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Interspecific variations in phenotypic plasticity of trees that are affected by climate change may alter the ecosystem
function of forests. Seedlings of four common tree species (Castanopsis fissa, Michelia macclurei, Dalbergia odorifera
and Ormosia pinnata) in subtropical plantations of southern China were grown in the field under rainout shelters and
subjected to changing precipitation (48 L of water every 4 days in the dry season, 83 L of water every 1 day in the
wet season; 4 g m—2 year~ ! of nitrogen (N)), low N deposition (48 L of water every 2 days in the dry season, 71 L
of water every 1 day in the wet season; 8 g m~2 year—' N), high N deposition (48 L of water every 2 days in the dry
season, 71 L of water every 1 day in the wet season; 10 g m~2 year~! N) and their interactive effects. We found that
the changes in seasonal precipitation reduced the light-saturated photosynthetic rate (As,t) for C. fissa due to declining
area-based foliar N concentrations (N,). However, we also found that the interactive effects of changing precipitation
and N deposition enhanced Ag,; for C. fissa by increasing foliar N, concentrations, suggesting that N deposition could
alleviate N limitations associated with changing precipitation. Altered precipitation and high N deposition reduced Agat
for D. odorifera by decreasing the maximum electron transport rate for RuBP regeneration (Jmax) and maximum rate
of carboxylation of Rubisco (V¢max). Ormosia pinnata under high N deposition exhibited increasing As,t due to higher
stomatal conductance and V¢max. The growth of D. odorifera might be inhibited by changes in seasonal precipitation
and N deposition, while O. pinnata may benefit from increasing N deposition in future climates. Our study provides an
important insight into the selection of tree species with high capacity to tolerate changing precipitation and N deposition
in subtropical plantations.

Keywords: additional nitrogen deposition, biochemical traits, carbon reserves, phenotypic plasticity, photosynthetic traits,
subtropical trees, variable dry and wet season precipitation.

Introduction . N . .
in seasonal precipitation have resulted in subtropical forests

Changes in seasonal precipitation pattern and atmospheric
nitrogen (N) deposition have become two major factors in
global environmental change (IPCC 2013), which affects the
productivity and functioning of forest ecosystems (De Schrijver
et al. 2008, Barros et al. 2019, Tang et al. 2020). Changes

becoming drier in the dry season but wetter in the wet season
(Zhou et al. 2011), which may determine species-specific
responses to climate change (Nicotra et al. 2010, N.P He
et al. 2020) and biome reorganization (G.Y. Zhou et al. 2014).
Human activities and industrialization are predicted to increase
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N deposition by 2.5-fold by the end of the century (Fowler et al.
2013). It has been shown that atmospheric N deposition may
alleviate soil N limitation to plant growth and further increase
forest productivity (Guerrieri et al. 2011, Zhang et al. 2020);
however, excess N deposition may reduce plant growth and
biodiversity (Bobbink et al. 2010, Borghetti et al. 2017). The
main impacts of changing precipitation and N deposition on
phenotypic plasticity, which is the ability of a genotype to
exhibit different phenotypes in response to changes in the
environmental conditions (Hoffmann and Sgro 2011, Drake
et al. 2015), has been studied regarding physiological and
biochemical traits, while few studies have investigated their
interaction.

Most previous studies have investigated the effects of
drought on subtropical trees in the growing season (wet
season), but few have addressed seasonal changes in
precipitation pattern (P. Li et al. 2018, Duan et al. 2022).
During drought, plants close stomata to avoid embolism in
response to impaired water transport capacity induced by
declining water availability (Martorell et al. 2014), limiting
CO; availability for photosynthesis (dos Santos et al. 2018).
Additionally, lower organic matter decomposition rate induced
by lower precipitation and higher nutrient leaching caused by
higher precipitation could decrease soil nutrient availability,
which would decrease foliar nutrient concentrations (Chen et al.
2019, Ge et al. 2022). In turn, this lowers the light-saturated
photosynthetic rate (Asat) by decreasing photosynthetic
capacity, consisting of the maximum electron transport rate for
RuBP regeneration (Jmax) and maximum rate of carboxylation of
ribulose 1,-5-bisphosphate carboxylase/oxygenase (Rubisco)
(Vemax) (Limousin et al. 2010). Nonstructural carbohydrates
(NSC, comprised of soluble sugars and starch) are sourced
from photosynthesis, and are related to the balance of
sources (photosynthesis) and sinks (growth and respiration)
of carbon (Hartmann and Trumbore 2016); NSC helps
plants osmoregulate to defend against stress and maintain
physiological functioning (McDowell et al. 2022). Reduced
foliar NSC concentrations due to lower photosynthesis may
decrease the capacity of subtropical trees to adapt to changing
precipitation (De Roo et al. 2020, Duan et al. 2022). Hence,
tree resistance to changes in seasonal precipitation pattern is
essential for maintaining growth and survival (Gessler et al.
2017, McGregor et al. 2021).

