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Summary

� Mistletoes play important roles in biogeochemical cycles. Although many studies have com-

pared nutrient concentrations between mistletoes and their hosts, no general patterns have

been found and the nutrient uptake mechanisms in mistletoes have not been fully resolved.
� To address the water and nutrient relations in mistletoes compared with their hosts, we

measured 11 nutrient elements, two isotope ratios and two leaf morphological traits for 11

mistletoe and 104 host species from four sites across a large environmental gradient in south-

west China.
� Mistletoes had significantly higher phosphorus, potassium, and boron concentrations, nitro-

gen isotope ratio, and lower carbon isotope ratio (δ13C) indicative of lower water-use effi-

ciency than hosts, but other elements were similar to those in hosts. Sites explained most of

the variation in the multidimensional trait space. With increasing host nitrogen concentration,

both mistletoe δ13C and the difference between mistletoe and host δ13C increased, providing

evidence to support the ‘nitrogen parasitism hypothesis’. Host nutrient concentrations were

the best predictors for that of the mistletoe nutrient elements in most cases.
� Our results highlight the important roles of environmental conditions and host nutrient sta-

tus in determining mistletoe nutrient pools, which together explain their trophic interactions

with hosts in subtropical and tropical ecosystems.

Introduction

Mistletoes are obligate hemiparasitic aerial shrubs, which obtain
mineral nutrients and water from their hosts via haustoria that
penetrate host vascular tissues, serving as a connecting bridge
between mistletoes and hosts (Kuijt, 1969; Teixeira-Costa, 2021;
Teixeira-Costa & Davis, 2021). Previous studies have mainly
focused on the impacts of mistletoes on their hosts and have
clearly shown that mistletoes decrease host tree growth (Camar-
ero et al., 2019; Bilgili et al., 2020), alter host wood and leaf anat-
omy (Teixeira-Costa & Ceccantini, 2015; Ozturk et al., 2019),
and exacerbate the water deficiency of hosts (Sangüesa-Barreda
et al., 2013; Tamudo et al., 2021). However, mistletoes have
recently been recognized as a beneficial keystone species in the
ecosystem (Watson, 2009; Těšitel et al., 2021), playing impor-
tant roles in biogeochemical cycles (March & Watson, 2010;
Ndagurwa et al., 2020). Some positive influences of mistletoes
include increasing the input of nutrient-rich litter due to low
nutrient resorption efficiency (Scalon et al., 2017), affecting the

temporal–spatial litterfall patterns and nutrient dynamics due to
their patchy distribution (March & Watson, 2010), hastening
nutrient return by accelerating the decomposition of recalcitrant
host litters (Ndagurwa et al., 2020), and increasing soil nutrient
concentrations beneath infected trees (Ndagurwa et al., 2014;
Muvengwi et al., 2015). As such, mistletoes can contribute to
boosting plant productivity and species composition (March &
Watson, 2007; Ndagurwa et al., 2016), apart from their negative
effects on individual hosts as aforementioned. Therefore, a better
understanding of nutritional interactions between mistletoes and
hosts will provide insights into their functioning in ecosystems
and mistletoe–host coevolution under global climate change sce-
narios (Türe et al., 2010; Bell & Adams, 2011; Suriyagoda
et al., 2018; Fontúrbel, 2020).

Many mistletoe–host comparative studies on mineral nutrients
have been conducted over the past 40 yr (Lamont, 1983; Ehlerin-
ger et al., 1986; Glatzel & Geils, 2009; Scalon et al., 2013; Al-
Rowaily et al., 2020). Theory based on such studies has posited
that the higher transpiration rates of mistletoes than their hosts
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serve a nutrient-gathering role since mistletoes have evolved a
lower energetic investment in haustoria than would be the case
for free-standing plants that require structural and conducting
roots (Schulze et al., 1991). However, general patterns in broad-
spectrum mistletoe–host mineral nutrient differences are lacking,
which limits our understanding of the mechanisms underlying
nutrient acquisition in mistletoes. One major reason behind this
lack of knowledge lies in that few studies have included multiple
nutrients (macronutrients and micronutrients) in their compar-
isons of mistletoes vs hosts although mistletoes would be expected
to have a similar requirement for many of these nutrients as other
plants. In the few such analyses, just a small number of mistle-
toe–host species pairs were considered (Panvini & Eickmeier,
1993; Scalon et al., 2013), and hence, the robustness of these
comparisons remains in question.

Regarding the mechanisms behind mistletoe–host nutrient
patterns, two main competing hypotheses have been proposed
involving either passive or active nutrient uptake by the mistletoe
(Lamont, 1983; Panvini & Eickmeier, 1993; Scalon et al., 2013).
The passive nutrient uptake hypothesis suggests that nutrient
acquisition is coupled with water flow into the mistletoes (see
Schulze et al., 1991, for example). Due to the lack of a phloem
connection and no exchange of photosynthates with their hosts,
nutrients are passively accumulated in mistletoes (Leonard &
Hull, 1965). Many studies have found that the concentrations of
a number of mineral nutrients are higher in mistletoe leaf tissues
than in the hosts (Lamont, 1983; Glatzel & Geils, 2009). By con-
trast, the active nutrient uptake hypothesis assumes that nutrient
and water uptake may not be so tightly coupled and that hausto-
ria may play a role in selectively facilitating active nutrient acqui-
sition and sequestration. Several case studies have indeed found
that amino acids have been selectively metabolized in haustoria
before their entry into the mistletoe xylem (Pate et al., 1991;
Escher & Rennenberg, 2006). In spite of the evidence behind
passive and active nutrient uptake by mistletoes, there are still
debates on mistletoe nutrient variation patterns, especially related
to the uptake mechanism (Bell & Adams, 2011; Tennakoon
et al., 2011). More comprehensive sampling strategies, including
the analyses of multiple nutrient elements and more mistletoe–
host species pairs, are helpful to better understand the variation
in mistletoe nutrient patterns.

