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Abstract
Plant, soil, and microbial biomass ratios of carbon (C), nitrogen (N), and phosphorus (P) are crucial in maintaining stability 
of desert ecosystems. Nevertheless, variation in relations of elemental ratios between different life forms of plants and soil 
and microbial biomass in desert ecosystems remains unclear. In a hyper-arid desert ecosystem, C, N, and P concentrations 
and ratios were analyzed in the plant–soil–microbial biomass system of three perennial desert species (Alhagi sparsifolia 
Shap. [Herb, Fabaceae], Karelinia caspica Pall. [Herb, non–Fabaceae], and Tamarix ramosissima Ledeb. [Shrub]). Concen-
trations of N and P in Alhagi sparsifolia leaf, stem, and root were significantly greater than those in Karelinia caspica and 
Tamarix ramosissima, whereas plant C and soil organic C (SOC) were highest with Tamarix ramosissima. Alhagi sparsifolia 
and Tamarix ramosissima were P-limited, whereas Karelinia caspica was N-limited. According to correlation analysis, SOC 
rather than soil total P (STP) regulated plant N:P ratios, and microbial biomass C, N, and P rather than SOC, soil total N, 
and STP regulated plant C:N:P ratios. Soil water content also affected plant nutrient balance. Thus, in a hyper-arid desert 
ecosystem, the plant–soil–microbial biomass system and the balance of C, N, and P are closely related, and the role of soil 
microbial biomass in affecting plant nutrient balance should receive increased attention.

Keywords Desert ecosystem · Desert plant life forms · Ecological stoichiometry · Microbial biomass · Nutrient limitation · 
Soil nutrients · Plant–soil–microbial biomass system · C:N:P ratio

Introduction

Carbon (C), nitrogen (N), and phosphorus (P) are essential 
elements for plant growth, protein synthesis, energy stor-
age and transmission, stress resistance, and cycling of other 
biogeochemicals (Elser and Hamilton 2007; Finzi et al. 
2011). Compared with forest and grassland ecosystems, bio-
geochemical cycles in desert ecosystems are generally slow, 
resulting in barren soils and low net primary productivity 
(Yang et al. 2014). The slow cycling of elements is primar-
ily attributed to the scarcity of water and low levels of soil 
nutrients (Hou et al. 2020). Various physiological and bio-
chemical processes related to C, N, and P in desert species 
are likely to be constrained, including rate of soil organic 
matter decomposition, mineralization of soil N, and fixation 
and dissolution of soil P (Mackenzie et al. 2002). However, 
such processes are markedly influenced by the nutrient bal-
ance in soil and microbial biomass (Vitousek et al. 1997; 
Delgado-Baquerizzo et al. 2017). Therefore, exploring con-
centrations and stoichiometry of three major elements in 
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plant–soil–microbial biomass systems can increase under-
standing of biogeochemical cycles in desert ecosystems.

The C:N:P ratios of plant leaves can provide insights into 
community structure and function and determine whether 
plants are restricted by nutrient availability (Sterner and 
Elser 2002). The C:N ratio often indicates nutritional sta-
tus, whereas N:P and C:P ratios indicate balance of nutrients 
(Drenovsky and Richards 2004). Leaf N:P ratio is often used 
to determine whether a species is limited by N (N:P ratio < 
14) or P (N:P ratio > 16) (Koerselman et al. 1996). To date, 
plant element ratios have been examined at global, regional, 
ecosystem, community, and individual plant scales (Yang 
et al. 2014; Yu et al. 2020). Leaf C:N:P ratio in grassland 
ecosystems is 440:17:1 (Yu et al. 2017), whereas in aquatic 
ecosystems, the ratio is 113:8:1 (Sardans et al. 2012). In 
the Taklimakan desert, the N:P ratio of herbs is 20:1 (Gao 
et al. 2022a), which is greater than the 17:1 of desert shrubs 
in Central Asia (Luo et al. 2021). Accordingly, plant ele-
ment ratios are most likely controlled by heterogeneity of 
soil background elements, vegetation types, and differences 
in biogeography (Yu et al. 2017).