Nitrogen is a critical component of photosynthetic enzymes
and chlorophyll that could directly regulate gas exchange (Tis-
sue et al. 1993, Elser et al. 2007). In temperate forests with
limiting N, low and high N depositions result in higher foliar
N concentrations (Zhang et al. 2021a, 2021b), which further
stimulates photosynthetic traits (Liang et al. 2020, Zhang et al.
2020). In contrast, several studies have demonstrated that
low and high N depositions exert limited impacts on foliar N
concentrations in N-rich forest ecosystems (Lu et al. 2018, Mao
et al. 2021). Huang et al. (2021) found that low N deposition

has no impact on photosynthetic capacity for subtropical trees
but reduces its growth so that it has higher NSC concentrations,
which could help plants tolerate stress environments (Adams
etal. 2017, Tang et al. 2020). However, soil acidification caused
by high N deposition induces nutrient imbalance in subtropical
forests with low P availability, which lowers foliar phosphorus
(P) concentrations (Reed etal. 2011, Huang et al. 2016, Deng
et al. 2017) and thereby decreases photosynthesis and NSC
concentrations for subtropical trees (Liu et al. 2016, Shi et al.
2017, Mao et al. 2018).

Nitrogen deposition could alter the plasticity in photosynthetic
and biochemical traits induced by changing precipitation, and
the variations in magnitude and direction are related to the
levels of N deposition (Barker et al. 2006, Zhang et al. 2021a).
Low N deposition enhances hydraulic conductivity by increasing
xylem conduit diameter (Hacke et al. 2010, Villar-Salvador et al.
2013), which exerts positive effects on stomatal conductance
(9s) and photosynthesis under changing seasonal precipitation
patterns (Xu et al. 2013, Zhang et al. 2014). Even low
levels of natural N deposition could promote faster recovery of
photosynthesis due to higher enzyme activity and chlorophyll
concentrations (Patrick et al. 2009, Gessler et al. 2017). In
contrast, excessive N deposition may strengthen the negative
effects of changing precipitation on physiological traits, such as
exacerbated nutrient imbalance (Liang et al. 2022), lower water
supplies due to reduced root biomass (Dziedek et al. 2016)
and higher vulnerability to xylem cavitation (Harvey and van den
Driessche 1997).

Four common tree species (Castanopsis fissa, Michelia mac-
clurei, Dalbergia odorifera and Ormosia pinnata) grown in sub-
tropical plantations of southern China were chosen for this study,
with M. macclurei exhibiting the highest capacity to tolerate
drought (Wu et al. 2022). Previous studies demonstrated that
extreme changing precipitation and high levels of N deposition
occurring in southern China have seriously affected tree survival
and species composition (G.Y. Zhou et al. 2014, Tian et al.
2018). Our goal was to determine which species exhibited the
highest capacity to acclimate to changes in seasonal precipita-
tion patterns, low and high N depositions, and their interactive
effects. Here, we analyzed the responses of foliar physiological
traits (photosynthetic rate and capacity) and biochemical traits
(morphology, chemistry and carbon reserves) to the main and
interactive effects of shifts in precipitation from the dry season
to the wet season and additional N deposition. Specifically, we
wanted to test the following hypotheses: (i) shifting precipitation
from the dry to the wet season would decrease leaf nutrient
concentrations and gs for the four tree species, and subse-
quently result in lower photosynthetic traits; (ii) low N deposition
would exert no effects on photosynthetic and biochemical
traits for the four tree species, while high N deposition would
decrease photosynthetic traits; and (iii) the interactive effects
of changing precipitation and low N deposition would increase
photosynthetic and biochemical traits, while the interactive
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effects of changing precipitation and high N deposition would
have a negative effect on photosynthetic and biochemical
traits.

Materials and methods

Plant material and experimental design

In 2018, 18 plots were constructed in the South China
Botanical Garden, CAS, Guangzhou, Guangdong province, China
(N23°10'30.97”,E113°21/9.81"”). The mean annual tempera-
ture is approximately 21 °C, and the relative humidity averages
80% throughout the year. The mean annual precipitation is
approximately 1900 mm; nearly 80% of the rainfall occurs
during the wet season (April-September) and 20% during
the dry season (October—-March) (Wu et al. 2020). A plastic
film, with a height of 7 m, extended above the tops of the
trees was used to exclude natural rainfall from the plots. Each
plot had an edge length of 3 m, with an edge height of
0.8 m. The wall of the plot was made of brick, cement and
concrete, and the bottom of the plot was filled with local forest
soil. Castanopsis fissa, Michelia macclurei, Dalbergia odorifera
and Ormosia pinnata are dominant common species in native
subtropical forests, and they are widely planted in plantations
due to large biomass and economic value (Li et al. 2011, Yang
etal. 2016, Wu et al. 2022). C. fissa is a sun-growing and late
successional species, while the others are shade-growing and
middle successional species (South China Botanical Garden,
Chinese Academy of Sciences 2009). In May 2019, 1 year-
old, similar-sized seedlings (height was ca 30 cm and stem
basal diameter was ca 4 mm), grown outdoors in natural
environmental conditions, were purchased from a nursery near
the South China Botanical Garden. Five individuals per species
were randomly transplanted into three plots for each treatment
(4 species x 5 individual trees x 6 treatments x 3 plots = 360
trees). Each individual tree was transplanted in a randomized
block design, and spacing between individual trees was ~50 cm
in each plot.

