and poses a challenge to the management of microplastic 
pollution (Galloway et al., 2017; Kumar et al., 2020; Sridharan et al., 

2021; Talbot and Chang, 2022). Microplastics in aqueous environment 
can accumulate through food webs (Ivleva et al., 2017). They also serve 
as carriers of microorganisms, heavy metals, and organic pollutants in 
aquatic environments (Mughini-Gras et al., 2021; Selvam et al., 2021; 
Sharma et al., 2020). Microplastics and other contaminants that coexist 
with them can adversely affect aquatic organisms and aquatic ecosys
tems through physical damage and the toxic effects of chemicals (Li 
et al., 2020). Over the past few decades, the presence of microplastics in 
aquatic ecosystems, such as oceans, lakes, and rivers, has been a hot 
topic of research (Alimi et al., 2018; Talbot and Chang, 2022; Wong 
et al., 2020b). Even in some remote areas, the presence of microplastics 
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in water bodies has still been found (Dong et al., 2021; Free et al., 2014; 
Yang et al., 2021). Despite the sole origin of microplastics being 
human-related plastic usage, comprehending the factors that affect 
microplastic distribution and characteristics in remote environments 
remains crucial for the effective mitigation of microplastic pollution. 

The distribution of microplastics in water bodies is influenced by 
both anthropogenic activities and physical watershed characteristics 
(Baraza et al., 2022; Talbot and Chang, 2022). Previous studies have 
focused on the impacts of anthropogenic factors such as land cover, 
wastewater treatment plants, and population density on microplastic 
abundances (Feng et al., 2020; Hou et al., 2021; Kataoka et al., 2019). 
Additionally, industrial, agricultural, tourism, and fisheries develop
ment in the watershed have been linked to the occurrence of micro
plastics in water bodies (Feng et al., 2021a; Mao et al., 2021; Xiong et al., 
2021). Various physical watershed characteristics (e.g., elevation, slope, 
hydrological characteristics) of rivers, which are related to the processes 
of microplastic input and distribution also influence the occurrence of 
microplastic (Baraza et al., 2022; de Carvalho et al., 2021; Zhou et al., 
2021). These factors mentioned above can well explain the character
istics of microplastics in densely populated areas. However, the distri
bution of microplastics in low-intensity anthropogenic areas, 
particularly those with minimal plastic use, is not well understood. At
mospheric transport is an important pathway for microplastics to reach 
remote areas from areas of intense human activity due to their light 
weight and durability (Bullard et al., 2021; Dong et al., 2021). However, 
after microplastics reach these remote areas, how environmental factors 
affect their distribution in water bodies still needs further study. 

Previous studies have tended to focus more on the factors influencing 
microplastic abundance. However, the ecological risks of microplastics 
are also closely related to their characteristics such as particle size, 
shapes, and polymer types (Thornton Hampton et al., 2022). Smaller 
particles are more likely to trigger oxidative stress and biological dam
age (Ding et al., 2020). Fibers or fragments have been found to be 
potentially more harmful to aquatic organisms than spheres (Qiao et al., 
2019). Different polymer types also caused differential effects on 
reproductive output in Daphnia magna (Zimmermann et al., 2020). 
Therefore, it is important to assess the influence of environmental fac
tors on microplastic characteristics. Microplastics in the environment 
are complex particles with varying sizes, shapes, colors, and polymer 
types, which makes it challenging to generalize the influence of envi
ronmental factors on microplastic characteristics (Daily and Hoffman, 
2020). To address this challenge, studies have adopted the concept of 
“microplastic communities” from ecological research (Li et al., 2021a; 
Yuan et al., 2022). These studies have used community ecology methods 
to analyze the changing patterns and influencing factors of microplastic 
characteristics in the environment (Yuan et al., 2022). found that found 
that microplastic communities in surface water had a higher migration 
rate than those in sediment and soil. The differences in the sources of 
microplastics in different environmental mediums can also be analyzed 
from the perspective of “microplastic communities” (Chen et al., 2022; 
Li et al., 2021a). (Liu et al., 2023) recently used this concept to distin
guish the effects of irrigation on the distribution of microplastics in soil, 
water, and sediments. Thus, this approach can help us better understand 
the factors affecting the distribution of microplastics in remote 
environments. 

