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Abstract: The Chinese mugwort (Artemisia argyi Lév. et Vaniot) is an important traditional Chinese
medicine plant that is ubiquitously disturbed in Asia. However, the molecular mechanisms that
reflect the natural evolution of Artemisia argyi remain unclear. In this study, a high-quality draft
assembly of the allotetraploid A. argyi (ArteW1-Tongbai) was conducted utilizing PacBio long-read
sequencing and Hi-C technologies. The assembly is about 7.20 Gb with a contig N50 length of 0.87 Mb.
The allotetraploid genome of ArteW1-Tongbai is highly heterozygous and rich in repeat sequences
(the heterozygous ratio is 1.36%, and the repeat rate is 86.26%). A total of 139,245 protein-coding
genes were identified. The KEGG enrichment analysis revealed that 846 species-specific genes were
related to the biosynthesis of secondary metabolites. The plants with allopolyploid genomes can
potentially exhibit a better adaptive capacity to environmental stresses and accumulation of secondary
metabolites. Therefore, the genome assembly serves as a valuable reference for Artemisia, the genus
characterized by species richness and diverse specialized metabolites.

Keywords: Artemisia argyi; de novo assembly; Hi-C technology; allotetraploid

1. Introduction

The Artemisia argyi H. Lév. et Vaniot (Asteraceae), also known as Chinese mugwort
or Aicao, is ubiquitously distributed in Asia, and is an important traditional Chinese
medicine (TCM) herb. Tongbai County, Henan Province of Central China, is one of the
main places for producing A. argyi. The cultivated and wild A. argyi growing in Tongbai
are named “Tongbai Ai”. Dried A. argyi leaves are the original material for moxibustion.
Previous phytochemical studies reported that the main components present in A. argyi
leaves, such as flavonoids, polysaccharides, terpenoid, polyketides, and phenolic acids,
exhibit antioxidant, anti-cancer, antimicrobial, and neuroprotective activities [1]. Recently,
the terpenoid biosynthesis pathway was analyzed by transcriptome profiling [2]. However,
the molecular mechanisms underlying the biological synthesis of medicinal components of
A. argyi are still largely unknown.

Polyploidy changes the quantitative and qualitative patterns of secondary metabolite
production in plants [3]. Polyploidy, or whole-genome duplication (WGD), is one of the
main evolutionary forces enhancing the adaptive potential of organisms [4]. There are
two types of polyploidies in plants: allopolyploidy and autopolyploid. The formation of
allopolyploidy involving interspecific hybridization and genome duplication is more preva-
lent than autopolyploidization in nature [5]. Allopolyploidation may be the most common
mechanism of sympatric speciation and promotes adaptation in plants [6]. Many Aster-
aceae species are allopolyploid because of interspecific hybridization [7]. The Artemisia is a
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large genus of the Asteraceae family that consists of about 380 species [8]. The chromosome
number of Artemisia species was identified mainly to be x = 9, which is prevalent; or x = 8,
which is less frequent [9,10].

In the last decade, a dozen Artemisia chloroplast genomes were completely character-
ized, which provide a valuable resource for phylogenetic analysis [11,12]. Recently, the
genome assembly of A. annua set an excellent model system for studying the artemisinin
synthesis and evolution of Artemisia [13]. In this study, the high-quality assembly and
annotation of an allopolyploid genome of A. argyi were conducted utilizing PacBio long-
read sequencing and Hi-C technologies. The results provide fundamental information for
illustrating the structure and organization of the highly heterozygous genome. In addition,
the genome assembly of A. argyi is a useful tool for dissecting phytochemical component
synthesis pathways and drug discovery.