Among many factors, soil and soil microbial biomass are 
two critical factors that affect plant element ratios (Bui and 
Henderson 2013). Notably, a robust link is found between 
soil and microbial biomass (Li et al. 2012). On one hand, 
the link is primarily attributed to soil microorganisms that 
adjust stoichiometries by absorbing and transforming soil 
nutrients (Kooijman et al. 2009). On the other hand, micro-
bial community stoichiometry has certain plasticity because 
of changes in dominant microbial populations (Delgado-
Baquerizzo et al. 2017; Yang et al. 2022). A similar close 
relation is also observed between soil element ratios and soil 
C, N, and P cycling in microbial populations and resistance 
(Luo et al. 2020). Nevertheless, soil microbial biomass is 
typically lower in desert ecosystems than in other ecosys-
tems because of the strong influence of soil water content 
(SWC) (Gao et al. 2022a). Furthermore, changes in plant 
element ratios are also controlled by other soil properties 
(e.g., SWC, pH, and electrical conductivity) (Gong et al. 
2017; Huang et al. 2018). According to Han et al. (2011), as 
annual average precipitation increases, plant N and P con-
centrations decrease, but the N:P ratio increases.

In the Taklimakan Desert, because of the water deficit and 
low levels of nutrients, the vegetation at its southern edge 
junction is mainly perennial xerophytic herbs, shrubs, and 
trees of different life forms, which dominate structure and 
function of the desert ecosystem (Liu et al. 2016; Li et al. 
2021). For example, the shrub Tamarix ramosissima and the 
herbs Alhagi sparsifolia and Karelinia caspica are excellent 
desert species for wind protection and sand fixation (Zeng 
et al. 2013). Under the canopy of Tamarix ramosissima with 
relatively high aboveground biomass, nutrient cycling in soil 
is greater than that under Alhagi sparsifolia and Karelinia 

caspica (Gao et al. 2022b). In the Taklimakan Desert, the 
focus has been on plant elemental ratios and basic soil 
properties (Li et al. 2015; Zhang et al. 2018). Nevertheless, 
relations between elemental ratios of different life forms of 
desert plants and soil and microbial biomass remain unclear. 
Therefore, in this study, three perennial species with differ-
ent life forms were selected in a natural desert ecosystem, 
and changes in relations of plant–soil–microbial biomass 
C:N:P ratios were analyzed. Two hypotheses were tested 
in the hyper-arid and nutrient-poor soils of the Taklimakan 
Desert: (1) C:N:P ratios of the shrub Tamarix ramosissima 
would have stronger responses to soil and microbial biomass 
than those of the herbs Alhagi sparsifolia and Karelinia 
caspica; and (2) the dominant factor affecting variation in 
C:N:P ratios among three desert species would be the soil 
rather than microbial biomass C:N:P ratios.

Materials and methods

Study site

The field experiment was conducted in the Cele oasis and 
desert junction zone (37°56´N, 80°43´E) in the south of the 
Taklimakan Desert in Northwest China. Mean annual tem-
perature is 15.85 °C, and mean annual precipitation is 42.62 
mm. The site has an aeolian sandy soil with low organic 
matter but high salinity (Gao et al. 2022b). Natural veg-
etation is mainly several perennial phreatophytic species, 
including Alhagi sparsifolia Shap. (Fabaceae), Karelinia 
caspica Pall. (Compositae), Calligonum mongolicum Turcz. 
(Polygonaceae), and Tamarix ramosissima Ledeb. (Tama-
ricaceae) (Bruelheide et al. 2010; Zeng et al. 2013). The 
shrub Tamarix ramosissima and herbs Alhagi sparsifolia 
(Fabaceae), and Karelinia caspica were examined in this 
study. This study was performed four plots with an area of 
2 hectares each. The three species were included in each 
plot, and the coverage of the same species was similar across 
the four plots. Any two plots were separated by at least two 
kilometers.

Plant and soil samples

Plant and soil samples were collected in August 2020. Three 
representative individuals of Alhagi sparsifolia, Karelinia 
caspica, and Tamarix ramosissima individuals with similar 
growth status were selected per plot. Individual plants were 
randomly selected such that all plants of each species in the 
four plots had similar crown width and height. The distance 
between any two individuals was greater than 10 m. Each 
individual selected had at least four representative branches 
that were fully mature and sun-exposed. All leaves on those 
branches were collected, the branches were cut with branch 
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shears into small, approximately 5-cm sections, and materi-
als were placed into marked paper bags. Then, a soil profile 
(length, 100 cm; width, 100 cm; height, 100 cm) was exca-
vated along the direction of the coarse root. After removing 
loose soil on the surface of the soil profile from top to bot-
tom, soil samples were collected from three layers (surface, 
0–30 cm; middle, 30–60 cm; and bottom, 60–100 cm) from 
bottom to top. A total of 36 soil samples were collected 
(three plant species × four plots × three soil layers). Then, 
the root system of the 0–100 cm soil layer was collected 
and put into a marked paper bag. Thus, a total of 36 plant 
samples were collected (three plant species × four plots × 
three plant organs). Fresh soil samples were passed through 
a 2-mm sieve and after thorough mixing, were divided into 
two sub-samples. One sub-sample was placed in a sealed 
bag and then immediately stored at 4 °C, and the other sub-
sample was air-dried in the shade for further determinations.