Qinghai-Tibet Plateau (QTP), known as the “the Third Pole of the 
World”, is characterized by hydrological development in the alpine re
gion and is the origin of many rivers and lakes in Asia (Liu et al., 2021). 
(Zhang et al., 2016) first reported microplastics in inland lakes in QTP, 
and subsequent field studies have found that microplastics are widely 
distributed in surface water and sediments in QTP (Dong et al., 2021; 
Feng et al., 2021a, 2021b; Jiang et al., 2019a; Liu et al., 2022; Xiong 
et al., 2018). The concentration of microplastics in most water bodies in 
QTP was generally low (Feng et al., 2021b; Gong et al., 2022; Liu et al., 
2022). Qilian Mountain, located at the northeastern margin of QTP, is a 
crucial component of China’s national park system (Li et al., 2022). It 

serves as the source of numerous rivers in the endorheic region of 
northwest China (Sun et al., 2016). The complex geographical features 
and conservation practices in Qilian Mountain make it an ideal site to 
study microplastics in remote alpine rivers. This study used the concept 
of microplastic community to investigate the abundance and charac
teristics of microplastics in the rivers of Qilian Mountain to understand 
the occurrence and distribution of microplastics and their driving factors 
in the surface water of remote alpine rivers. Findings from this study will 
improve our understanding of microplastics in remote freshwaters and 
provide guidance for future monitoring and risk assessment of micro
plastics in areas with fragile and sensitive ecosystems. 

2. Materials and methods 

2.1. Study area 

Located at the boundary of three major plateaus of China, Qilian 
Mountain (36◦43′–39◦36′N, 94◦25′–103◦46′E) spans a terrain that de
creases in altitude from northwest to southeast, ranging from 2100 to 
5800 m. It has a typical continental alpine climate, characterized by an 
average annual precipitation of 150–800 mm, mostly falling from May 
to September (Sun et al., 2016). With increasing altitude, the average 
annual temperature ranges from 6 to − 5 ◦C (Sun et al., 2016). Rivers are 
widely distributed in Qilian Mountain, mainly belonging to the endo
rheic river system in northwest China. Most of these rivers are situated in 
remote nature reserves, with few areas of human settlement. The Qilian 
Mountain National Nature Reserve was established in 1988 and was 
later designated as one of the first pilot national parks in China in the 
2010s. 

2.2. Sample collection 

Considering the limited anthropogenic sources in the survey area, we 
chose the wet season to investigate microplastics in the region, taking 
into account the potential transport of precipitation to microplastics in 
the water column (Wong et al., 2020a). In August 2020, surface water 
samples were collected from 34 sampling sites across five rivers in the 
Qilian Mountain. The sampling sites included six sites in the Shule River 
(SL1-SL6), five sites in the Tuole River (TL1-TL5), eight sites in the Heihe 
River (H1–H6, BB1-BB2), ten sites in the Datong River (LHS, LHX, 
DT1-DT6, CMY, SG), and five sites in the Shiyang River (SY1-SY5) 
(Fig. 1). The geographical locations of the sampling sites are presented 
in Table S1. 

We employed a bulk sampling approach, similar to our previous 
study to collect water samples (Liu et al., 2022). At each sampling site, 
we collected 15–60 L of river surface water (up to a volume that could 
pass through the sieve) using a stainless-steel bucket. The collected 
water was screened through a stainless-steel sieve with a pore size of 30 
μm in situ. The volume of surface water collected at each sampling site is 
presented in Table S2. Residues on the sieve were rinsed into a clean 
glass bottle (100 mL) using pure water. All samples were transported to 
the laboratory and stored at 4 ◦C until further analysis. 