2. Materials and Methods
2.1. Plant Sample, Sequencing, and Genome Survey

In September 2019, a wild individual of A. argyi (ArteW1-Tongbai) was collected from the
“Protected Area of Tongbai Ai” located at Huaiyuan Town, Tongbai County, Henan Province,
China (32◦29′201′′ N, 113◦15′12′′ E) at altitudes of 287.67 m (Figure 1a,b). The samples were
sent to the commercial genome research organization Frasergen (Wuhan, China) for DNA
extraction and sequencing. The total genomic DNA was extracted from fresh leaves utilizing
a modified CTAB method, in which LiCl and polyvinylpyrrolidone (PVP) were added to the
extraction buffer to remove the high level of polysaccharides, polyphenolics, and secondary
metabolites [14]. RNA contaminant was removed by RNaseA. Then, the quality of the DNA
was checked using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA) as well as agarose gel electrophoresis. Qubit 3.0 fluorometer (Thermo Fisher
Scientific, Waltham, MA, USA) was used to quantify the DNA.

Four libraries with insert sizes larger than 15 kb were constructed according to the
SMRTbell Express Template Prep kit 2.0 (Pacific Biosciences, Menlo Park, CA, USA). Then,
single-molecule DNA sequencing was conducted on the PacBio Sequel II platform (Pacific
Biosciences, Menlo Park, CA, USA). A total of 570.70 Gb (80× of the estimated genome
size) bases were generated. The raw reads were filtered by HTQC v.1.92.310 to remove
adapters and low-quality sequences (read pairs with an average quality lower than 20
and with any end shorter than 75 bp) [15]. In addition, two libraries with an insertion
length of 150 bp were generated and sequenced on the HiSeq X Ten platform (Illumina,
San Diego, CA, USA). A total of 162.63 Gb of short-read sequences were generated for the
genome survey. Then, the genome size, the level of heterozygosity, and repeat content of
the genome were estimated utilizing the k-mer method. The 17-mer survey was conducted
by GCE software [16].

2.2. Genome Assembly and Quality Evaluation

Clean data generated by the PacBio Sequel II platform were processed to genome
assembly after filtering by fastp v.0.12.6 [17]. The draft genome was assembled using
mecat2 with default parameters [18]. Then, the genome was polished by using the arrow
pipeline from the SMRT link 4 toolkit to correct errors in the initial genome assembly.
Finally, the short reads derived from the Illumina sequencer were utilized to correct the
remaining errors by pilon v.1.22 [19].

In this study, the Hi-C technique was employed to construct chromosome-level assem-
blies. Fresh leaves of ArteW1-Tongbai were fixed in formaldehyde to create DNA–protein
bonds. Then, the restriction enzyme MboI was utilized to digest the chromatin. After
re-ligation, the DNA was sheared into 300–500 bp fragments by sonication. Then, the
Hi-C library was prepared following a standard procedure and sequenced on the Illumi-
naHiSeq X Ten platform under the PE150 model. A total of 381 Gb data were generated
from the Hi-C library (50× of the estimated genome size). Next, the raw data were filtered
to remove self-ligation, non-ligation, and other invalid reads by fastp v.0.12.6 [17]. The
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clean reads were mapped to the polished genome using BWAv.0.7.16a (r1181) with default
parameters [20].
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of the ArteW1-Tongbai growing in “Protected Area of wild A. argyi”. (c) Estimation of the genome 
size of ArteW1-Tongbaibased on k-mer analysis. 
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Figure 1. Location of the study site and genomic characteristic of the wild A. argyi. (a) Sampling site
of ArteW1-Tongbai (Google Earth, earth.google.com/web/, accessed on 30 April 2020). (b) Picture of
the ArteW1-Tongbai growing in “Protected Area of wild A. argyi”. (c) Estimation of the genome size
of ArteW1-Tongbai based on k-mer analysis.

The 3d-DNA pipeline was used to cluster, order, and orient the Hi-C contigs [21]. The
3d-DNA pipeline anchored and oriented 7.20 Gb (98.98%) contigs into 32 superscaffolds
(named aar1 to aar32) according to the syntenic relationship (Supplementary Table S1).
Then, a contact map was plotted using Juicer [22], and visualized and corrected by Juice-
box [23]. Finally, the quality of pseudo-chromosome assembly was assessed by BUSCO
v.3.0.2 with the embryophyta_odb10 dataset [24].