Treatments

The natural distribution ratio of precipitation between the dry
and wet seasons is 1:3 (Chen and Zhang 2021), and in the
past five decades, the average precipitation in the dry season
was reduced but that in the wet season was increased (Zhou
etal. 2011, G.Y. Zhou et al. 2014). At the same time, in the past
three decades, this area experienced high rates of atmospheric
nitrogen (N) deposition (34-50 kg N ha™" year™") (Lu et al.
2013, Zheng et al. 2018). Since each plot had an edge length
of 3 m, using the average precipitation for the past five decades,
the average volume of water per day in the control was 24
and 71 L in the dry and wet seasons, respectively; and the N
deposition rate in the control was 4 g N m~2 year™" (Huang et al.
2015, Zheng et al. 2020). We used these values as the baseline

Tree responses to changing precipitation and N deposition 3

for our six treatments: (i) control: normal precipitation (48 L of
water every 2 days in the dry season, 71 L of water every 1 day
in the wet season) + background N deposition (4 g m~? year™');
(i) changing precipitation (P): dry-season precipitation was
reduced 50% (48 L of water every 4 days) and the reduced
dry-season precipitation was added during wet-season (83 L
of water every 1 day in the wet season) + background N
deposition (4 g m~? year™'); (iii) low N deposition (LN): normal
precipitation (48 L of water every 2 days in the dry season, 71 L
of water every 1 day in the wet season) + 2 times background
N deposition (8 g m~ year™'); (iv) high N deposition (HN):
normal precipitation (48 L of water every 2 days in the dry
season, 71 L of water every 1 day in the wet season) + 2.5
times background N deposition (10 g m~ year™'); (v) the inter-
action of changing precipitation and low N deposition (PLN):
dry-season precipitation was reduced 50% (48 L of water
every 4 days in the dry season) and the reduced dry-season
precipitation was added during wet-season (83 L of water every
day in the wet season) + 2 times background N deposition
(8 g m~? year™"); (vi) the interaction of changing precipitation
and high N deposition (PHN): dry-season precipitation was
reduced 50% (48 L of water every 4 days in the dry season)
and the reduced dry-season precipitation was added during wet-
season (83 L of water every 1 day in the wet season) + 2.5
times background N deposition (10 g m= year™") (Figure 1).
The amount and frequency of watering were controlled by
an automatic irrigation system, which was located on the soil
surface. Watering occurred at night over four intervals per night
to reduce potential run-off. We artificially added wet N deposition
by spraying NH4NO3 solution since roots can directly uptake
ammonium and nitrate. All trees were maintained in control
precipitation and N conditions for 15 months after planting.
The treatment of changing precipitation was initiated in August
2020, and NH4NOs3 solution (N deposition) was also added in
August 2020 and then every 2 months thereafter. All treatments
were maintained for 12 months until measurements were taken
in August 2021. Each plot was distributed randomly with three
replicates per water treatment.

Air temperature (T, °C) and humidity (RH, %) for all
treatments were monitored and recorded together, using a
HMP155A temperature probe. Soil temperature (Tsoj) at 5-cm
depth was automatically recorded in each plot using Campbell
109 constantan-copper thermocouples (Campbell Scientific,
Logan, UT, USA). Soil volumetric water content (SVWC, m?
m~®) at 5-cm depth in each plot was measured at the same
depth using time domain reflectometer probes (CS616). All
environmental measurements were taken for the duration of the
experiment.

Leaf morphological and chemical traits

In August 2021, three leaves of each species from ran-
domly selected individuals per plot were measured for the
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(a) Control
Precipitation4 ‘rN addition
71 L/ day
48 L/2 days
4g N m2 yr
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Precipitation4 83 L/1 day 4N addition
48 L/4 days 4g N m2 yrt
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Dry Wet

(d) HN
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Figure 1. Representation of the design of (a) control, (b) changing precipitation (P), (c) low nitrogen (N) deposition (LN), (d) high N deposition
(HN), (e) the interaction between changing precipitation and low N deposition (PLN), and (f) the interaction between changing precipitation and high

N deposition (PHN).

cross-sectional thickness of leaf (LT, wm), using an image
analysis software (OPTPro 2012 4.0, Optec XTS20, Chongqing
Optec Instrument). Ten mature leaves per species per treatment
(10 leaves x 4 species x 6 treatments = 240 leaves) were
selected to measure leaf fresh weight (LFW, g) and leaf area
(LA, cm?) with a leaf area meter (LI-3100, Li-Cor Biosciences,
Lincoln, NE, USA). Leaves were then dried in a drying oven for
72 h at 65 °C until complete drying, before measuring leaf
dry mass (LDW, g). Leaf dry matter content (LDMC, %) was
calculated as 100% * (LDW/LFW). Leaf mass per area (LMA, g
cm~?) was calculated as LDW/LA (Bartlett et al. 2012).

Five leaves were harvested to analyze the chlorophyll con-
centration (Chl, wg cm~?). Five leaf disks (6 mm diameter) from
one individual per treatment per chamber were cut and dipped
into 5 mL of 80% acetone; see Arnon (1949). Mature foliar
samples were randomly collected from the four tree species in
plots. Oven-dried foliar samples were ground to fine powder in a
ball mill. Mass-based foliar N concentrations (Ny,, mg g=') were
measured using the Kjeldahl method (Bremner and Mulvaney
1982). Mass-based foliar P concentrations (Py, mg g=') were
measured photometrically after samples were digested with
H>S04—-H>0, (Anderson and Ingram 1989). Area-based foliar
N concentrations (N,, g m~?) were calculated as Ny, x LMA, and
area-based foliar P concentrations (P,, g m™?) were calculated
as Py, x LMA (He et al. 2019).