Mistletoes typically have higher stomatal conductance and
lower water use efficiency (WUE, as indicated by stable carbon
isotope ratio: δ13C) compared with their hosts (Ehleringer
et al., 1985; Scalon & Wright, 2015; Richards et al., 2021),
which could be related to their requirements to draw nutrients
from their hosts (Ehleringer et al., 1986; Bell & Adams, 2011) or
their lower transpirational cost due to a lower investment in roots
and stems compared with their hosts (Givnish, 1986; Richards
et al., 2021). Concerning the rate of nutrient and water uptake
from hosts by mistletoes, the hypothesis that the strength of
uptake by mistletoes could predict the status of mistletoe nutri-
ents has not been rigorously examined. The uptake strength of
mistletoes has been partially embodied by the difference between
mistletoe and host δ13C (δ13CM-H). Only a few studies have
measured both nutrient concentrations and transpiration

(Glatzel, 1983; Schulze & Ehleringer, 1984), or parameters
related to transpiration, such as δ13C for both mistletoes and
hosts (Ehleringer et al., 1985; Panvini & Eickmeier, 1993; Ban-
nister et al., 2002; Tennakoon et al., 2011). One hypothesis
explaining the nutrient and water relations between mistletoes
and their hosts is the ‘N-parasitism hypothesis’, which states that
lower WUE and higher transpiration rate are a mechanism for
mistletoes to acquire sufficient N, one of the most limiting
macronutrients, from the host xylem sap (Schulze et al., 1984;
Schulze & Ehleringer, 1984). This hypothesis has been supported
by several studies in which they found the relative WUE, as esti-
mated by δ13CM-H, to become smaller once mistletoes grew on
nitrogen-fixing hosts or on hosts with higher N concentrations
(Ehleringer et al., 1985; Schulze et al., 1991). By the same token,
a ‘P-parasitism hypothesis’ has been proposed, which suggests
that high transpiration by mistletoes may contribute to acquiring
phosphorus from their hosts at P-limited sites (Scalon et al.,
2017). Also, a ‘C-parasitism hypothesis’ proposes that high tran-
spiration by mistletoes is required because they can thus acquire
greater amounts of heterotrophic carbon from their hosts (Mar-
shall et al., 1994; Wang et al., 2008). Nevertheless, it still has not
been tested whether δ13CM-H can predict other mistletoe element
concentrations/mistletoe and host nutrient ratios.

The majority of the past δ13C data on mistletoes had been
sampled in semiarid (Ehleringer et al., 1985; Marshall et al.,
1994; Wang et al., 2008) or temperate areas (Panvini & Eick-
meier, 1993; Bannister & Strong, 2001), with few such studies
from tropical regions (Lüttge et al., 1998; Tennakoon et al.,
2011). As a result, tropical mistletoes are still under-investigated
(Těšitel et al., 2021). There are large differences in water avail-
ability, seasonality, and temperature among tropical, temperate,
and arid ecosystems, which may affect mistletoe physiology.
Moreover, all these conditions likely affect nutrient availability to
the hosts, which, in turn, will affect the vascular sap composition
(Irving & Cameron, 2009). Habitat type plays a role in deter-
mining the different nutrition relationships between mistletoes
and their deciduous hosts growing in wetland and semiarid habi-
tats (Türe et al., 2010), but comparative ecophysiological studies
at multiple sites with different environmental conditions are rela-
tively scant (Lüttge et al., 1998; Türe et al., 2010; Scalon et al.,
2017; Scalon & Wright, 2017; Richards et al., 2021). Therefore,
studies comparing nutrients and water-related parameters among
different sites are needed to reveal the impacts of environmental
conditions on the linkage of water and nutrient uptake between
mistletoes and their hosts.

Mistletoe mineral nutrients are derived from elements dis-
solved in the host xylem, so the status of mistletoe nutrients
should be highly related to those of the host (Glatzel &
Geils, 2009). It has been assumed that the best predictor of
mistletoe nutrient status is often (but not always) the host nutri-
ent status (Glatzel & Geils, 2009). As a broad assertion for many
different taxa, this mistletoe–host relation still lacks empirical evi-
dence because many other important factors involved in mistletoe
nutrient status have been neglected. For instance, legumes with
high N concentrations are generally considered to be good hosts
for hemiparasitic plants (i.e. Phoradendron californiucm Nutt.
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growing on Acacia greggii A. Gray; Schulze & Ehleringer, 1984).
Some studies have found that mistletoes have lower water flow
resistance when they parasitize hosts with efficient water transport
systems compared with parasitizing species with low water trans-
port efficiencies (i.e. Pthirusa maritima Rizzini growing on Cono-
carpus uvifera Jacq.; Goldstein et al., 1989). From this, we infer
that host growth forms with different water transport efficiencies
may influence the transport ability of mistletoes, thereby affecting
the mistletoe leaf nutrient assimilation. Moreover, Panvini &
Eickmeier (1993) have suggested that differences in climate, host
resource acquisition strategy and host leaf phenology may lead to
inconsistent mistletoe–host nutrient patterns. In addition, mistle-
toe leaf structural traits, such as specific leaf area (SLA) and leaf
dry matter content (LDMC), may also influence nutrient assimi-
lation and balance, by reducing the volume and mass of photo-
synthetically active, nonstorage cells, as proved in nonparasitic
plants and mistletoes (Domı́nguez et al., 2012; de la Riva
et al., 2018; Richards et al., 2021). All these factors mentioned
previously may influence mistletoe nutrient acquisition, trans-
portation and assimilation, and ultimately mistletoe nutrient sta-
tus. Until now, there is no such study integrating the host
nutrient status, parameters related to transpiration (δ13C or
δ13CM-H), site (a proxy for climate and soils), mistletoe leaf traits
(SLA and LDMC), host growth form, leaf habit, and nitrogen-
fixing type. Such a study is needed to comprehensively investigate
the influences of these factors on the mistletoe nutrient concen-
trations and their relative importance in driving these trophic
interactions. Such integrative studies can also contribute to a bet-
ter understanding of the nature of nutrient interactions between
mistletoes and their hosts.