2.3. Extraction of microplastics 

Microplastics from the water samples were extracted according to 
our previous study (Liu et al., 2022). The water samples were dried at 
60 ◦C and then digested with 20 mL 30% H2O2 for 24–72 h to ensure full 
oxidation of organic matter. The residues obtained after digestion were 
subjected to density separation using a separation funnel containing zinc 
chloride solution (ρ = 1.5 g/mL) for 24 h. The particles that settled in the 
separation funnel were discarded, and the supernatant was filtered onto 
a 1.2 μm filter (Millipore S-Pak) using vacuum extraction. All filters were 
transferred to covered glass Petri dishes and air-dried at room 
temperature. 

Q. Liu et al.                                                                                                                                                                                                                                      
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2.4. Observation and identification of microplastics 

Suspected microplastics on the filters were visually identified based 
on their shape and color (Hidalgo-Ruz et al., 2012) and photographed 
using a stereomicroscope (SZ61, Olympus, Japan) equipped with a 
digital camera (DigiRetina 16, Olympus, Japan). The morphological 
characteristics of the suspected microplastics were classified into 
different colors and three categories based on their shapes, namely fiber, 
fragment, and film. 

The polymer type of microplastics was identified using a Renishaw 
inVia Raman microscope (Wotton-under-Edge, Gloucester-shire, UK) 
with an incident laser of 785 nm. The Raman spectrum ranged from 300 
to 3200 cm− 1. We randomly selected 238 suspected microplastic parti
cles (approximately 30% of the total suspected microplastic particles) 
from all samples for Raman analysis, of which 193 particles were 
identified as microplastics. The obtained Raman spectrums of particles 
were compared to the instrument’s Renishaw Polymeric Materials 
Database and the Raman spectra of the self-made standard plastic 
polymers. As microplastics may undergo weathering to varying degrees 
in the natural environment, a spectrum with a matching index of >70% 
was considered acceptable. 

2.5. Quality assurance and control 

Adequate precautions were taken to avoid possible sample contam
ination. All sampling tools and containers were cleaned with ultrapure 
water before use. All liquid solutions were filtered through GF/C filter 
(1.2 μm pore size, Whatman) prior to use. Cotton lab coats, cotton 
masks, and nitrile gloves were worn during the experiment. All glass
ware was covered with aluminum foil. Blank controls were conducted to 
examine microplastic background contamination from laboratory 
sources. Three blank controls with distilled water were treated syn
chronously with water samples according to the same processes. The 
results showed that no microplastics were detected in 3 blank samples 
(ultrapure water). 

2.6. Environmental factors 

Land use data for Qilian Mountain region were obtained from the 
Globeland30 global land cover dataset with a 30-m resolution for the 

year 2020 (http://www.globallandcover.com, accessed on September 
23, 2022). The Globeland30 dataset divides the Qilian Mountain area 
into ten land use types, including cropland, forest, grassland, shrub, 
water body, wetland, tundra, building land, bare land, and permanent 
ice and snow. The proportion of land cover for each sampling site within 
a 500-m buffer zone was calculated using ArcGIS (v.10.6). To simplify 
the analysis, we combined some land use types with similar character
istics, such as merging cropland and building land, categorizing shrubs 
as forest, classifying tundra as grassland, and grouping water bodies 
with wetlands, while bare land, ice and snow, and glaciers were grouped 
as barren land (Table S2). 

In addition, various water environmental parameters were measured 
at each sampling site. Water velocity was measured at three random 
locations (two along the riverbank and one in the center) of each river 
sampling site using a current meter, and the average value was calcu
lated. Water turbidity was measured using a Hach HQ40D portable 
multiparameter water quality analyzer (USA). Water samples were 
collected at each sampling site and analyzed in the laboratory for total 
nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) 
using standard methods (SEPA, 2002). 