2.3. De Novo Genome Annotation

The gene structural annotation of A. argyi was conducted following three strate-
gies: (1) de novo prediction performed by AUGUSTUS v.3.3.1 [25] and GENSCAN [26];
(2) homology-based annotation using Exonerate v.2.2.0 with the default parameters [27];
and (3) finding coding regions in RNA-Seq transcripts by Cufflinks v.2.2.1 [28]. Finally, the
results of the three methods were combined into gene models by MAKER [29].

The predicted genes were further functionally annotated according to the best match
of the alignments with Lactuca saligna, Mikania micrantha, Cynara cardunculus var. scolymus,
Artemisia annua, and Helianthus annuus. The sequences were queried against databases
including the National Center for Biotechnology Information (NCBI) Non-Redundant
(NR) database [30], TrEMBL [31], Swiss-Prot [32], and the Kyoto Encyclopedia of Genes
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and Genomes (KEGG) [33] database by blasstp (e-value = 1 × 10−5) [34]. In addition,
InterProScan v.5.35–74.0 [35] and PfamScan [36] were used to annotate the protein domains
based on the InterPro [37] and Pfam [38] databases. Gene Ontology (GO) [39] IDs for
predicted genes were obtained from Blast2GO [40]. Finally, Benchmarking Universal
Single-Copy Orthologs (BUSCO) was used to validate the gene annotations with the
embryophyta_odb10 and default parameters [24].

2.4. Evolutionary Analysis

The genomes of six Asteraceae species including L. sativa, M. micrantha, C. cardunculus
var. scolymus, A. annua, and H. annuus, as well as A. argyi were included in the phylogenetic
analysis. The Solanum tuberosum was used as the outgroup. OrthoFinder v.2.3.1 was used
for the identification of orthologous groups of the A. argyi genome with an e-value of
10−5 [41]. Gene families unique for each species were extracted from the clustering result.
Expansion and contraction analysis of gene families was conducted using CAFE v.2.2 [42].
The enrichment of KEGG and Gene Ontology terms for the expansion, contraction, and
lineage-specific gene families was performed using goseq [43].

Orthologous groups (OGs) with single-copy genes were used in the phylogenetic anal-
ysis. Protein sequences from each OG were aligned using MUSCLE v.3.8.31 [44]. Ambiguous
sites were removed manually by trimAI [45]. The final dataset was generated by concate-
nating alignments. The phylogenetic tree was constructed using IQ-TREE software with
maximum likelihood (ML) algorithm. The divergence time of species using MCMCTree
was implemented in PAML v.4.9 package [46]. The tree was calibrated by Asteraceae crown
age (95–106 million years ago, Mya) and split time between C. cardunculus var. scolymus and
L. sativa (27–40 Mya). The time-calibrating points were obtained from the timetree website
accessed on 14 July 2020 (timetree.org).

We utilized the wgd software to calculate Ks distribution (ranging from 0.05 to 3)
among paralogs from A. argyi [47]. The paralogs were pruned on the basis of co-linearity
analysis using i-ADHoRe [48]. Then, we fitted the Ks distribution of the paralogs from each
hypothesized WGD peak according to the fitted mixture model (BGMM in ‘wgd’).

3. Results
3.1. Genomic Characteristics of Wild A. argyi

The A. argyi (ArteW1-Tongbai) used in this study is native to the semi-arid hilly region
of Huaiyuan Town, Tongbai County, Henan Province, China (32◦29′201′′ N, 113◦15′12′′ E)
at altitudes of 287.67 m (Figure 1a,b). The karyotype analysis revealed that the nuclear
genome of ArteW1-Tongbai comprises 34 chromosomes (2n = 34).

The genome size of ArteW1-Tongbai was estimated through k-mer analysis using Illu-
mina short reads at a k-mer size of 17. As shown in Figure 1c, the frequency distribution of
k-mer manifested two clear peaks at depths of 17 and 34, corresponding to the heterozygous
and homozygous reads, respectively. Then, the haploid genome size of ArteW1-Tongbai was
estimated to be about 3.81 Gb based on the homozygous peak depth, and the diploid genome
size was predicted to be about 7.62 Gb heterozygous based on the heterozygous peak depth.