The high mistletoe diversity in southwest China provides a
perfect system to investigate host and environmental determi-
nants of mistletoe nutrient and water relations (Zhang
et al., 2018; Jiang & Zhang, 2021). Despite the high mistletoe
diversity and endemism in China, few studies have examined the
nutrient and water relations of mistletoes with few mistletoe–host
species pairs included (Chen et al., 2013; He et al., 2021). Here,
we presented the first regional data on 11 nutrient elements, two
isotope ratios, and two leaf morphological traits of 121 mistle-
toe–host species pairs (a total of 344 individual pairs) sampled
from four sites (Lijiang, Ailaoshan, Xishuangbanna, and Yuan-
jiang) in Yunnan Province, southwest China, in which there are
distinct differences in water availability and temperature/climate.
In the framework of the passive vs active nutrient uptake hypoth-
esis, we aimed at addressing the following questions with their
attendant hypotheses:
(1) Are mistletoes different from their hosts in terms of leaf
nutrients and stable isotope ratios? Do these differences vary
among sites with different environmental conditions? We
hypothesized that mistletoes exhibit more nutrient accumulation
and lower water use efficiency (lower δ13C) compared with their
hosts because mistletoes have a lower cost to acquire water and
nutrients, and thus more aggressive water use (Givnish, 1986;
Scalon &Wright, 2015; Richards et al., 2021). We also predicted
that sites may explain a high proportion of variation in nutrient
and isotope comparisons because water and temperature

gradients influence the capacity of hosts to acquire nutrients and
the transpiration of mistletoes.
(2) Is the ‘N-parasitism hypothesis’ supported by our multiple-
site data? We hypothesized that the δ13CM-H becomes smaller
when mistletoes grow on nitrogen-fixing hosts or on hosts with
higher N concentrations as previous studies demonstrated (Ehler-
inger et al., 1985; Schulze et al., 1991).
(3) What is the best predictor for mistletoe nutrient concentra-
tions/mistletoe and host nutrient ratios and isotope ratios?
Because mistletoes absorb mineral nutrients and water from their
hosts (Kuijt, 1969; Glatzel & Geils, 2009), we hypothesized that
host nutrient status and corresponding isotope ratio may be the
most important predictor for mistletoe nutrient concentrations
and isotope ratios, respectively. In addition, we expected that the
environment (as indicated by sites in different climates) and
δ13CM-H would play important roles in explaining mistletoe
nutrient concentrations.

Materials and Methods

Sites and species

This study was conducted at four sites in Yunnan Province,
southwest China: Lijiang, Ailaoshan, Xishuangbanna, and Yuan-
jiang (Table 1; Supporting Information Fig. S1). These four sites
are characterized by distinct climates described by differences in
precipitation, aridity index, and average temperature conditions.
The mean annual precipitation varied more than twofold from
733 to 1778 mm across the four sites. The mean annual tempera-
ture of these sites also varied considerably, with 7.2°C, 11.3°C,
22.7°C and 24.7°C for Lijiang, Ailaoshan, Xishuangbanna, and
Yuanjiang, respectively. Most of the rainfall at all these sites
occurs in the rainy season (generally, May–October). More
detailed site climate and soil properties are provided in Table 1.

In Lijiang, Ailaoshan and Yuanjiang, we selected mistletoe–
host pairs from relatively open secondary forests, roadside and
disturbed locations, in which there is high availability of mistle-
toe infection compared with primary forests and mistletoes were
accessible. In Xishuangbanna, mistletoe–host pairs were collected
from a common garden (Xishuangbanna Tropical Botanical Gar-
den, hereafter XTBG). We chose the most common mistletoes in
the four sites for this study (Table S1), including relative general-
ist and relative specialist mistletoes. For host species, we tried to
include different growth forms (tree, shrub, and liana), different
leaf habits (evergreen and deciduous), and different nitrogen-
fixing types (nitrogen-fixing and non-nitrogen-fixing) to test
whether this kind of host life-history classification will influence
the mistletoe nutritional ecological strategies. In total, we sam-
pled 344 mistletoe–host individual pairs (121 unique mistletoe–
host species pairs), consisting of 11 mistletoe species (belonging
to seven genera and two families) and 104 host species (belonging
to 79 genera and 42 families). We sampled 48 mistletoe–host
individual pairs (18 mistletoe–host species pairs), 74 mistletoe–
host individual pairs (27 mistletoe–host species pairs), 202
mistletoe–host individual pairs (68 mistletoe–host species pairs),
and 20 mistletoe–host individual pairs (eight mistletoe–host
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species pairs) in Lijiang, Ailaoshan, XTBG, and Yuanjiang,
respectively (Table S1).

We chose the host individuals infected by mistletoes following
approaches from previous studies (Scalon et al., 2013; Richards
et al., 2021). Most of the sampled individuals of the host species
were only parasitized by one mistletoe species, but four host spe-
cies were found to be parasitized by two mistletoe species
(Table S1). In most cases, we sampled three infected individuals
for each mistletoe–host species pair. Due to low availability in
the field, for few mistletoe–host species pairs, we found only one
or two infected hosts. For each mistletoe–host species pair, we
sampled mistletoe leaves from the infected branches with similar
size and host leaves from uninfected branches, completely free of
haustorium infection from the same host tree. All sampling was
conducted in the rainy season of 2019 (from August to October).

Functional traits

We measured 15 leaf functional traits including leaf nutrient con-
centrations of 11 mineral elements, stable carbon (δ13C) and nitro-
gen (δ15N) isotope ratios (‰), specific leaf area (SLA, cm2 g−1),
and leaf dry matter content (LDMC, g g−1), according to the stan-
dard protocol proposed by Pérez-Harguindeguy et al. (2013). Two
sun-exposed distal branches from the outer canopy of each individ-
ual were collected using a pole pruner. If some mistletoe-infected
branches were too high to access, combined methods of climbing
and a long pole pruner (> 5 m) were used.

We chose three sun-exposed, fully expanded healthy leaves in
each branch to measure SLA and LDMC. For compound leaf
species, all leaflets of each compound leaf were selected. The fresh
leaf or leaflet area with petioles removed was determined by a
flatbed scanner with 300-dpi resolution. Leaves or leaflets were
then immersed in water for 12 h, and their saturated weights
were weighed using a balance (AL204; Mettler Toledo, Shanghai,
China). Then, leaves were oven-dried at 80°C for at least 48 h to
constant mass and weighed. The scanned pictures were analyzed
using the ImageJ software (National Institutes of Health,

Bethesda, MD, USA). The SLA was calculated as leaf area
divided by the leaf dry mass. The LDMC was determined by leaf
dry mass divided by saturated weight.