Photosynthetic traits

The net assimilation vs intercellular CO, concentration (A-C;)
curves were measured on fully expanded leaves from three or
four seedlings per plot per species (n = 3—4) between 09:00
and 14:00 h on clear days in August 2021, using a portable
open path gas exchange system (Licor-6800, Li-Cor, Lincoln,

NE, USA) equipped with a leaf chamber fluorometer (6800-
40). The A-C; curves were measured at saturating PAR of
1500 pwmol m™ s™', leaf temperature (25 °C) and ambient
relative humidity inside the leaf chamber (~60%). The A-
Ci curves were generated using leaf chamber CO, values of
(in order): 400, 300, 200, 100, 50, 400, 600, 800, 1000
and 1200 pmol mol~'. Leaf light-saturated photosynthetic
rate (Asat, kmol m=2 s') and stomatal conductance (gs, mol
m~* s7') were selected, at CO, of 400 pmol mol~". The
maximum rate of photosynthetic ribulose 1,-5-bisphosphate
carboxylase/oxygenase (Rubisco) carboxylation (Vemax, pmol
m~? s~') and apparent maximum rate of photosynthetic electron
transport (Jmax, wmol m=2 s™') were estimated from A-C;
curves, using the ‘fitaci’ function in R package ‘plantecophys’
(Duursma 2015).

Nonstructural carbohydrates concentrations

Samples were collected in August 2021 to determine the
concentrations of NSC. Ground samples (50 mg) were weighed
and then extracted with 4 mL of 80% aqueous ethanol (v/v) in
a polyethylene tube. The mixture was boiled in a water bath at
80 °C for 30 min, and then centrifuged at 3000 r.p.m. for 5 min.
The supernatant was collected and the pellet reextracted once
with 4 mL of 80% aqueous ethanol (v/v) and once with 4 mL
of distilled water; this was repeated twice. The concentrations
of soluble sugars were determined on the supernatants colori-
metrically at 620 nm, using the anthrone—sulfuric acid method
(Ebell 1969). The concentrations of starch were determined
on the pellets remaining after perchloric acid extraction (35%;
v/v) and also assayed colorimetrically at 620 nm, following
the modified anthrone method (Hansen and Moller 1975).
Nonstructural carbohydrates concentrations were defined as the
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sum concentrations of starch and soluble sugars (Duan et al.
2019).

Soil properties

In June 2021, after 10 months of treatment, we collected soils
(0—-10 cm) from each plot of each treatment to determine soil
available N concentrations (mg kg~') and available P concentra-
tions (mg kg™"). After soil was extracted with 1 M KCI solution,
available N concentrations were determined colorimetrically (Liu
et al. 2017). Available P concentrations were extracted with
0.03 M NH4F and 0.025 M HCI and measured by induc-
tively coupled plasma optical emission spectrometer (ICP-OES)
(Optima 2000 DV, Perkin Elmer, USA) (Bray and Kurtz 1945).

Growth measurements

The stem diameter (mm) and height (cm) of all seedlings
per species in each plot were measured in September 2021
(13 months treatment).

Statistical analysis

Data were assessed using the Kolmogorov—Smironv test for
normality and Levene's test for homogeneity of variance prior
to statistical analysis. When the data did not conform to the
assumption of normality and homogeneity of variances, they
were logarithmically transformed. A one-way ANOVA was used
to evaluate the effects of P, LN, HN, PLN and PHN on environ-
mental variables (Tsoii and SVWC), soil properties (available N
and P concentrations), foliar anatomical traits (LT, LDMC and
LMA), foliar chemical traits (Chl, N; and P,), photosynthetic
traits (Asat, 9s, Vemax and Jmax), carbon reserves (soluble sugar,
starch and NSC concentrations) and tree growth (stem diameter
and height), followed by Tukey’s multiple comparison test. A
three-way ANOVA was used to assess the effects of changing
precipitation, N deposition, species, and their interactions on
photosynthetic and biochemical traits. Differences were statis-
tically significant at P < 0.05. Data were analyzed using SPSS
24.0 (SPSS Inc., Chicago, IL, USA).

We estimated the phenotypic plasticity of variables by cal-
culating the response ratio (RR) with changing precipitation,
N deposition and their interactive effect (the mean values
measured in B, LN, HN, PLN and PHN divided by the mean value
measured in control). Spearman correlation analysis was used to
analyze the correlation between RR of variables for the four tree
species. Differences were statistically significant at P < 0.05.
Data were analyzed using R (version 4.2.0; R Foundation for
Statistical Computing).

Results

Environmental and soil variables

There were limited treatment effects on Tar, RH and Tsoi
(Figure 2a—d). Altering precipitation, and the interactive effect
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of changing precipitation and low N deposition reduced
SVWC compared with low N deposition in the dry season
(Figure 2e and f, P < 0.05). The available N concentrations
in high N deposition were significantly higher than low N
deposition, and the interactive effect of changing precipitation
and low N deposition (Figure S1a available as Supplementary
data at Tree Physiology Online, P < 0.05). In addition, the
interactive effect of changing precipitation and low N deposition
decreased the available P concentrations compared with control
and low N deposition (Figure S1b available as Supplementary
data at Tree Physiology Online, P < 0.05).