2.7. Statistical analysis 

The abundance of microplastics in surface water was quantified in 
items/L. Spearman’s correlation analysis was used to test the correlation 
between variables and microplastic abundance. To analyze the differ
ence in microplastic abundance and characteristics among different 
groups, one-way analysis of variance (ANOVA) was conducted with a 
95% confidence level. Analysis of similarities (ANOSIM) was performed 
to determine the statistical differences in microplastic communities 
based on the shape, color, and polymer types of microplastics in 
different groups. Linear discriminant analysis (LDA) was used to further 
reduce the dimensions of the data to visually observe the differences of 
microplastic communities between different groups. The Bray-Curtis 
distance was used to calculate the dissimilarity of microplastic com
munities between samples, and the distance-decay relationship (DDR) 
was established to examine the effect of increasing geographical dis
tance, vertical altitude distance, environmental distance, and land use 
distance on the similarity of microplastic communities. Environmental 
and land use data were constructed using Euclidean distance, and 

Fig. 1. Geographical location of sampling sites, abundance, and spatial distribution of microplastics in surface waters of rivers in Qilian Mountain.  
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several environmental variables (TN, TP, TOC, turbidity, and velocity) 
were selected in this process. Data analyses and plotting were performed 
in R (v.4.1.2) using packages vegan. Geographical locations and sam
pling sites were plotted with ArcGIS 10.6. Other figures were plotted 
using Origin 2021 and ggplot2 in R. 

3. Results 

3.1. The abundance of microplastics 

Microplastics were detected in all river water samples collected from 
the Qilian Mountain area, with an abundance range of 0.15–1.53 items/ 
L and a mean value of 0.48 ± 0.28 (means ± SD, the same as below) 
items/L (Fig. 1, Table S3). The highest abundance of microplastics was 
observed at site SL5 in the Shule River (1.53 items/L), while the lowest 
abundance was found at site DT4 in the Datong River (0.15 items/L). 
The Shule River had the highest microplastic abundance (0.71 ± 0.48 
items/L) followed by the Heihe River (0.55 ± 0.27 items/L), the Shiyang 
River (0.46 ± 0.04 items/L), the Datong River (0.48 ± 0.19 items/L), 
and the Tuole River (0.28 ± 0.13 items/L) (Fig. 1). However, there was 

no significant difference in microplastic abundance among the different 
rivers. Microplastic abundance generally increased downstream in the 
Shule River, Heihe River, and Datong River (Fig. 1). 

3.2. Morphological characteristics and polymer types of microplastics 

Fibrous microplastics were found to be the most predominant in all 
rivers, accounting for an average proportion of 72.1%, followed by 
fragments (23.4%) and films (4.6%) (Fig. 2A). Typical photographs of 
microplastics with different shapes under stereomicroscope were pre
sented in Fig. S1. The detection rate of fibrous microplastic in all sites 
was 100%, and their abundance was significantly higher than that of 
other shapes of microplastics (P < 0.05) (Fig. S2). Transparent was the 
most common color for microplastics found in the rivers of Qilian 
Mountain (37.3%), followed by white (26.9%), black (15.6%), and 
yellow (10.2%). Other colors, including blue, yellow, red, green, and 
purple accounted for less than 10% (Fig. 2B). Polypropylene (PP) was 
the most frequently occurring polymer type (53.8%), followed by 
polyethylene (PE) (35.9%), polyethylene terephthalate (PET) (9.0%), 
and polyvinyl chloride (PVC) (1.4%) (Fig. 2C). Typical Raman spectra 

Fig. 2. The shapes (A), colors (B), and polymer types (C) of microplastics in the surface water of rivers in Qilian Mountain.  
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were provided in Fig. S3. 
Microplastic abundance had a significant positive correlation with 

the concentration of TP in the water, water turbidity, and the proportion 
of barren land (P < 0.05; Fig. 3). However, microplastic abundance 
significantly decreased with an increase in altitude (P < 0.05; Fig. 3). 
Furthermore, the relative abundance of PE microplastics had a positive 
correlation with the proportion of cropland and building land (P < 0.05; 
Fig. 3). 

3.3. “Microplastic communities” in rivers of Qilian Mountain 

The results of ANOSIM based on microplastic characteristics indi
cated that the similarity of microplastic communities between rivers was 
not significantly greater than the similarity of microplastic communities 
within rivers (Fig. 4A). The microplastic community composition of 
different rivers was not effectively distinguished by LDA, which further 
indicated a high similarity of microplastic characteristics among rivers 
(Fig. 4B). The distance decay model indicated that the similarity of 
microplastic communities was not significantly influenced by 
geographic distance (Fig. 5A, R2 = 0.0003, P = 0.663), altitude (Fig. 5B, 
R2 = 0.0001, P = 0.300), water environment (Fig. 5C, R2 = 0.0017, P =
0.817), and land use (Fig. 5D, R2 = 0.003, P = 0.088). 