Fresh leaf samples comprising > 10 leaves or > 50 leaflets for
each individual were oven-dried at 80°C for at least 48 h, then
finely ground, and screened through a 60-mesh sieve for further
analysis. Leaf total phosphorus (P), potassium (K), calcium (Ca),
magnesium (Mg), sulfur (S), iron (Fe), manganese (Mn), zinc
(Zn), and boron (B) concentrations (mg g−1) were measured
using an inductively coupled plasma atomic-emission spectrome-
ter (iCAP7400; Thermo Fisher Scientific, Bremen, Germany)
after that leaf samples were digested with 8 ml HNO3 (65–
68%) + 4 ml HClO4 (70–72%) and then dissolved in 4 ml
HCl (3 M).

The prepared leaf powder samples screened through 100-mesh
sieve were delivered to the Stable Isotope Laboratory of Shenzhen
Huake Precision Testing Inc., Shenzhen, China, to analyze the
total carbon (C) and nitrogen (N) concentrations (mg g−1), δ13C
and δ15N. They were measured using an elemental analyzer
(Flash 2000HT; Thermo Fisher Scientific Inc., Waltham, MA,
USA) coupled with an isotope ratio mass spectrometer (Finnigan
Delta V Advantage; Thermo Fisher Scientific). Stable isotope
ratios were expressed in δ-unit notation, defined as follows:

δX ¼ R sample

R standard

� �
�1

� �
� 1000‰

where X is 13C or 15N, and Rsample is either the sample 13C/12C
ratio for carbon or 15N/14N ratio for nitrogen. The Rstandard of
the 13C and 15N is the Pee Dee Belemnite standard and atmo-
spheric N2, respectively. The analytic precision reported was
�0.1‰ for δ13C and �0.2‰ for δ15N, respectively.

Statistical analysis

Natural logarithm-transformed values were used to improve the
normality in all leaf functional traits, except for δ13C and δ15N,

Table 1 Basic information of the four study sites with simple indices of climate and soil characteristics.

Study site Lijiang Ailaoshan
Xishuangbanna Tropical
Botanical Garden Yuanjiang

Vegetation type Subalpine cold temperate
forest

Subtropical montane
forest

Tropical seasonal rainforest Valley savanna

Coordinates 27°000N, 100°100E 24°320N, 101°010E 21°410N, 101°250E 23°280N, 102°100E
Elevation (m asl) 3240 2450 580 481
Mean annual precipitation (mm) 1100 1778 1447 733
Mean annual temperature (°C) 7.9 11.3 22.7 24.7
Aridity index1 1.62 1.44 0.96 0.33
Soil pH 4.92 4.24 5.41 7.88
Soil organic matter (mg g−1) 7.2 170.4 46.91 87.73
Total soil N concentration (mg g−1) 0.6 5.64 3.07 3.96
Total soil P concentration (mg g−1) 0.1 0.97 0.69 1.3
Total soil K concentration (mg g−1) 486.27 9.46 10.84 12.72
Soil available N concentration (mg kg−1) 2.13 51.17 126.9 206.9
Soil available P concentration (mg kg−1) 1.1 11.10 4.22 13.28
Soil available K concentration (mg kg−1) 86.47 185.4 88.2 576.3

1Aridity index was computed according to Nastos et al. (2013) using the meteorological parameters at each site.
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which were normally distributed. All the statistical analyses were
based on individual data (n = 344), except for special cases such
as for mistletoe–host species pairs where n = 121.

We used linear mixed-effects models (LMMs) to test whether
each measured leaf trait differed between plants of different life
forms (mistletoe vs host) and different sites and between species
of different life forms among different sites (life forms × sites).
In each model, C, N, P, K, Ca, Mg, S, Fe, Mn, Zn, B, δ13C,
δ15N, SLA, and LDMC were dependent variables. Life forms,
sites, and their interactions were fixed factors. The species pair
ID (to account for the intrinsic paired data structure) and species
(to account for nonindependent sampling design) were random
effects in the model. If the interaction was not significant, then
we refitted the model with the main effects only. The LMMs
were fit using the lmer function of the LME4 package (Bates
et al., 2015). The statistical significance of fixed factors and ran-
dom effects was assessed by Type III ANOVA with Satterth-
waite’s approximation of denominator degrees of freedom and
likelihood ratio tests, respectively, in the lMERTEST package (Kuz-
netsova et al., 2017). We used the check_model function in the
PERFORMANCE package to check the residual normality and
homoscedasticity (Lüdecke et al., 2021). The results of LMMs
were presented using tab_model function in the SJPLOT package
(Lüdecke, 2021). The EMMEANS package was used to extract the
predicted estimates and 95% confidence intervals to construct
figures (Lenth, 2021).

We used permutational multivariate analysis of variance (PER-
MANOVA; Anderson, 2001) to assess whether mistletoes and
hosts from different sites occupy different positions in the multi-
dimensional trait space (number of permuted data sets = 1000)
based on mistletoe–host species pair mean values (n = 121). The
full model included life forms and sites due to their nonsignifi-
cant interactions. Analyses were conducted using the adonis func-
tion in the VEGAN package (Oksanen et al., 2013). To summarize
and visually describe the differences among traits of mistletoe–
host species pairs in four study sites, a principle component anal-
ysis (PCA) was run through the princomp function in the STATS

package.
To reveal factors influencing the difference between mistletoe

and host δ13C (δ13CM-H), we included multiple factors in the
LMMs, that is, host N, mistletoe N, sites, mistletoe SLA, mistle-
toe LDMC, host growth form, host leaf habit, and host nitrogen-
fixing type. As statistical considerations prevented having both
host δ13C and mistletoe δ13C simultaneously in one model for
interpreting the δ13CM-H, we also included mistletoe δ13C and
host δ13C separately to test the influences of other factors. Thus,
we performed two independent LMMs with the only difference
being host δ13C (model 1) or mistletoe δ13C (model 2), with all
other predictors kept the same. The random factors were mistle-
toe and host species. In both models, we used the dredge function
of the MUMIN package (Bartoń, 2020) to select the best model.
To test the ‘N-parasitism hypothesis’, that is, whether host N and
δ13CM-H were positively correlated, we used the plot_model func-
tion of the SJPLOT package to extract the predicted results of
model 1 (with host N and δ13CM-H having significant correla-
tion), while controlling other factors. We finally partitioned the

variance explained by each fixed variable, random effects and
residuals using the partR2 function in the PARTR2 package (Naka-
gawa & Schielzeth, 2013).