The k-mer results indicated that the heterozygous ratio of ArteW1-Tongbai is 1.36%, and
the repeat rate is 86.26% (Figure 1c). Both the chromosome number and genome size were
different from the diploid A. argyi (2n = 2x = 18, genome size = 4.3 Gb) [10], suggesting that
ArteW1-Tongbai possesses an allotetraploid genome. The genome size of ArteW1-Tongbai is
approximately four-fold higher than the closely-related species A. annua (1.74 Gb) [13].

3.2. De Novo Assembly and Annotation of the A. argyi Genome

In this study, an assembly of an allopolyploid A. argyi genome was conducted utilizing
PacBio long-read sequencing and Hi-C technologies. The 7.20 Gb genome is assembled
into eight main clusters of superscaffolds and further divided into 32 pseudochromosomes
(numbered aar1–32) with contig N50 of 0.87 Mb and scaffold N50 of 215.81 Mb. The size
of superscaffolds ranged from 175.86 Mb to 372.72 Mb. In addition, the 32 pseudochro-
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mosomes formed eight main clusters, and each cluster contained two “haplotype-fused”
homologous chromosomes (Supplementary Figure S1 and Supplementary Table S1). The
number of pseudochromosomes (32) did not match the karyotype result (34), because four
pairs of them are fused and very difficult to isolate. The Hi-C assembly contained 98.98%
of the assembled sequences. The completeness of the genome assembly was qualified by
BUSCO [24]. In total, 1572 out of 1614 BUSCOs were identified as complete (97.40%).

Genes were predicted in the allotetraploid A. argyi genome by a pipeline integrating
de novo, homology-based, and RNA-Seq methods. A total of 139,245 protein-coding gene
models were identified. Next, the gene models were evaluated using the same methods
as gene prediction. A total of 133,932 (96.18%) predicted genes were supported by two or
three methods. In addition, BUSCO was utilized to validate the annotation results: 1607 of
1614 (99.6%) BUSCOs were complete. Then, the gene models were further functionally an-
notated by blasting against databases. A total of 134,956 genes were successfully annotated,
corresponding to 96.92% of the predicted genes.

3.3. Comparative Genome Analysis of Asteraceae Species

In this study, the genome of A. argyi was compared to the other five Asteraceae species
with genomic assemblies (A. annua, H. annuus, L. sativa, C. var. scolymus, and M.micrantha),
and the asteroid S. tuberosum was used as the outgroup of the phylogenetic analysis. A total
of 139,245 genes belonging to 27,279 families in the A. argyi genome were identified (Table 1).

Table 1. Comparison of gene number of A. argyi and other species.

Species Genes Families Clustered Genes Unclustered Genes Specific Genes Specific Families

A. argyi 139,245 27,279 123,512 15,733 18,576 4858
A. annua 66,918 23,935 61,118 5800 7547 2030

C. cardunculus 38,406 16,749 37,567 839 1695 333
H. annuus 44,144 16,818 40,078 4066 5909 1656
L. sativa 45,243 17,972 43,605 1638 5612 1000