Plant C, N, and P concentrations

Plant samples were washed with flowing water to remove 
sand and soil from the surface and then oven-dried at 75 
°C for 2 days to constant weight. After drying, samples 
were pulverized, passed through a 0.15-mm sieve, and 
then digested in a mixture containing concentrated  H2SO4, 
 HClO4, and  HNO3 (v:v:v, 1:2:7). Plant C, N, and P were ana-
lyzed using an inductively coupled plasma-atomic absorp-
tion spectrometer (ICP-ABS Hitachi Z-5000, Japan).

Soil organic C, total N, and total P concentrations 
and other soil properties

Soil organic C (SOC) concentration was analyzed by a wet-
oxidation technique (Shaw 1959). Soil total N (STN) and 
soil total P (STP) concentrations were analyzed by Kjeldahl 
digestion and a Mo–Sb colorimetric method, respectively 
(Olsen and Sommers 1982). Soil water content was meas-
ured after oven-drying. A pH meter (Precision and Scientific 
Corp., China) was used to determine soil electrical conduc-
tivity (EC) and pH in mixtures with 1:5 (w/v) and 1:2.5 
(w/v) soil-to-Nanopure water ratios, respectively.

Soil microbial biomass C, N, and P concentrations

A chloroform fumigation–extraction method was used to 
measure soil microbial biomass C (MBC), N (MBN), and 
P (MBP) concentrations (Dijkstra et al. 2012). First, 20 
g of fresh soil was added to 150-mL triangle bottles and 
fumigated with chloroform at 25 °C for one day. In another 
set of 150-mL triangle bottles, 20 g of fresh soil was main-
tained in the same environment but was non-fumigated. 
Then, 80 mL of 0.5 M  K2SO4 was added, and bottles were 
shaken for 60 min at 25 °C (150 rpm). After filtration, 

concentrations of soil extractable C and N were measured 
in 10 mL of soil extract by a TOC analyzer (Multi N/C 
2100 BU, Germany). To obtain the soil extracts used to 
measure MBP, 80 mL of 0.5 M  NaHCO3 was added to 
soils after incubations, followed by shaking for 60 min 
at 25 °C (150 rpm). After filtration, the concentration of 
extractable soil P was measured in 10 mL of soil extract 
using the method described by Murphy and Riley (1962).

Statistical analyses

Statistical analyses were conducted in SPSS 19.0 (SPSS 
Inc., Chicago, IL, USA). One- and two-way ANOVAs 
were conducted to interpret plant–soil–microbial biomass 
C, N, and P balance. Matrix test analysis was used to show 
pairwise comparisons of soil factors (soil and microbial 
biomass C, N, and P, SWC, pH, and EC) and that plant C, 
N, and P concentrations and ratios of each species were 
partially related to each soil factor. Correlations between 
C, N, and P concentrations and ratios in plant–soil–micro-
bial biomass systems were analyzed using redundancy 
analysis (RDA). Mantel tests and RDA were conducted 
using the R project (R Development Core Team 2016).

Results

Plant C, N, and P concentrations and stoichiometry

Carbon concentration of roots and stems was 6.1% and 
14.2% greater, respectively, in Tamarix ramosissima than 
in Karelinia caspica (Table 1). However, N concentra-
tions of roots, stems, and leaves of Alhagi sparsifolia were 
178.6%, 155.2%, and 715.5% higher, respectively, than 
those of Karelinia caspica, and 151.9%, 116.7%, and 60% 
higher, respectively, than those of Tamarix ramosissima. 
Phosphorus concentrations of stems and leaves of Alhagi 
sparsifolia were 27.8% and 25.6% higher, respectively, 
than those of Karelinia caspica and 97.1% and 77% higher, 
respectively, than those of Tamarix ramosissima. In addi-
tion, C:N ratios of Tamarix ramosissima and Karelinia 
caspica were significantly higher than those of Alhagi 
sparsifolia (Fig. 1)A and B. The C:N ratio of Karelinia 
caspica leaves was significantly greater than that of Tama-
rix ramosissima and Alhagi sparsifolia leaves (p < 0.001). 
However, the C:P ratio of Tamarix ramosissima was sig-
nificantly greater than that of Karelinia caspica and Alhagi 
sparsifolia (Fig. 1C, D). The N:P ratio of Alhagi sparsi-
folia was 18.2 and that of Tamarix ramosissima was 17.2, 
which were significantly higher than the ratio of Karelinia 
caspica (Fig. 1E, F).
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Soil total N, P, and organic C concentrations 
and stoichiometry