Mistletoe and host nutrient ratios have been used to represent
whether mistletoes significantly accumulate higher nutrients than
their hosts (Lamont, 1983; Panvini & Eickmeier, 1993), with
the ratio > 1 indicating mistletoes accumulate more nutrients
than their hosts. To evaluate which predictable variable was the
best predictor for the mistletoe nutrient concentrations/mistletoe
and host nutrient ratios and isotope ratios, we fitted all possible
linear mixed-effects models that included combinations of eight
explanatory variables. These were host nutrient concentrations
(proxy for each corresponding nutrient of mistletoe, i.e. for
mistletoe C, the corresponding host nutrient concentration was
host C), δ13CM-H, sites, mistletoe LDMC and SLA, host growth
form, leaf habit, and nitrogen-fixing type. These eight variables
were fixed factors; host species and mistletoe species were random
factors; each mistletoe nutrient concentration/mistletoe and host
nutrient ratio or isotope ratio was the response variable. The
automated model selection procedures were performed using
the dredge function of the MUMIN package. We determined the
random effects using restricted maximum likelihood (REML)
together with the full fixed effects model. Subsequently, fixed
effects were selected using maximum likelihood with the chosen
random effects. Coefficients for parameters of the final models
were estimated using REML (Baayen et al., 2008). We also
checked multicollinearity among predicted variables with vari-
ance inflation factor (VIF) values > 3 (Zuur et al., 2010) using
the vif function in the CAR package. Because there were no vari-
ables with VIF > 3 in this study, none of the variables were
excluded. We selected the best-fitting model with the lowest
Akaike information criterion (AICc) value. We only reported the
most parsimonious model instead of model averaging for those
with several models with delta AICc < 2. After model selection,
we refitted the final model with the chosen variables using REML
and then partitioned the variance explained by each fixed vari-
able, random effects and residuals using the partR2 function in
the PARTR2 package.

The LMMs were fitted to test whether regression relationships
between mistletoe and host nutrient and isotope ratios differed
among four sites. Host nutrient concentrations, sites, and their
interactions were fixed effects; mistletoe and host species were
random effects; each mistletoe nutrient concentration was the
dependent variable. The predicted results of LMMs were pre-
sented using the ggpredict function of the GGEFFECTS package
(Lüdecke, 2018). All analyses were performed in R v.4.0.2 (R
Core Team, 2020).

Results

Differences in nutrients, stable isotope ratios, and leaf
morphological traits between mistletoes and hosts

Leaf C, K, Ca, Mn, and SLA showed significant interactions
between life forms (mistletoe vs host) and four sites (Fig. 1;
Tables 2, S2). There were significant differences in P, K, B, δ13C,
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δ15N, SLA, and LDMC between mistletoes and hosts (all
P < 0.05), but not in the other nutrients. Specifically, mistletoes
had significantly higher P, K, B, and δ15N, but lower δ13C, SLA,
and LDMC than their hosts. By contrast, all traits exhibited sig-
nificant differences among sites, except for SLA with a marginally
significant difference (P = 0.091). The influence of sites on SLA
could not be excluded because of the significant interactions

between life forms and sites in SLA (P < 0.001). In addition,
random effects, namely species pair ID and species, showed sig-
nificant influences on the comparison of nutrients, stable isotope
ratios, and leaf morphological traits between mistletoes and hosts
(both P < 0.05; Tables 2, S2). Moreover, models with the ran-
dom components had better fits (with the lowest AIC values)
than models without them in all cases (Table S3).

(a) (b) (c) (d)

(e)

(i)

(m) (n) (o)

(j) (k) (l)

(f) (g) (h)

Fig. 1 Comparison of leaf chemical and functional traits among mistletoes and hosts from four sites, with ‘conc’ indicating concentration. (a) carbon (C),
(b) nitrogen (N), (c) phosphorus (P), (d) potassium (K), (e) calcium (Ca), (f) magnesium (Mg), (g) sulfur (S), (h) iron (Fe), (i) manganese (Mn), (j) zinc (Zn),
(k) boron (B), (l) carbon isotope ratios (δ13C), (m) nitrogen isotope ratios (δ15N), (n) specific leaf area (SLA), and (o) leaf dry matter content (LDMC).
Means and 95% confidence intervals (as shown by horizontal bars) are shown using the prediction results based on linear mixed-effects models (Support-
ing Information Table S2). Red and blue colors indicate hosts and mistletoes, respectively.
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Life forms and sites were separated in the multidimensional
functional space we sampled (both P < 0.05; Table 3). The pro-
portions of the variation explained by sites and life forms were
41.0% and 10.5%, respectively. Results of PCA based on 15
functional traits of 121 mistletoe–host species pairs from four
sites (Fig. 2) supported the results of LMMs based on individual
data (Table 2) and of PERMANOVA based on mistletoe–host
pair mean data (Table 3). The first and second principal compo-
nents accounted for 27.0% and 16.2% of the total variation,
respectively (Fig. 2). Species distribution along the first axis was
positively associated with C and LDMC and negatively correlated
with P, K, and B (Fig. 2; Table S4). Along the second axis, there
was a separation between mistletoes and hosts, with mistletoe
species associated with higher K, P, and lower δ13C, N, and SLA,
while hosts were on the opposite side.

Parameters related to the ‘N-parasitism hypothesis’

We attempted to integrate multiple factors to interpret the differ-
ence between mistletoe and host δ13C (δ13CM-H). We did find a

positive correlation between host N and δ13CM-H (P < 0.001,
Fig. 3; Table 4, model 1). However, host growth form, nitrogen-
fixing type, and leaf habit did not influence the δ13CM-H (each
showed P > 0.05; Table 4, model 1; Fig. S2). In model 2, host
leaf habit had a significant influence on δ13CM-H, despite little
variance explained (r2 = 0.0138). The δ13CM-H declined with
host δ13C (model 1), but increased with mistletoe δ13C (model
2; Table 4), with the variance explained by host δ13C and mistle-
toe δ13C being 50.07% and 34.01%, respectively. Although sites
had a significant influence in both models, the variance explained
can be ignored (r2 < 0.0001). In addition, we found that host N
was positively correlated with mistletoe δ13C (P < 0.001), while
mistletoe N was not correlated with mistletoe δ13C (P > 0.05,
Table 5).