Leaf morphological and biochemical traits

Overall, changing precipitation and species had significant
effects on LT and LDMC, and LMA was affected by species
(Table 1, P < 0.05). D. odorifera exposed to low N depo-
sition had higher leaf thickness (LT) and LMA than control
(Figure S2c and k available as Supplementary data at Tree
Physiology Online, P < 0.05). O. pinnata under high N
deposition displayed increasing LDMC compared with control
(Figure S2h available as Supplementary data at Tree Physiology
Online, P < 0.05). When measurements were made at altering
precipitation, N deposition and their interactive effects, O.
pinnata had the lowest LT and LMA among the four tree
species (Figure S2a—I available as Supplementary data at Tree
Physiology Online).

Overall, Chl changed with species, and the concentrations of
N, and P, were influenced by N deposition and species (Table 1,
P < 0.05). High N deposition induced lower Chl concentrations
for M. macclurei (Figure 3b, P < 0.05). C. fissa under chang-
ing precipitation exhibited lower foliar N, concentrations than
control (Figure 3e, P < 0.05). Compared with control, low N
deposition enhanced foliar N, concentrations for D. odorifera
and foliar Py concentrations for M. macclurei (Figure 3g and j,
P < 0.05). M. macclurei exposed to changing precipitation
and N deposition exhibited lowest Chl concentrations, while
D. odorifera under low N deposition had highest foliar N
concentrations (Figure 3a-l).

Photosynthetic traits

In general, changing precipitation and species both affected Agat
(Table 1, P < 0.05). Altering precipitation reduced Ags: for C.
fissa, while the interactive effects of changing precipitation and
N deposition enhanced Ass: for C. fissa compared with altering
precipitation (Figure 4a, P < 0.05). Altering precipitation and
high N deposition induced lower Ag,; for D. odorifera (Figure 4c,
P < 0.05). High N deposition increased Asa for O. pinnata
(Figure 4d, P < 0.05).

gs was influenced by species (Table 1, P < 0.05). Low N
deposition significantly enhanced gs for M. macclurei compared
with control (Figure 4f, P < 0.01). Higher gs for O. pinnata
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Figure 2. (a) Monthly average air temperature (Tar, °C, n = 3) and humidity (RH, %, n = 3) from November 2020 to August 2021; (b) the
annual average Tar (°C, n = 30) and RH (%, n = 30); (c) monthly average soil temperature (Tsoil, °C, n = 3) from November 2020 to August
2021 subjected to control, changing precipitation (P), low nitrogen (N) deposition (LN), high N deposition (HN), the interaction between changing
precipitation and low N deposition (PLN), and the interaction between changing precipitation and high N deposition (PHN); (d) the annual average
Tsoil (°C, n = 15) subjected to control, P, LN, HN, PLN and PHN in the dry and wet seasons, respectively; (e) monthly average SYWC (m® m~3, n = 3)
from November 2020 to August 2021 subjected to control, P, LN, HN, PLN and PHN; (f) the annual average SVWC (m®* m~3, n = 15) subjected to
control, B, LN, HN, PLN and PHN in the dry and wet seasons, respectively. Different letters indicate significant differences (P < 0.05) between means

based on Tukey’s multiple comparison test.

was observed in high N deposition than control (Figure 4h,
P < 0.05).

Changing precipitation and species both affected Jmax, and
Vemax Was obviously influenced by changes in precipitation
(Table 1, P < 0.05). M. macclurei under high N deposi-
tion exhibited lower Jymax than low N deposition (Figure 4j,
P < 0.01). Altering precipitation led to declining Jmax and
Vemax for D. odorifera compared with control (Figure 4k and o,
P < 0.05). O. pinnata exposed to high N deposition had higher

Vemax than control (Figure 4p, P < 0.05). Among these four tree
species, O. pinnata subjected to high N deposition had highest
Asatv s, -/max and chax (Figure 4)

Nonstructural carbohydrates

Overall, changing precipitation and species both affected sugar
concentrations, and starch and NSC concentrations were influ-
enced by species (Table 1, P < 0.05). Compared with altering
precipitation, the interactive effect of changing precipitation and
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Table 1. Effects of changing precipitation (P), additional nitrogen depositions (N), species (S) and their interactions on LT (wm, n = 3), leaf water

content (LDMC, %, n = 3), leaf mass per area (LMA, g cm™2, n = 3), the total concentrations of chlorophyll a and chlorophyll b (Chl, ng cm=2,
, n = 3), phosphorus concentrations per unit area (P,, g m™2, n = 3), the light-saturated

n = 3), nitrogen concentrations per unit area (N, g m™—?

photosynthetic rate (Asat, kmol m=2 s=', n = 3), stomatal conductance (gs, mol m

—2 -

2

~2s7', n = 3), the area-based maximum rate of photosynthetic

electron transport (Jmax, kmol m™2 s™', n = 3), the area-based maximum rate photosynthetic Rubisco carboxylation (Vcmax, pmol m=2 s™", n = 3),
the concentrations of soluble sugars (sugars, mg g~', n = 3), starch (mg g~', n = 3) and NSC (mg g~', n = 3), stem diameter (mm, n = 15) and

height (cm, n = 15).