The SOC concentration of topsoil was significantly greater 
than that in other soil layers (Table 1). The SOC concentra-
tions of the three soil layers under Tamarix ramosissima 
were 26.8% (surface), 60.9% (middle), and 28.7% (bot-
tom) higher than those under Karelinia caspica and 16.7% 
(surface), 51.4% (middle), and 41.0% (bottom) higher than 
those under Alhagi sparsifolia. In addition, the bottom soil 
layer contained the highest STN concentration under Tama-
rix ramosissima and the highest STP concentration under 
Alhagi sparsifolia. Soil total N in the bottom soil layer under 
Tamarix ramosissima was significantly higher by 15.6% than 
that under Alhagi sparsifolia. Furthermore, soil C:N ratio 
under Tamarix ramosissima was significantly higher than 
that under Alhagi sparsifolia and Karelinia caspica (Fig. 2A, 

B). In surface and middle soil layers, soil C:N ratios under 
Tamarix ramosissima were significantly higher than those 
under Karelinia caspica. Differences in soil C:P ratios were 
similar to those in soil C:N ratios (Fig. 2C, D), but there 
were no significant differences in soil N:P ratios in different 
soil layers under different plant species (Fig. 2E, F).

Soil microbial biomass C, N, and P concentrations 
and stoichiometry

Concentrations of topsoil MBN and MBP under Alhagi 
sparsifolia were significantly greater than those in bottom 
soil, but MBN concentration in bottom soil under Kare-
linia caspica was significantly greater than that in topsoil 
(Table 1). Soil microbial C:N ratios under Alhagi spar-
sifolia and Karelinia caspica were significantly greater 
than those under Tamarix ramosissima (Fig. 3A, B). Soil 

Table 1  Carbon (C), nitrogen 
(N), and phosphorus (P) 
concentrations of plants, soil, 
and soil microbial biomass

Values are the mean ± standard deviation (n = 12). A distance-based linear regression model was used to 
assess significant differences in C, N, and P concentrations of plant, soil, and microbial biomass among 
three desert species, expressed by p-values. Soil C: soil organic C; Soil N: soil total N; Soil P: soil total P. 
Different lowercase letters indicate significant differences between different plant organs and between soil 
and soil microbial biomass in different soil layers (p < 0.05)

Concentration (g 
 kg−1)

Organs/soil 
layers (cm)

Alhagi sparsifolia Karelinia caspica Tamarix ramosissima p value

Plant C Root 446.66±11.20a 424.98±12.43a 450.86±16.90b <0.05
Stem 446.41±3.52a 420.55±8.79a 480.12±10.00a <0.05
Leaf 419.49±15.99b 398.26±20.29b 379.44±20.21c <0.05

N Root 11.31±2.33b 4.06±0.47b 4.49±1.14b <0.001
Stem 10.64±2.52b 4.17±0.24b 4.91±0.52b <0.001
Leaf 20.53±1.64a 11.97±1.28a 12.83±1.27a <0.001

P Root 0.61±0.16b 0.69±0.23b 0.28±0.08b <0.01
Stem 0.69±0.11b 0.54±0.09c 0.35±0.03b <0.01
Leaf 1.08±0.18a 0.86±0.09a 0.61±0.11a <0.01

Soil C 0–30 3.00±0.22a 2.76±0.29a 3.50±0.30a < 0.01
30–60 1.85±0.08b 1.74±0.11b 2.80±0.30b < 0.01
60–100 1.78±0.09b 1.67±0.08b 2.15±0.23c < 0.01

N 0–30 0.32±0.05b 0.34±0.05a 0.34±0.05a > 0.05
30–60 0.35±0.02a 0.32±0.04a 0.33±0.04a < 0.05
60–100 0.32±0.03b 0.33±0.04a 0.37±0.06a < 0.05