Predictors for the mistletoe nutrient status and isotope
ratios

Host δ13C, host N, mistletoe SLA, and sites significantly influ-
enced mistletoe δ13C, while sites explained the highest propor-
tion of the variation (P < 0.05, Table 5). Although host
nitrogen-fixing type and sites influenced mistletoe δ15N, host
δ15N explained most of the variation, with mistletoe δ15N
increasing with host δ15N (P < 0.05, Table 5). In most cases,
we found that host nutrient concentrations played the most
important role in explaining mistletoe nutrient concentrations
(all P < 0.001, Fig. 4; Tables 6, S5, S6). However, host nutri-
ents alone did not explain the pattern of mistletoe nutrients,
and other variables also explained parts of the variation. The
variation explained by sites was larger than the host nutrient
status for mistletoe C, K, and Fe concentrations. Mistletoe C
and K concentrations decreased with δ13CM-H, but mistletoe

Table 2 ANOVA results of linear mixed-effects model for each trait based on individual data.

Trait

Fixed effects Random effects

Life forms Sites Life forms × Sites Species pair ID Species

F P F P F P LRT Pr (> χ2) LRT Pr (> χ2)

C 3.07 0.084 34.49 < 0.001 4.49 0.005 45.95 < 0.001 142.46 < 0.001
N 2.95 0.090 15.36 < 0.001 ns 109.19 < 0.001 140.25 < 0.001
P 48.50 < 0.001 17.06 < 0.001 ns 181.59 < 0.001 91.21 < 0.001
K 88.57 < 0.001 4.24 0.006 2.99 0.033 92.01 < 0.001 195.19 < 0.001
Ca 2.10 0.151 16.21 < 0.001 4.94 0.003 120.72 < 0.001 120.02 < 0.001
Mg 0.01 0.934 11.55 < 0.001 ns 224.97 < 0.001 187.02 < 0.001
S 1.53 0.220 9.85 < 0.001 ns 187.46 < 0.001 245.12 < 0.001
Fe 1.99 0.164 60.71 < 0.001 ns 32.14 < 0.001 77.21 < 0.001
Mn 3.25 0.076. 3.11 0.026 6.27 0.001 527.69 < 0.001 74.19 < 0.001
Zn 2.28 0.135 2.86 0.037 ns 190.42 < 0.001 99.87 < 0.001
B 6.43 0.013 60.74 < 0.001 ns 125.23 < 0.001 195.95 < 0.001
δ13C 64.11 < 0.001 110.94 < 0.001 ns 12.60 < 0.001 147.85 < 0.001
δ15N 7.83 0.010 118.73 < 0.001 ns 411.27 < 0.001 15.02 < 0.001
SLA 20.21 < 0.001 2.18 0.091. 7.46 < 0.001 208.00 < 0.001 612.08 < 0.001
LDMC 15.85 < 0.001 13.35 < 0.001 ns 5.33 0.021 326.71 < 0.001

Life forms (mistletoe vs host), sites (Lijiang, Ailaoshan, Xishuangbanna, and Yuanjiang) and their interactions were fixed factors, and their values were F-
and P-values. Species pair ID (an intrinsic paired attribute) and species (nonindependent sampling design) were random factors, and their values were likeli-
hood ratio and Pr (> χ2)-values. Degrees of freedom for fixed effects were estimated using Satterthwaite estimations. ‘ns’ indicates nonsignificant interac-
tion term, which was dropped off during model selection. Bold indicates significant term.

Table 3 PERMANOVA on the Euclidean distance of 15 functional traits for
121 mistletoe–host species pair mean values.

Predictors
Degree of
freedom

Sum of
squares

Mean
squares F r2 P

Life forms 1 444.9 444.95 51.551 0.105 0.001
Sites 3 1729.3 576.43 66.785 0.410 0.001
Residual 237 2045.6 8.63 0.485
Total 241 4219.8 1

Life forms and sites were predictable variables. The response variables
were 15 traits. The interaction term was not significant. Bold indicates
significant term.
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N concentration increased with δ13CM-H. However, only a
small part of the variation (< 2%) in mistletoe nutrient con-
centrations was explained by δ13CM-H (Fig. 4; Table S5).
Despite the low variation explained, mistletoe LDMC influ-
enced nine out of 11 mistletoe nutrient concentrations, while
mistletoe SLA only influenced two mistletoe nutrients. Host
growth form, leaf habit, and nitrogen-fixing type also explained

the variation in some of the mistletoe nutrient concentrations.
The random effects (host species and mistletoe species)
explained a great proportion of the variation (Fig. 4;
Table S5). The prediction of eight factors on mistletoe and
host nutrient ratios was similar to that on mistletoe nutrient
concentrations, despite different proportions of variation
explained (Fig. S3; Table S7).
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Fig. 2 Biplot of the first two axes of the
principal component (PC) analysis for the 15
leaf functional traits and the loadings of the
121 mistletoe–host species pairs from Lijiang
(square, n = 18), Ailaoshan (star, n = 27),
Xishuangbanna Tropical Botanical Garden
(triangle, n = 68), and Yuanjiang (diamond,
n = 8). Red and blue colors indicate hosts
and mistletoes, respectively. All variables
were log-transformed before analysis, except
for δ13C and δ15N.
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r2 = 0.022, P < 0.001

Fig. 3 Regression relationship between the
difference between mistletoe and host δ13C
(δ13CM-H) and host N, based on the
predicted results of the best model of linear
mixed-effects models (see model 1 in
Table 4). The black line represents model-
fitted slope, gray shading denotes 95%
confidence intervals, and each point indicates
an individual value for 344 mistletoe–host
individual pairs (Lijiang: triangle, n = 48;
Ailaoshan: open circle, n = 74;
Xishuangbanna Tropical Botanical Garden:
solid circle, n = 202; Yuanjiang: square,
n = 20). r2 is the variation explained by host
N for the best model. P-value is the result of
LMM in model 1 in Table 4.
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We presented the predicted regression relationships between
mistletoe and host nutrients and isotope ratios among four sites
and the results of LMMs for a better understanding of their

shifts in nutrient acquisition strategy (Fig. 5; Table S8). The
pairwise nutrition relationships between mistletoes and hosts in
Fe, Zn, and δ15N exhibited different slopes among four sites.

Table 4 Results of linear mixed-effects model predicting the effects of the fixed variables for the difference between mistletoe and host δ13C (δ13CM-H)
based on possible subset combinations of all the fixed variables using dredge function of the MUMIN package.