Variables P N S N x P N xS PxS NxPxS
Foliar morphology

LT 6.46* 1.17 164.29%** 0.81 3.87* 6.47%"* 6.10%"*

LDMC 5.44* 217 19.39%** 0.55 217 9.80 118

LMA 0.71 1.57 38.98*** 0.08 1.32 2.30 3.44**

Chl 1.78 0.70 19.34%** 0.29 1.43 0.67 1.08
Foliar chemistry

Na 3.63 4.78* 73.62%** 0.47 1.61 1.81 6.64%"*

Pa 3.55 3.55* 12.76"** 0.30 2.01 0.59 1.49
Photosynthesis

Asat 15.47** 1.05 10.93*** 2.67 6.72%** 8.55%** 6.30%**

Js 2.96 3.02 4.37** 2.10 2.55% 2.71 4.37%*

Jrmax 5.59* 0.53 4.90** 0.64 3.26"* 2.54 2.84*

Vemax 8.59%* 0.91 2.01 0.71 3.20* 3.92* 2.71%
Carbon reserves

Sugar 12.40"** 0.58 174.86*"* 6.14** 3.76** 0.75 0.82

Starch 0.20 0.21 56.35"** 1.66 0.31 0.41 0.83

NSC 2.48 0.02 93.02%** 3.44* 1.04 0.25 0.87
Tree growth

Stem diameter 2.52 2.14 80.56"** 0.89 1.12 1.54 1.48

Height 232 2.78 95.33%** 1.89 3.32% 2.31 5.44**

Numbers are F-values and asterisks indicate the level of significance (*P < 0.05; **P < 0.01; ***P < 0.001). Bold indicates that significance is

below 0.05.

high N deposition increased soluble sugar concentrations for
C. fissa (Figure 5a, P < 0.05). Low and high N depositions
resulted in lower soluble sugar concentrations for D. odorifera
than control, and the interactive effect of changing precipita-
tion and high N deposition also decreased its soluble sugar
concentrations compared with altering precipitation (Figure 5c,
P < 0.05). Low N deposition decreased starch and NSC
concentrations for O. pinnata (Figure 5h and |, P < 0.05). High
N deposition, and the interactive effect of changing precipitation
and high N deposition induced decreasing NSC concentrations
for D. odorifera (Figure 5k, P < 0.05). Lowest soluble sugar,
starch and NSC concentrations were observed in D. odorifera
subjected to all treatments (Figure 5).

Tree growth

Overall, species had significant effects on stem diameter and
height (Table 1, P < 0.05). There was no significant change in
stem diameter and height for the four tree species exposed to
all treatments (Figure S3a—h available as Supplementary data at
Tree Physiology Online).

Relationships among response ratios of studied traits for the
four tree species

The relationship among RR of studied traits was analyzed by
Spearman correlation analysis. The RR of LMA was positively

correlated with RR of LT (R? = 0.46, P < 0.001). The RR of Jmax
was positively influenced by RR of Chl (R? =0.16, P < 0.001).
RR of Vemax was positively related to RR of P, (R* = 0.13,
P = 0.003). RR of Asyt was positively affected by The RR of gs
(R*=0.64,P < 0.001), The RR of Jmax (R* =0.30,P < 0.001)
and RR of Vemax (R? = 0.47, P < 0.001) (Figure 6).

Phenotypic plasticity to main and interactive effects of
changing precipitation and N deposition

The capacity of trees to alter photosynthetic and biochemical
traits varied with species and treatments. C. fissa exhibited
low phenotypic plasticity to altering precipitation but high to the
interactive effects of changing precipitation and N deposition
according to their RRs (Figure S4a available as Supplementary
data at Tree Physiology Online). Phenotypic plasticity for M. mac-
clurei was not affected by all treatments (Figure S4b available
as Supplementary data at Tree Physiology Online). D. odorifera
under all treatments had low plasticity (Figure S4c available
as Supplementary data at Tree Physiology Online). O. pinnata
exhibited highest plasticity to high N deposition (Figure S4d
available as Supplementary data at Tree Physiology Online).
Overall, D. odorifera was the most negatively influenced by all
treatments due to lowest plasticity, while O. pinnata may be
supported by high N deposition due to its highest plasticity
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Figure 3. (a—d) The total concentrations of chlorophyll a and chlorophyll b (Chl, ug cm™2, n = 3), (e-h) nitrogen concentrations per unit area (N,,
gm™2, n=3) and (i-l) phosphorus concentrations per unit area (P,, g m~2, n = 3) for C. fissa, M. macclurei, D. odorifera and O. pinnata in August
2021 subjected to control, changing precipitation (P), low nitrogen (N) deposition (LN), high N deposition (HN), the interaction between changing
precipitation and low N deposition (PLN), and the interaction between changing precipitation and high N deposition (PHN). Values are means £
standard errors. Different lowercase letters above the error bars indicate significant differences (P < 0.05) in Chl, Ny and P, among treatments for

the four tree species based on Tukey’s multiple comparison test.

(Figure S4 available as Supplementary data at Tree Physiology
Online).

Discussion

In this experiment, we found that (i) changing precipitation
decreased Asgt for C. fissa and D. odorifera due to declining foliar
N, concentrations and photosynthetic capacity, respectively. (ii)
Low N deposition had no significant impacts on photosynthetic
traits for the four tree species. High N deposition reduced
Asat for D. odorifera due to declining Jmax, leading to reduced
soluble sugar and NSC concentrations. However, O. pinnata
under high N deposition had higher Asst related to increasing
gs and Vemax, Which enhanced starch and NSC concentrations.
(iii) The interactions of changing precipitation and two levels of

N depositions both enhanced Asy; for C. fissa due to higher foliar
Na concentrations.