4. Discussion 

4.1. Abundance of microplastics in the rivers of Qilian Mountain 

The abundance of microplastics in the rivers of Qilian Mountain was 
comparable to other rivers and lakes in QTP (Table 1). However, 
compared with other freshwater studies with a similar sampling method 
around the world (Table 1), the abundance of microplastics in this study 
was 1–3 orders of magnitude lower. The microplastic abundance was 
usually positively correlated with local population density (Wang et al., 
2018). Qilian Mountain was located far away from areas with intensive 
human activities. Since the establishment of the Qilian Mountain Nat
ural Reserve, human activities in this area have been restricted, and the 
population density and anthropological land use in this area have shown 

a declining trend (Li et al., 2022). Common pollutants such as nitrogen, 
phosphorus, and heavy metals were effectively controlled in the Qilian 
Mountain area (Wu et al., 2023). The low microplastic abundance in 
rivers of Qilian Mountain further suggested that conservation efforts in 
national parks had a positive effect on controlling microplastics. In 
addition to abundance, the fewer types of microplastic polymers in the 
rivers and the more common dominant colors also indicate a low in
tensity of human activities affecting plastic pollution in the Qilian 
Mountains region. 

The lower microplastic abundance in Qilian Mountain rivers, 
compared to developed areas, can be attributed to lower human activity. 
However, within the Qilian Mountain region, no significant correlation 
was observed between microplastic abundance and land use types 
associated with human activities. Also, there was no significant spatial 
variation in the microplastic abundances between the rivers in Qilian 
Mountain. Previous studies have indicated a strong connection between 
microplastic abundance in water and the intensity of human activity and 
urbanization (Baraza et al., 2022; Barrows et al., 2018; He et al., 2020). 
However, the strict local regulations in the reserve effectively control 
human activity intensity in Qilian Mountain (Gong et al., 2022), thereby 
reducing differences in microplastic abundance. Additionally, atmo
spheric deposition of microplastics across the area may have blurred the 
link between local anthropogenic activities and microplastics (Kalisze
wicz et al., 2020). Nevertheless, an increase in microplastic abundance 
from upstream to downstream was observed in most rivers, consistent 
with the significant negative correlation between microplastic abun
dance and altitude. This increase in downstream microplastics could be 
caused by hydrological dynamics, by which rivers transport micro
plastics from upstream to downstream (Baraza et al., 2022). Considering 
that human activities may be more concentrated in downstream areas, 
in remote mountainous areas, altitude may be a parameter that better 
reflects human activity intensity than land use. 

The positive correlation between the abundance of microplastics and 
barren land, water turbidity, and TP suggests that the abundance of 
microplastics in the region may be related to some indicators related to 
the influence of surface runoff flushing. In alpine rivers of the Qilian 
Mountain area, which are mainly recharged by precipitation (Sun et al., 
2016), an increase in water turbidity is generally associated with input 
from surface runoff carrying particulate matter (Manseau et al., 2022). 
Similarly, an increase in TP in unpolluted alpine rivers is generally 
linked to particulate phosphorus input resulting from precipitation 
runoff (Huang et al., 2014). It suggests that surface runoff may also be an 
important factor influencing the abundance of microplastics in the rivers 
of Qilian Mountain. The positive correlation between barren land and 
microplastic abundance further suggests that intra-watershed scouring 
could be the main source of surface microplastics in these rivers. Pre
vious studies have demonstrated the contribution of long-range atmo
spheric transport to surface microplastics in alpine regions (Dong et al., 
2021; Evangeliou et al., 2020), which could bring abundant micro
plastics to remote areas. The lack of vegetation interception on barren 
land, permanent snow and ice, and other surfaces could make them 
more likely to input microplastics (Helcoski et al., 2020). 