P 0–30 0.58±0.03c 0.59±0.02b 0.60±0.02a < 0.05
30–60 0.61±0.02b 0.62±0.03a 0.61±0.04a > 0.05
60–100 0.65±0.02a 0.63±0.02a 0.61±0.04a < 0.05

Soil 
microbial 
biomass

C 0–30 52.98±7.17a 71.75±18.32a 55.23±15.12a < 0.01
30–60 49.86±8.17a 71.42±15.66a 52.60±14.87a < 0.001
60–100 53.14±7.44a 67.07±17.69a 50.41±15.51a < 0.01

N 0–30 2.41±0.26a 2.75±0.22b 4.36±1.95a < 0.01
30–60 2.23±0.26b 2.93±0.29ab 4.30±1.53a < 0.01
60–100 2.22±0.14b 2.98±0.18a 4.40±1.78a < 0.01

P 0–30 0.20±0.03a 0.65±0.15a 0.25±0.05a < 0.01
30–60 0.18±0.02a 0.67±0.16a 0.26±0.05a < 0.01
60–100 0.15±0.02b 0.67±0.16a 0.25±0.04a < 0.001
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microbial C:N ratio in topsoil was significantly higher 
under Karelinia caspica than under Alhagi sparsifolia (p 
< 0.001). Soil microbial C:P ratio under Alhagi sparsifolia 
was significantly higher than that under Karelinia caspica 
and Tamarix ramosissima (p < 0.001), whereas soil micro-
bial C:P ratio under Tamarix ramosissima was significantly 
greater than that under Karelinia caspica (Fig. 3C, D). In 
addition, soil microbial N:P ratio under Tamarix ramo-
sissima was significantly greater than that under Alhagi 
sparsifolia and Karelinia caspica (p < 0.001), whereas 
the ratio under A. sparsifolia was significantly greater than 
that under Karelinia caspica (Fig. 3E, F).

Correlations between plant, soil, and microbial 
biomass C, N, and P stoichiometry

Soil EC significantly affected soil C, N, and P balance, espe-
cially under Alhagi sparsifolia (Fig. 4A). In contrast to Alhagi 
sparsifolia, SOC, soil C:N ratio, and soil C:P ratio under Kare-
linia caspica were negatively correlated with MBN (Fig. 4B). 
Soil organic C, soil C:N ratio, and soil C:P ratio under Tama-
rix ramosissima were significantly negatively correlated with 
MBC and MBN (Fig. 4C). However, soil microbial biomass 
under the three desert species was positively correlated with 
SWC. In Alhagi sparsifolia, plant C was influenced primarily 

Fig. 1  Plant carbon (C), 
nitrogen (N), and phosphorus 
(P) stoichiometry. Asterisks 
indicate significant differences 
among different organs or plant 
species. *p < 0.05; **p < 0.01; 
***p < 0.001
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by MBC; plant N was influenced by SOC and MBC; and plant 
P was influenced by MBN. The C:N and C:P ratios of Alhagi 
sparsifolia were primarily affected by MBC, whereas plant 
N:P ratio was regulated by SOC and soil C:N ratio. Notably, 
MBC and MBP affected N and P concentrations and C:N:P 
ratios in Karelinia caspica. Similarly, SOC, MBC, soil C:P 
ratio, MBP, and MBN affected concentrations and ratios in 
Tamarix ramosissima.

Responses of C, N, and P stoichiometry in different 
desert species to soil and microbial biomass C, N, 
and P stoichiometry

Compared with Karelinia caspica and Alhagi sparsifo-
lia, nutrient concentrations and stoichiometry in Tama-
rix ramosissima were more tightly interrelated with soil 
factors (Fig. 5A, C, E). In Alhagi sparsifolia, soil MBC 

Fig. 2  Soil carbon (C), nitrogen 
(N), and phosphorus (P) stoi-
chiometry. Asterisks indicate 
significant differences among 
different soil layers or plant 
species. *p < 0.05; **p < 0.01; 
***p < 0.001
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and MBN, SWC, soil C:N ratio, SOC, and soil C:P ratio 
significantly influenced the variation in nutrient concentra-
tions and stoichiometry (Fig. 5B). In Karelinia caspica, 
soil MBC, microbial C:N ratio, MBP, microbial N:P ratio, 
SWC, and MBN were the main factors that significantly 
influenced the variation in nutrient concentrations and 
stoichiometry (Fig. 5D). In Tamarix ramosissima, soil 
MBC, SWC, MBN, microbial C:P ratio, microbial N:P 
ratio, SOC, soil C:P ratio, MBP, and soil C:N ratio were 
the main factors that influenced the variation in nutrient 
concentrations and stoichiometry (Fig. 5F).