Photosynthetic and biochemical responses to changing
precipitation

Significant reductions in foliar N, concentrations for C. fissa
under changing precipitation may be due to limited capacity to
acquire and transport N (De Long et al. 2019). Lower foliar
N, concentrations for C. fissa led to its declining Asy: (Ouyang
et al. 2021), which may be due to lower Rubisco activity (Gao
et al. 2018). gs for D. odorifera may recover from changing
precipitation according to the finding of X.M. Li et al. (2021).
We found that reduced Asyt for D. odorifera was related to
lower Jmax and Vemax, suggesting that declining photosynthesis
for D. odorifera caused by altering precipitation was due to
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Figure 4. (a—d) The light-saturated photosynthetic rate (Asat, pmol m™2 s™', n = 3), (e-h) stomatal conductance (gs, mol m=2 s™', n = 3), (i-I) the
area-based maximum rate of photosynthetic electron transport (Jmax, kmol m=2 s=', n = 3) and (m—p) the area-based maximum rate photosynthetic
Rubisco carboxylation (Vemax, kmol m—2 s™', n = 3) for C. fissa, M. macclurei, D. odorifera and O. pinnata in August 2021 subjected to control,
changing precipitation (P), low nitrogen (N) deposition (LN), high N deposition (HN), the interaction between changing precipitation and low N
deposition (PLN), and the interaction between changing precipitation and high N deposition (PHN). Values are means =+ standard errors. Different
lowercase letters above the error bars indicate significant differences (P < 0.05) in Asat, s, Jmax and Vemax among treatments for the four tree species
based on Tukey’s multiple comparison test.

biochemical traits rather than stomata (S.X. Zhou et al. 2014,
Duan et al. 2019). Contrary to our findings, Drake et al.
(2017) demonstrated that stomatal and biochemical limitations
to photosynthesis simultaneously occurred during drying and
wetting events through models. Photosynthesis for C. fissa and
D. odorifera was reduced by changing precipitation, which may

inhibit their growth and survival, similar to findings by Bauman
et al. (2022). In contrast, photosynthetic traits for M. macclurei
and O. pinnata were not affected by changing precipitation,
which may be driven by higher resistance to drought in the
dry season (Limousin et al. 2013) or resilience to increasing
precipitation in the wet season (X.M. Li et al. 2021).
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Figure 5. (a—d) The concentrations of soluble sugars (soluble sugars, mg g~', n = 3), (e-h) the concentrations of starch (starch, mgg~', n = 3) and
(i-1) the concentrations of total nonstructural carbohydrates (NSC, mg g=', n = 3) for C. fissa, M. macclurei, D. odorifera and O. pinnata in August
2021 subjected to control, changing precipitation (P), low nitrogen (N) deposition (LN), high N deposition (HN), the interaction between changing
precipitation and low N deposition (PLN), and the interaction between changing precipitation and high N deposition (PHN). Values are means +
standard errors. Different lowercase letters above the error bars indicate significant differences (P < 0.05) in soluble sugars, starch and NSC among
treatments for the four tree species based on Tukey’s multiple comparison test.

Photosynthetic and biochemical responses to additional N
deposition

Enhanced P uptake due to higher root phosphatase activity
may lead to increasing foliar P, concentrations for M. mac-
clurei under low additional N deposition (Zhang et al. 2019).
Increased LT for D. odorifera caused by low N deposition led to
higher LMA (Gorsuch et al. 2010). Although low N deposition
had no significant effect on available N concentrations, higher
foliar N5 concentrations for D. odorifera under low additional
N deposition might be attributable to increasing N uptake and
resorption efficiency (Chen et al. 2015, Wang et al. 2021).

Higher foliar N, concentrations for D. odorifera induced by low
additional N deposition may increase respiration, contributing
to its lower soluble sugar concentrations (Du et al. 2020).
Similarly, reduced starch and NSC concentrations caused by
low additional N deposition were observed in O. pinnata, which
might be due to increasing consumption of carbohydrates for
maintaining higher respiration and growth (W.B. Li et al. 2018).

High N deposition significantly lowered photosynthetic traits
for D. odorifera, but increased that for O. pinnata. Similar
to Zhang et al. (2016), reduced Chl concentrations for M.
macclurei under high N deposition may be due to lower
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Figure 6. (a) Correlation analysis between the RR of LT (n = 15) and RR of leaf mass per area (LMA, n = 15); (b) correlation analysis between RR
of the total concentrations of chlorophyll (Chl, n = 15) and RR of the area-based maximum rate of photosynthetic electron transport (Jmax, " = 15);
(c) correlation analysis between RR of phosphorus concentrations per unit area (P, n = 15) and RR of the area-based maximum rate photosynthetic
Rubisco carboxylation (Vemax, n = 15); (d) correlation analysis between RR of stomatal conductance (gs, n = 15) and RR of the light-saturated
photosynthetic rate (Asat, n = 15); (€) correlation analysis between RR of Jnax and RR of Agat; (f) correlation analysis between RR of Vemax and RR