4.2. Factors affecting the microplastic characteristics in the rivers of 
Qilian Mountain 

Unlike traditional pollutants, the ecological risk of microplastics is 
not only determined by their abundance but also by their various 
characteristics, including morphology, particle size, and polymer type 
(Kumar et al., 2021). These characteristics also influence the 
suspension-settlement dynamics of microplastics in rivers, which affect 
their distribution (Daily and Hoffman, 2020). Recent studies suggest 
that specific characteristics of microplastics could have stronger re
lationships with environmental factors than their abundance (Baraza 
et al., 2022; He et al., 2020). (de Carvalho et al., 2021) found the size of 
microplastics decreased in low hydrological conditions, and the 

Fig. 3. Spearman’s correlations of microplastic abundances (MPs), microplastic 
characteristics, and polymer types with water nutrient (TP, TN, and TOC), 
water turbidity, water velocity, land use (cropland and building land (C&B 
land), forest, grassland, wetland, and barren land), and altitude. *P < 0.05. 
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Fig. 4. Differences of microplastic communities in different rivers: (A) ANOSIM was used for variance testing, and the y-axis represents the dissimilarity ranks based 
on microplastic communities between and within rivers; (B) LDA was used to maximize the differences of microplastic communities. 

Fig. 5. Relationship between microplastic community similarity and geographical distance (A), vertical altitude distance (B), environmental distance (C), and land 
use distance (D). 
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proportion of PP was significantly related to river size. However, the 
microplastic characteristics in the Qilian Mountain rivers did not show 
significant differences in either dominant species or microplastic com
munity analysis. Given that microplastic characteristics are closely 
related to their sources (Li et al., 2021a), it suggests that microplastics in 
the rivers of Qilian Mountain could have a high homology. Combining 
the results of microplastic abundance analysis and fewer types of plastic 
polymers in the region, microplastics from non-native sources could be 
the main contributors to microplastics in rivers of Qilian Mountain. It 
could consist mainly of microplastics transported by long-range atmo
spheric transport to alpine regions (Evangeliou et al., 2020). A study in 
the Pyrenean Mountains showed that microplastics could travel from 
known anthropogenic sources to remote areas through atmospheric 
transport and deposition, and that fibers accounted for most of the 
microplastics from atmospheric deposition (Zhang et al., 2019). The 
high proportion of fibrous microplastics in rivers of Qilian Mountain also 
supports this speculation. 

The DDR analysis revealed that the similarity of microplastic com
munities was not associated with geographic distance, elevation, water 
environment, or land use in the watershed. It is inconsistent with the 
significant decay of microplastic community similarity with geographic 
distance in previous studies (Li et al., 2021a; Yuan et al., 2022). The 
similarity of communities in ecology is influenced by differences in 
dispersal sources and dispersal capacity (Jiang et al., 2019b; Mouquet 
and Loreau, 2003), and similar factors may affect the similarity of 
microplastic communities. As discussed previously, the similarity of 
microplastic dispersal sources in Qilian Mountain is relatively high. 
Additionally, the relatively small spatial scale and turbulent hydrologic 
characteristics of the alpine rivers in this study limited the impact of 
differences in microplastic dispersal capacity on community character
istics. Due to the difference in the settling capacity of microplastics with 
different characteristics in water, microplastic communities in the river 
changed with geographical distance (Yuan et al., 2022). However, 
intense hydrologic variations of alpine rivers made microplastics less 
prone to settling or retention in sediments and more likely to be sus
pended in the water column (Luo et al., 2019). (Li et al., 2021a) sug
gested that migration and exchange of microplastics were more likely to 
occur at sampling points close to each other. The relatively small spatial 
scale of this study also promoted the possibility of microplastic dispersal 
between sample sites. The differences between the results of different 
studies highlight the importance of spatial scale in assessing the distri
bution of microplastic communities. 