Discussion

Variation in C, N, and P stoichiometry in plant 
organs of desert species

From an ecological and evolutionary perspective, nutri-
ent distribution patterns among plant organs are tightly 
interrelated with corresponding functional character-
istics (Delgado-Baquerizo et al. 2013). For example, as 
the main organ of photosynthesis, leaves are crucial to 

Fig. 3  Soil microbial biomass 
carbon (C), nitrogen (N), and 
phosphorus (P) stoichiometry. 
Asterisks indicate significant 
differences among different soil 
layers or plant species. *p < 
0.05; **p < 0.01; ***p < 0.001
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plant metabolism and use of water and nutrients (Elser 
and Hamilton 2007; Finzi et al. 2011). Accordingly, leaves 
typically have the most advantageous N and P concentra-
tions, especially in herbs of Fabaceae (He et al. 2015). 
Leaf N and P concentrations of the herb Alhagi sparsi-
folia (Fabaceae) were 20.5 and 1.1 g  kg–1, respectively, 
which were concentrations greater than those of the shrub 
Tamarix ramosissima (non-Fabaceae) but lower than 
those of the average values of global herbaceous species 

(Castellanos et al. 2018). The results indicate that rap-
idly growing herbs require higher concentrations of N 
and P than those of shrubs with slower growth (Matzek 
and Vitousek 2009; Han et al. 2011). The possible expla-
nations for the lower leaf N and P concentrations than 
those of global averages include low nutrient levels in the 
region and the hyper-arid climatic characteristics (Zeng 
et al. 2013; Gao et al. 2022a). In hyper-arid areas, seri-
ous water deficiency and high soil salinity weaken plant 

Fig. 4  Mantel tests between 
carbon (C), nitrogen (N), and 
phosphorus (P) concentrations 
and stoichiometry of plant–soil–
microbial biomass. The different 
colors represent the type of rela-
tion between two factors, and 
the depth of color indicates the 
significance of the correlation 
coefficient. P represents plant. 
Asterisks indicate significant 
differences. *p < 0.05; **p < 
0.01; ***p < 0.001
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ability to obtain soil available N and P and limit trans-
port and metabolism of nutrients, ultimately restricting 
plant growth (He et al. 2016). Additionally, leaf N:P ratios 
indicated that Alhagi sparsifolia and Tamarix ramosis-
sima were P-limited, whereas Karelinia caspica was 
N-limited. Some plants in the Fabaceae need more P than 
non-Fabaceae plants to maintain the N–P balance because 
of the increase in N from biological N fixation (Lambers 
et al. 2015). Consequently, the effect of P on Fabaceae in 
impoverished soils is more significant than that on non-
Fabaceae, which was confirmed by this study. However, 

the shrub Tamarix ramosissima was also limited by soil 
P, which might be related to the slow root turnover rate 
of Tamarix ramosissima. In addition, relatively low fine 
root production limits the ability of Tamarix ramosissima 
to obtain soil nutrients (Liu et al. 2016). Plants can also 
adapt to poor environments by increasing C investment in 
nutrient acquisition organs, such as roots (Peaucelle et al. 
2012). In this study, C concentration of roots was greater 
than that of leaves, and concentration in the shrub Tama-
rix ramosissima was greater than that in the herbs Alhagi 
sparsifolia and Karelinia caspica. The differences were 

Fig. 5  Redundancy analyses 
between carbon (C), nitro-
gen (N), and phosphorus (P) 
stoichiometry of plant–soil–
microbial biomass. The green 
diamond represents plant 
nutrient concentrations and 
stoichiometry; the red line with 
an arrow represents soil and 
soil microbial biomass and soil 
water content (SWC), pH, and 
electrical conductivity (EC). 
P represents plant. Asterisks 
indicate significant differences. 
*p < 0.05; **p < 0.01
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most likely because of differences in root growth between 
shrubs and herbs, for example, compared with herbs, shrub 
roots are thicker and have slower growth (Liu et al. 2016). 
Furthermore, the higher C:N and C:P ratios of roots and 
stems of Tamarix ramosissima than those of the other spe-
cies also indicated where C was invested in the N and 
P-limited environment.