M. micrantha 46,351 17,554 43,088 3263 8059 1522
S. tuberosum 37,967 15,602 35,723 2244 7563 1541

The phylogeny of A. argyi and other Asteraceae species was reconstructed using a con-
catenated sequence alignment of 24 single-copy genes shared by A. argyi and another six
plant species (Figure 2a). The A. argyi was clustered with the closely related A. annua, as
expected. The divergent time of A. argyi and A. annua was estimated to be around 18.28 Mya.
When compared to A. annua, a total of 9119 gene families were expanded in A. argyi, whereas
401 were contracted (Figure 2a). moreover, 4697 gene families were shared by A. argyi and
A. annua, whereas 4858 gene families were specific to A. argyi (Figure 2b). The KEGG en-
richment analysis indicated that the number of genes involved in secondary metabolites
biosynthesis (846) was notably higher than the species-specific genes of other pathways, for
example, the biosynthesis of amino acids (256) (Figure 2c). Most expanded gene families were
associated with secondary metabolites, such as isoquinoline alkaloid biosynthesis (ko00950),
tropane, piperidine, and pyridline alkaloid biosynthesis (ko00960), monobactam biosynthesis
(ko00261), betalain biosynthesis (ko00965), and glucosinolate biosynthesis (ko00966) (Fig-
ure 2c). Additionally, some key enzymes of secondary metabolites biosynthesis pathways
were expanded in A. argyi. For example, the polyphenol oxidase (K00422) primary-amine oxi-
dase (K00276) catalyzed the synthesis of main metabolic intermediates of various isoquinoline
alkaloids. Isoquinoline alkaloids were enriched in herbal plants that have been used for their
anti-inflammatory, antimicrobial, and analgesic effects [49].
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Figure 2. Evolutionary analysis of A. argyi genome. (a) Phylogenetic tree of Asteraceae species.
Branch and taxa labels are numbers of gene families manifesting expansion (green) and contrac-
tion (red). Node labels are divergence times estimated by maximum likelihood (ML) algorithm.
(b) Overlap of gene families of four Asteraceae species and Solanum. (c) KEGG enrichment analysis
of expansion gene families in the A. argyi genome.

Moreover, the distribution of synonymous substitutions per synonymous site (Ks)
revealed the whole-genome duplication (WGD) events that occurred in the A. argyi genome.
The peak observed from the lg(Ks) = −3, demonstrating a most recent genome duplica-
tion, and peak at lg(Ks) = 0 represented an older WGD that occurred in the evolution of
Artemisia (Figure 3).



Agronomy 2023, 13, 436 7 of 10Agronomy 2023, 13, x FOR PEER REVIEW 7 of 11 
 

 

 
Figure 3. Distribution of synonymous substitutions per site (Ks) (a) and lg(Ks) (b) inferring WGD 
events. 

Table 1. Comparison of gene number of A. argyi and other species. 

Species Genes Families Clustered Genes Unclustered Genes Specific Genes Specific Families 
A. argyi 139,245 27,279 123,512 15,733 18,576 4858 
A. annua 66,918 23,935 61,118 5800 7547 2030 

C. cardunculus 38,406 16,749 37,567 839 1695 333 
H. annuus 44,144 16,818 40,078 4066 5909 1656 
L. sativa 45,243 17,972 43,605 1638 5612 1000 

M. micrantha 46,351 17,554 43,088 3263 8059 1522 
S. tuberosum 37,967 15,602 35,723 2244 7563 1541 

4. Discussion 
A. argyi is an important traditional Chinese medicine plant. In this study, we con-

ducted high-quality assembly and annotation on an allopolyploid genome of wild A. ar-
gyi. The results showed that the allotetraploid genome of ArteW1-Tongbai is highly het-
erozygous and rich in repeat sequences. The A. argyi genome contains a larger number of 
gene familiescompared to other Asteraceae species (Table 1) [13,50–53]. The Ks results 
indicated that a duplication event occurred recently and led to the synthesis of the al-
lotetraploid A. argyi genome (Figure S1). The plants with allopolyploid genomes tend to 
exhibit a better adaptive capacity to environmental stresses and the accumulation of 
secondary metabolites [6]. A total of 846 species-specific genes were related to the bio-
synthesis of secondary metabolites. The results of the genome characteristics are con-
sistent with the results reported recently (high heterozygosity and high repetitive se-
quences), but vary in terms of gene numbers (62,844–279,294) and genome size (7.20 Gb 
in this study, and 7.44–7.87 Gb in previous reports) [54,55]. In addition, all three assem-
blies demonstrate chromosome fusion events by synteny analysis (Figure S1a). 

A high-quality reference genome assembly serves as a fundamental resource for 
research on polyploid plant genomes. On the other hand, the high ratio of repeat se-
quences and heterozygosity are the main obstacles to the assembly of polyploid plant 
genomes [56]. In this case, the A. argyi genome is highly heterozygous (heterozygosity = 
1.36%) and contains a high ratio of repeat sequences (86.26%) (Figure 1c). Therefore, we 
could not derive a haplotype-resolved assembly from the allopolyploid genome despite 
utilizing long-read sequencing and Hi-C assembly technologies. For further study, we 
plan to conduct the genome sequencing of diploid A. argyi and provide an updated as-
sembly of the allopolyploid genome. 