Predictors

Model 1: δ13CM-H

Predictors

Model 2: δ13CM-H

Estimates CI P r2 Estimates CI P r2

(Intercept) −25.32 −28.70 to −21.94 < 0.001 (Intercept) 22.86 19.09 to 26.63 < 0.001
Host δ13C −0.9 −0.98 to −0.82 < 0.001 0.5007 Mistletoe δ13C 0.85 0.73 to 0.98 < 0.001 0.3401
Site (Ailaoshan) −0.61 −1.07 to −0.16 0.009 0.0000 Site (Ailaoshan) 0.29 −0.29 to 0.87 0.32 0.0000
Site (XTBG) −2.06 −2.92 to −1.20 < 0.001 Site (XTBG) 1.89 1.26 to 2.52 < 0.001
Site (Yuanjiang) 0.74 −0.29 to 1.77 0.161 Site (Yuanjiang) −0.53 −1.43 to 0.38 0.256
Host N 0.82 0.44 to 1.20 < 0.001 0.0217 Host N –
Mistletoe SLA −0.97 −1.54 to −0.40 0.001 0.0272 Mistletoe SLA –
Host leaf habit
(Evergreen)

– Host leaf habit
(Evergreen)

0.58 0.17 to 0.99 0.006 0.0138

Mistletoe N – Mistletoe N –
Mistletoe LDMC – Mistletoe LDMC –
Host growth form – Host growth form –
Host nitrogen-fixing – Host nitrogen-fixing –
Random effects Random effects
σ2 0.36 σ2 0.67
τ00 host species 0.50 τ00 host species 0.82
τ00 mistletoe species 0.24 τ00 mistletoe species
ICC 0.67 ICC 0.55
N mistletoe species 11 N mistletoe species
N host species 104 N host species 104
Observations 344 Observations 344
Marginal r2/
Conditional r2

0.550/0.853 Marginal r2/
Conditional r2

0.354/0.709

The only difference between model 1 and model 2 was host δ13C and mistletoe δ13C, respectively; other predictors were all the same. Degrees of freedom
for fixed effects were estimated using Satterthwaite estimations and their values were P-values. ‘–’ indicates the variable was not selected. r2 was the vari-
ance explained by each selected fixed variable. Marginal r2 and conditional r2 were the variation explained by fixed effects and the variation explained both
by fixed and random effects, respectively. Bold indicates significant term.

Table 5 ANOVA results of linear mixed-effects models predicting the effects of the fixed variables for mistletoe isotope ratios (δ13C and δ15N) based on all
possible subset combinations of all the fixed variables using dredge function of the MUMIN package.

Predicted variables

Mistletoe δ13C

Predicted variables

Mistletoe δ15N

F P r2 F P r2

Host δ13C 5.89 0.016 0.0114 Host δ15N 690.1 < 0.001 0.7766
Sites 23.81 < 0.001 0.4604 Sites 7.65 < 0.001 0.0916
Host N 18.17 < 0.001 0.0311 Host N –
Mistletoe SLA 11.16 0.001 0.0143 Mistletoe SLA –
Host Nitrogen-fixing – Host Nitrogen-fixing 4.86 0.03 0.0115
Mistletoe N – Mistletoe N –
Mistletoe LDMC – Mistletoe LDMC –
Host leaf habit – Host leaf habit –
Host growth form – Host growth form –
Random effects LRT P 0.3256 Random effects LRT P 0.0409
Mistletoe species 44.77 < 0.001 Mistletoe species – –
Host species 99.35 < 0.001 Host species 36.45 < 0.001
Residuals 0.1571 Residuals 0.0794

Degrees of freedom for fixed effects were estimated using Satterthwaite estimations and their values were F- and P-values. For random factors, likelihood
ratio and Pr (> χ2)-values were provided. ‘–’ indicates the variable was not selected. The r2 was variation explained by each variable selected, random
effects and residuals. Bold indicates significant term.
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The nutritional relationships of K, Ca, Mn, and δ13C showed
different intercepts, but the nutritional relationships of N, P,
Mg, S, and B did not vary across sites.

Discussion

Differences in nutrients and stable isotope ratios between
mistletoes and hosts

In support of our hypothesis that the differences between mistle-
toes and hosts shifted among sites, leaf C, K, Ca, Mn, and SLA
showed significant interactions between life forms (mistletoe vs
host) and sites. Moreover, sites explained much larger variation
than that of life forms in the multidimensional trait space, indi-
cating that sites play an important role in ecophysiological and
morphological comparison between mistletoes and hosts. Our
results using a large number of mistletoe–host pairs along large
environmental gradients extend the findings from a previous
study (Türe et al., 2010). Previous mistletoe and host nutrient
comparative studies were limited to only a few mistletoe species
in a specific location with few mistletoe–host pairs, which may
lead to contradictory results among different studies (Panvini &
Eickmeier, 1993; Tennakoon et al., 2011; Scalon et al., 2013).
By taking the effect of sites into account, our study highlights the
importance of sites (a proxy for climate) for nutrient and/or phys-
iological comparisons between mistletoes and hosts.

Meanwhile, we found that two random factors, mistletoe–host
pair ID and species, had significant effects on mistletoe nutrient
status, indicating that the uniqueness of each mistletoe–host rela-
tionship matters a lot in studying the physiology, ecology, and
anatomy of mistletoes. Previous studies also found similar results
(Teixeira-Costa & Ceccantini, 2016; Teixeira-Costa et al.,
2017). For example, Phoradendron perrottetii Nutt. and P. bathy-
oryctum Eichler growing on different host species show distinct
anatomical features in the haustorium interface (Teixeira-Costa

& Ceccantini, 2016), suggesting that particular characteristics
may be associated with the unique interaction between mistletoes
and hosts. Moreover, mistletoe Struthanthus martianus Dettke &
Waechter infecting a deciduous host shows significantly higher
leaf flush than that infecting an evergreen host, indicating that
mistletoe phenology is influenced by host phenology (Teixeira-
Costa et al., 2017). Additionally, it has been well demonstrated
that the impact of mistletoe infection may differ among host spe-
cies, even among individuals within the same species (Cuevas-
Reyes et al., 2011). Therefore, the uniqueness of each mistletoe
and host interaction should be included in future studies.