Variation in C, N, and P stoichiometry in soil 
and microbial biomass

The stoichiometry of soil elements is a critical factor affect-
ing plant nutrient acquisition (Delgado-Baquerizo et al. 
2013). The global average soil C:N:P ratio is 186:13:1 
(Cleveland and Liptzin 2007), whereas in China, the ratio 
is approximately 60:5:1 (Tian et al. 2010). However, SOC 
and STN concentrations in the study area were significantly 
lower than those in the desert ecosystem of the Hexi Cor-
ridor (Zhang et al. 2019) and a grassland ecosystem (Zhang 
et al. 2020), whereas the concentration of STP was signifi-
cantly higher. The heterogeneity in STN among different 
natural ecosystems may be attributed to differences in soil 
type, organic matter, and texture (Li et al. 2020). By con-
trast, STP is primarily influenced by soil weathering degree 
and parent material type (Helfenstein et al. 2018). In the 
study area, the soil type was associated with an alluvial 
fan with low weathering degree, low vegetation coverage, 
and low soil organic matter. Thus, the STP concentration 
is relatively high, whereas STN and SOC concentrations 
are relatively low (Gao et al. 2022a). By contrast, relatively 
high soil weathering, vegetation coverage, and soil organic 
matter and favorable soil moisture in the desert ecosystem 
of the Hexi Corridor and the grassland ecosystem indicate 
increases in soil C, N, and P cycling (Delgado-Baquerizo 
et al. 2013; Li et al. 2020). Additionally, SOC concentration 
decreased significantly with the increase in soil depth, with 
maximum concentrations at 0–30 cm, consistent with litter 
accumulation on the soil surface (Wang et al. 2014). The 
SOC at top layer under the shrub Tamarix ramosissima was 
significantly greater than that under the herbs Alhagi sparsi-
folia and Karelinia caspica. The differences were most likely 
due to the greater accumulation of plant litter under the rela-
tively large canopy of the shrub Tamarix ramosissima. In a 
previous study, the “fertile islands” effect under the canopy 
of Tamarix ramosissima was stronger than that under the 
canopies of Alhagi sparsifolia and Karelinia caspica (Gao 
et al. 2022b). Moreover, the SOC concentration of 319 sam-
ples from temperate deserts in China is substantially higher 
than that in this study, which is likely due to the low SWC 
and sparse vegetation in the hyper-arid desert ecosystem of 
the study area (Tian et al. 2010). The results indicated that 
SOC and STN concentrations were relatively low and STP 

concentrations were relatively high in the topsoil of the Cele 
oasis and desert junction zone.

Soil C:N:P ratios also regulate nutrient cycling and bio-
logical processes, and vice versa (Delgado-Baquerizzo et al. 
2017). Analyses of SOC, STN, and STP in three soil layers 
under three desert plants indicated that soil C:N and C:P 
ratios under Tamarix ramosissima were significantly higher 
than those under Karelinia caspica. The difference might be 
primarily attributed to the greater SOC accumulation under 
the Tamarix ramosissima canopy than under the Karelinia 
caspica canopy (Gao et al. 2022b). In addition, soil available 
N in desert ecosystems is mostly from fixation by symbiotic 
microorganisms and the limited element stoichiometry in 
topsoil indicates that desert species can modify biochemical 
conditions to guarantee nutrient demands are met (Luo et al. 
2021). Soil nutrient concentrations and stoichiometry can 
be regarded as the main driving factors for variation in soil 
microbial biomass (Yang et al. 2020). This study confirmed 
that conclusion because soil microbial biomass was closely 
related to most soil C:N:P ratios (Fig. 4). Specifically, there 
was a robust link between soil C:N:P ratios and microbial 
C:N:P ratios under Karelinia caspica and Tamarix ramo-
sissima. The results of this study are also consistent with 
the conclusion that soil C:N ratio determines soil microbial 
biomass (Zhang et al. 2019). Furthermore, the relatively low 
soil C:P ratio under Karelinia caspica indicated an increase 
in extraordinary resource and energy availability for micro-
bial growth (Elser and Hamilton 2007). In this study, soil 
MBC and MBP concentrations under Karelinia caspica 
were significantly greater than those under the herb Alhagi 
sparsifolia and the shrub Tamarix ramosissima. However, 
the greater soil microbial C:P and N:P ratios under Alhagi 
sparsifolia and Tamarix ramosissima than those under Kare-
linia caspica suggested that soil P was a limiting element for 
soil microbial growth under Alhagi sparsifolia and Tamarix 
ramosissima.