Polyploidization is common in plants. The increase in gene numbers facilitates the 
production of secondary metabolites [3]. For example, the tetraploid Echinacea purpurea 
has a higher abundance of cichoric acid than diploid [57]. Moreover, hybridization en-

Figure 3. Distribution of synonymous substitutions per site (Ks) (a) and lg(Ks) (b) inferring WGD events.

4. Discussion

A. argyi is an important traditional Chinese medicine plant. In this study, we conducted
high-quality assembly and annotation on an allopolyploid genome of wild A. argyi. The
results showed that the allotetraploid genome of ArteW1-Tongbai is highly heterozygous
and rich in repeat sequences. The A. argyi genome contains a larger number of gene
families compared to other Asteraceae species (Table 1) [13,50–53]. The Ks results indicated
that a duplication event occurred recently and led to the synthesis of the allotetraploid
A. argyi genome (Figure S1). The plants with allopolyploid genomes tend to exhibit a
better adaptive capacity to environmental stresses and the accumulation of secondary
metabolites [6]. A total of 846 species-specific genes were related to the biosynthesis of
secondary metabolites. The results of the genome characteristics are consistent with the
results reported recently (high heterozygosity and high repetitive sequences), but vary
in terms of gene numbers (62,844–279,294) and genome size (7.20 Gb in this study, and
7.44–7.87 Gb in previous reports) [54,55]. In addition, all three assemblies demonstrate
chromosome fusion events by synteny analysis (Figure S1a).

A high-quality reference genome assembly serves as a fundamental resource for
research on polyploid plant genomes. On the other hand, the high ratio of repeat sequences
and heterozygosity are the main obstacles to the assembly of polyploid plant genomes [56].
In this case, the A. argyi genome is highly heterozygous (heterozygosity = 1.36%) and
contains a high ratio of repeat sequences (86.26%) (Figure 1c). Therefore, we could not
derive a haplotype-resolved assembly from the allopolyploid genome despite utilizing
long-read sequencing and Hi-C assembly technologies. For further study, we plan to
conduct the genome sequencing of diploid A. argyi and provide an updated assembly of
the allopolyploid genome.

Polyploidization is common in plants. The increase in gene numbers facilitates the
production of secondary metabolites [3]. For example, the tetraploid Echinacea purpurea has
a higher abundance of cichoric acid than diploid [57]. Moreover, hybridization enhances
the variation of secondary metabolites and herbivore resistance [58]. The allopolyploidy
contains two sets of genes involved in secondary metabolite biosynthesis inherited from
parental species. Recent research reported that the hybrid cultivar of oolong tea (Camellia
sinensis) exhibited structural variations and the expansion of terpene synthase gene families,
which contributed to the high aroma and stress tolerance [59]. As a result, the allotetraploid
A. argyi showed great potential for metabolic engineering.

The A. argyi genome contains a larger number of gene families compared to other
Asteraceae species (Table 1). The Artemisia species synthesized diverse secondary metabo-
lites [60]. In this study, the functional annotation and KEGG enrichment analysis revealed
that many secondary metabolites synthesis gene families are unique to A. argyi. Our study
provides fundamental resources for analyzing diverse specialized metabolites in Artemisia.
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5. Conclusions

In summary, we assembled and annotated a high-quality genome of the genus
Artemisia. The genome data can be used in studying gene functions, the genome evo-
lution of Asteraceae, and Artemisia taxonomy. The results showed that A. argyi diverged
from other Artemisia species very recently (at ~8.12 Mya) and experienced two rounds
of WGD events. We also found that the genes of secondary metabolites biosynthesis ex-
panded. These results can provide insight into thedrug discovery of Artemisia plants. The
findings suggest that the allotetraploid A. argyi can be used as a useful tool for dissecting
phytochemical component synthesis.
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