The effect of land use type on microplastics in water bodies has been 
found in previous studies (Baraza et al., 2022; Barrows et al., 2018). 
Artificial surfaces and agricultural land contributed significantly to 
microplastic pollution, while vegetation would have an interception 
effect on microplastics (Helcoski et al., 2020; Kataoka et al., 2019). 
Although the intensity of anthropogenic activities was low in the Qilian 
Mountain region, some anthropogenic-related land use types still exis
ted. Their influence on microplastic characteristics was most directly 
manifested in the positive correlation with the proportion of PE. 
Atmospherically transported fibrous microplastics generally came to be 

PET fabric fibers, while PE was the more common polymer type used in 
plastic products for daily use and agriculture (He et al., 2020; Wurm 
et al., 2020; Yuan et al., 2022). 

Our results exclude various factors including geographical distance, 
elevation, anthropogenic activities, and land use that could affect the 
microplastic characteristics of the rivers in Qilian Mountain. It further 
suggests that microplastics in Qilian Mountains rivers may come from 
similar dispersed sources, and atmospheric transport is certainly the 
most likely source. However, the distribution of microfibers from dry 
and wet deposition might vary under the influence of meteorological 
factors such as wind, rainfall, and relative humidity in different regions 
(Roblin et al., 2020; Tan et al., 2020). We do not yet have specific data 
on the atmospheric deposition of microplastics in the region to quantify 
the role of atmospheric transport on riverine microplastics and the 
factors influencing it. More event-specific sampling will be needed to 
trace this pattern of migration. 

5. Conclusions 

The results of this study indicated that although microplastics still 
behaved ubiquitously, strict conservation measures and low-intensity 
anthropogenic activities kept the abundance of microplastics in the 
rivers of Qilian Mountain at a relatively low level with an average 
abundance of 0.48 ± 0.28 items/L. There was no significant difference 
in microplastic abundance among the rivers. ANOSIM and LDA based on 
microplastic shape, color, and polymer type also showed that there was 
no significant difference in the microplastic characteristics among 
rivers. Due to homogeneity in source, hydrodynamic characteristics of 
alpine rivers, and relatively small spatial scales, the differences in 
microplastic community characteristics of the rivers in Qilian Mountain 
were not associated with geographic distance, elevation, water envi
ronment, or land use. It further suggested the potential impact of at
mospheric transport on riverine microplastics in remote areas. Our study 
also suggested that the spatial location and spatial scale of watersheds 
played an important role in studying factors affecting the microplastic 
characteristics in freshwater environments. The establishment of nature 
reserves can greatly facilitate the limitation of local microplastic 
pollution caused by human activities. However, systematic investigation 
of atmospheric transport of microplastics is necessary to further un
derstand its contribution to microplastics in water bodies in the remote 
area. 
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Table 1 
Abundance comparison with other freshwater systems (surface water).  

Waterbody Abundance items/L Characterization methods Size (mm) Shapes Reference 

Rivers in the Qilian Mountain 0.48 ± 0.28 Raman 0.03–5 Fiber, fragment, film This study 
Changjiang Estuary 4.14 ± 2.46 FTIR >0.07 Fiber, fragment, film Xu et al. (2018) 
Chishui River 1.77–14.33 FTIR >0.75 Fiber, block, foam, film Li et al. (2021b) 
Dongting Lake and Hong Lake 0.9–4.65 Raman 0.05–5 Fiber, granule, film Wang et al. (2018) 
Garonne River 0.15 ± 0.46 FTIR 0.7–5 – de Carvalho et al. (2021) 
Dutch portion of the Rhine 334.67 LDIR <0.5 – Mughini-Gras et al. (2021) 
Amsterdam canal 48–187 FTIR 0.01–5 Fiber, foil, sphere Leslie et al. (2017) 
Rivers in the Tibet plateau 0.48–0.97 Raman 0.045–5 Fiber, pellet, fragment Jiang et al. (2019a) 
Rivers in the Tibet plateau 0.67–0.73 Raman 0.02–5 Fiber, fragment, film, particle Feng et al. (2020) 
Rivers and lakes in the Tibet plateau 0.62 ± 0.41 Raman 0.02–5 Fiber, fragment, film, ball, foam Feng et al. (2021b)  
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