Factors that drive variation in the stoichiometry 
of plant C, N, and P

The stoichiometry of plant nutrients can characterize the 
stability of ecosystems (Delgado-Baquerizo et al. 2013). 
In the study area, extremely low-frequency rainfall events 
and little rainfall per event constrain leaching of soil nutri-
ents, whereas high potential evaporation leads to salt crusts 
forming in high salinity habitats (Li et al. 2021; Gao et al. 
2022b). In such a hyper-arid environment with severe salin-
ity, the most severe limitations are imposed on plant acquisi-
tion and cycling of nutrients. The extreme conditions also 
affect desert plant–soil–microbial biomass nutrient cycling 
because of effects on stoichiometry of soil and microbial 
biomass elements (Gong et al. 2017).
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Plant nutrient stoichiometry can be affected by available 
soil nutrients as well as plant ability to adjust to nutrient 
limitations (Tian et al. 2019). In this study, t the concentra-
tion range of nutrients in different plant organs was relatively 
narrow, which is consistent with the results of Zhao et al. 
(2016). Plant nutrient stoichiometry is affected by many 
factors, including available soil nutrients, soil microbial 
biomass, soil moisture, pH, and EC, as well as differences 
in plant life form (Sardans et al. 2017). Soil organic C and 
soil C:N and C:P ratios were the most important regulators 
of nutrient concentrations and stoichiometry of Tamarix 
ramosissima and also N and C:N and N:P ratios in Alhagi 
sparsifolia. Phosphorus may be the primary driver trigger-
ing multi-element stoichiometric changes in plants in P-poor 
environments (Yan et al. 2015). Nevertheless, in this study, 
although Alhagi sparsifolia and Tamarix ramosissima were 
constrained by P (leaf N:P > 16), the stoichiometry of plant 
nutrients was controlled by SOC rather than STP. A primary 
explanation for the result could be that STP is relatively sta-
ble because it is mostly influenced by soil weathering degree 
and parent material type (Helfenstein et al. 2018). However, 
the “micro-environment” formed by desert plant litterfall 
and sandy soil under plant canopies in desert ecosystems 
promotes litter decomposition, which provides additional 
C sources for soil microorganisms, ultimately accelerating 
soil nutrient cycles (Gao et al. 2022b). In this study, the 
importance of such micro-environments was demonstrated 
because soil MBC and MBN were the most important fac-
tors regulating C:N:P ratios in Alhagi sparsifolia and Tama-
rix ramosissima.

Notably, SWC was a regulator of plant P and C:P ratio 
in Alhagi sparsifolia and Tamarix ramosissima, which was 
most likely due to the strong correlations between SWC 
and soil N and P availability (Gong et al. 2017). Alterna-
tively, soil moisture can increase litter decomposition by soil 
microorganisms, reduce the adsorption capacity of organic 
matter in the soil solid phase, promote the release of nutri-
ents, and ultimately affect plant nutrient concentrations 
(Gao et al. 2019). Furthermore, nutrients in the shrub were 
more sensitive to variation in soil factors than nutrients in 
the herbs (Fig. 5). It is possible the relatively high biomass 
of branches makes shrubs more soil-dependent (Han et al. 
2011; Luo et al. 2021).

Conclusions

The herb Alhagi sparsifolia and the shrub Tamarix ramo-
sissima were P-limited in the Taklimakan Desert, whereas 
the herb Karelinia caspica was N-limited. A robust link 
was found between C, N, and P of three different life forms 
of desert plants and C, N, and P concentrations and stoi-
chiometry of soil microbial biomass. Thus, soil microbial 

biomass rather than soil nutrients was the primary driver of 
the variation in plant nutrient stoichiometries, suggesting 
that soil microbial biomass has a crucial role in the cycling 
of plant nutrients in nutrient-impoverished soils. In addition, 
SWC was also a crucial factor regulating nutrient concentra-
tions and stoichiometries of Alhagi sparsifolia and Tamarix 
ramosissima. Most importantly, nutrient concentrations and 
stoichiometry in the shrub Tamarix ramosissima were more 
strongly affected by changes in soil factors than those in the 
herbs. Overall, the study demonstrated that soil microbial 
biomass and SWC are strong predictors of changes in C, N, 
and P of desert plant species. Future studies should consider 
the underlying mechanisms by which microbial nutrient bal-
ance determines plant nutrient balance and the coupling of 
plant–soil–microbial biomass in desert ecosystems.
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