of Asat-

macro-nutrient concentrations induced by soil acidification
(Teglia et al. 2022). Root biomass allocation may be lowered
by soil acidification achieved by high N deposition (Zhao et al.
2022), which may limit the capacity of N and P uptake and
result in declining foliar P, concentrations for M. macclurei and
N, concentrations for D. odorifera when compared with low
N deposition (Wright et al. 2011, X.W. Li et al. 2021). Thus,
lower foliar Chl and P, concentrations for M. macclurei would
contribute to its declining Jmax (Croft et al. 2017, Harmens
et al. 2017). Similarly, reduced foliar N5 concentrations for D.
odorifera were observed in high N deposition, which resulted
in lower Jmax and further decreased Asyt (Feng and Dietze
2013, Fleischer et al. 2013). Additionally, high N deposition
may reduce hydraulic conductance for D. odorifera (Domec
et al. 2009, Wang et al. 2016), which decreased gs and finally
limited Asat (Viet et al. 2012). Reduced soluble sugar and NSC
concentrations for D. odorifera were attributed to its declining
Asat (Li et al. 2020, Zhang et al. 2021b). In contrast, high N
deposition enhanced gs for O. pinnata by increasing hydraulic
conductance, ultimately resulting in higher Asyt (Zhang et al.
2021a). In addition, the enhancements in Rubisco activity and
N allocation to Rubisco caused by increasing N availability may
contribute to higher Vemax and Asat for O. pinnata (Wang et al.
2017). High N deposition may exceed the N threshold of D.
odorifera due to negative impacts on its photosynthetic traits,
but not for O. pinnata (Fleischer et al. 2013, Wang et al. 2017).

Photosynthetic and biochemical responses to interactive
effects of changing precipitation and N deposition

Higher foliar N, concentrations were found in the interactive
treatment of changing precipitation and low N deposition com-
pared with altering precipitation, which could facilitate Asgt for
C. fissa by enhancing Rubisco activity and content (Yamori et al.
2011, Gao et al. 2018). This result suggested that low N
deposition could relieve N limitation for C. fissa induced by
changing precipitation (Rivero-Villar et al. 2021). While the
interactive effect of changing precipitation and low N deposition
exerted no significant effect on photosynthetic traits for D.
odorifera compared with changing precipitation, indicating that
low N deposition cannot alleviate the negative impacts of
changing precipitation on photosynthesis for D. odorifera.

C. fissa under the interactive effect of changing precipitation
and high N deposition displayed higher Asyt correlated with
higher foliar N, concentrations than altering precipitation, which
led to higher soluble sugar concentrations (Zhang et al. 2021a,
2021b) and helped it regulate osmotic pressure to better
acclimate to environment (Hartmann and Trumbore 2016). The
interactive effect of changing precipitation and high N deposi-
tion had no obvious effect on photosynthesis for D. odorifera.
Lower soluble sugar and NSC concentrations for D. odorifera
were observed in the interactive effect of changing precipitation
and high N deposition compared with altering precipitation,
which may be due to carbon allocation prioritizing respiration
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and growth over storage (Zhang et al. 2021a) and further
hinder physiological function and recovery (Adams et al. 2017,
Kannenberg and Phillips 2020). These results showed that high
N deposition did not exert negative impacts on subtropical trees
subjected to changing precipitation.

Implications for changing precipitation, N deposition and
their interaction on fates of trees

Changes in photosynthetic and biochemical traits achieved
by climate change may affect plant resistance and survival
(Liu et al. 2017, Schulte-Uebbing and de Vries 2018), and
substantial intraspecific differences may induce changes in
ecosystem function (Aspinwall et al. 2015, Ramirez-Valiente
and Cavender-Bares 2017, Baez and Homeier 2018, Cooper
etal. 2019, Manu et al. 2022). Changes in precipitation, without
changing total precipitation, may inhibit the growth of C. fissa
and even increase its mortality risk due to reduced Agat in
future (Brando et al. 2010, Liu et al. 2017). Higher foliar N,
concentrations and Asgt for C. fissa were more evident in the
interactive effects of changing precipitation and N deposition
than the main effect of changing precipitation, indicating that
N deposition could alleviate N limitation on photosynthesis for
C. fissa caused by changing precipitation (Zhang et al. 2021a).
Additionally, N deposition could facilitate water acquisition for C.
fissa during altered seasonal precipitation, which was driven by
increasing soluble sugar concentrations under the interaction of
changing precipitation and N depositions (W.Q. He et al. 2020).
Thus, adding N could relieve the negative impacts of changing
precipitation on physiology and growth for C. fissa. The growth
and survival for D. odorifera in future might be decreased by
changing precipitation and N deposition, which was related to
declining photosynthetic rate and capacity (Li et al. 2022).
Additionally, D. odorifera may show low resistance to stress
related to reduced soluble sugar and NSC concentrations (Hart-
mann and Trumbore 2016, Wiley et al. 2016). In contrast, high
N deposition exerted positive impacts on photosynthetic traits
for O. pinnata, indicating that the growth and survival of O.
pinnata in subtropical plantations may benefit from increasing
N deposition (Limpens et al. 2003, Sefcik et al. 2007). Overall,
altering seasonal precipitation exerted the most negative effects
on plant traits; among these four tree species, D. odorifera was
most negatively affected by all treatments, while M. macclurei
was least affected. Generally, mature trees exhibit greater resis-
tance to environmental stress than seedlings (Niinemets 2010),
while knowing the adaptation strategy of seedlings to climate
change may help us predict species distribution of trees during
forest regeneration in tropical plantations (Pozner et al. 2021).
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