Mistletoes had significantly higher P and K concentrations
than hosts in our study, which agrees with most previous compar-
ative studies between mistletoes and hosts (Glatzel & Geils, 2009;
Scalon et al., 2013; Kubov et al., 2020). This could be because
mistletoes usually have a higher stomatal conductance and tran-
spiration rate, facilitating nutrient uptake (Zweifel et al., 2012;
Yang et al., 2017), and there is a lack of nutrient relocation from
mistletoes back to the hosts (Leonard & Hull, 1965). Higher P
in the form of acid-soluble P compounds may play a key role in
mistletoe respiration (Kumar, 1975), probably explaining higher
dark respiration rates in mistletoes than in their hosts (Scalon &
Wright, 2017). It has been well documented that K plays a piv-
otal role in maintaining osmotic potentials (Benlloch-González
et al., 2008). Apart from passive nutrient accumulation
(Lamont, 1983; Glatzel & Geils, 2009), higher P and K in
mistletoes may also be associated with selectively active uptake of
mineral nutrients through the haustoria (Lamont, 1983).

Mistletoes had lower N concentrations than hosts (a marginal
significance of P = 0.090) in our study, which agrees with previ-
ous studies showing that mistletoes have similar (Bannister
et al., 2002; Scalon et al., 2013; Scalon &Wright, 2015) or lower
N than their hosts (Kubov et al., 2020; Richards et al., 2021).
Also, we found that there were no differences in leaf Ca, Mg, and
S concentrations between mistletoes and hosts, which is in line
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Fig. 4 Variance partitioning results of linear
mixed-effects models for 11 mistletoe
nutrient concentrations. LDMC, leaf dry
matter content; SLA, specific leaf area.
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Fig. 5 Model predicted regressions for (a) nitrogen (N), (b) phosphorus (P), (c) potassium (K), (d) calcium (Ca), (e) magnesium (Mg), (f) sulfur (S), (g) iron
(Fe), (h) manganese (Mn), (i) zinc (Zn), (j) boron (B), (k) carbon isotope ratios (δ13C), and (l) nitrogen isotope ratios (δ15N) between mistletoes and hosts
among four sites. The lines with different colors represent model-fitted slopes, shading areas denote 95% confidence intervals, and each point is an individ-
ual value for 344 mistletoe–host individual pair (Lijiang, red circle and regression line, n = 48; Ailaoshan, blue circle and regression line, n = 74; Xishuang-
banna Tropical Botanical Garden: green circle and regression line, n = 202; Yuanjiang: purple circle and regression line, n = 20). ns indicates nonsignificant
term. See Supporting Information Table S8 for the statistical results for host nutrient concentrations, sites, and their interactions.
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with some previous findings (Goldstein et al., 1989; Bannister
et al., 2002; Scalon et al., 2013; but see Glatzel, 1983;
Lamont, 1983; Gebauer et al., 2018). The reasons for the contra-
dicting results may lie in previous analyses relying on few mistle-
toe species, narrow host species ranges, or a single site included in
those past studies (Panvini & Eickmeier, 1993; Türe
et al., 2010). Micronutrients showed little variation between
mistletoes and hosts, except for B, which was higher in mistletoes
than in hosts. B is important for membrane integrity and turgor
pressure (Hänsch & Mendel, 2009; Lambers & Oliveira, 2019),
but the accumulation of B in mistletoes is still unclear. Higher K
may be coupled with higher B demands, and this may be one of
the reasons why there is higher B in mistletoes than in hosts.

Based on our regional data, mistletoes had more negative δ13C
than corresponding hosts across all sites, suggesting that they
maintain a higher stomatal conductance than their hosts, which is
in line with previous local, regional, and global studies (Ehleringer
et al., 1985; Givnish, 1986; Scalon & Wright, 2015; Mostaghimi
et al., 2021; Richards et al., 2021). These results from the present
study, temperate Australia, and a global study suggest a remark-
able convergence in different studies in terms of lower δ13C and
water use efficiency of mistletoes, supporting the ‘transpirational
cost hypothesis’ across diverse sites and taxa (Givnish, 1986; Sca-
lon & Wright, 2015; Richards et al., 2021). However, several
studies found contrasting results that similar δ13C values were
found between mistletoes and hosts in temperate environments
(Panvini & Eickmeier, 1993; Bannister & Strong, 2001; Bannis-
ter et al., 2002). Bannister & Strong (2001) contended that high
water availability might result in similar δ13C between mistletoes
and hosts. Yet, our results did not support their argument. For
instance, mistletoes in Lijiang and Ailaoshan with high water
availability exhibited much more negative δ13C than their hosts.

It seems that both mistletoes and hosts respond to environ-
mental gradients in the same way. For instance, mistletoes and
hosts in Yuanjiang with the lowest precipitation exhibited less
negative δ13C than that of other sites, supporting the findings
that δ13C increases with decreasing precipitation (Prentice
et al., 2011). Our results, therefore, supported previous findings
that mistletoe and host exhibit similar responses to the environ-
ment (Scalon & Wright, 2015, 2017; Richards et al., 2021).
Moreover, sites rather than host δ13C explained the largest varia-
tion in mistletoe δ13C, suggesting the sensitivity of mistletoe’s
water use efficiency to the environment. Furthermore, there were
no differences in δ13CM-H among four sites (Fig. S2), in contrast
to the postulation that δ13CM-H should be larger in arid sites
(Bannister & Strong, 2001). We found that mistletoe δ15N was
higher than that of hosts, in contrast with other studies in which
mistletoe and host δ15N are similar (Bannister & Strong, 2001;
Richards et al., 2021). In Xishuangbanna, mistletoe and host
δ15N were larger than that of other sites. This may be because
tropical mistletoes prefer nitrate reductase activity due to high
leaching of organic N and ammonium ions (NH4

+), whereby
NO3

− rather than organic N or NH4
+ is used during amino acid

metabolism, but temperate mistletoes may prefer organic N or
NH4

+ (Tennakoon et al., 2011).

Is the ‘N-parasitism hypothesis’ supported?

The ‘N-parasitism hypothesis’ was proposed to interpret the
higher transpiration and lower water use efficiency in mistletoes
(Schulze et al., 1984; Schulze & Ehleringer, 1984). According
to this hypothesis, the δ13CM-H should become smaller when
the mistletoe parasitizes nitrogen-fixing hosts or hosts with
higher N concentrations (Ehleringer et al., 1985; Schulze
et al., 1991; Bannister & Strong, 2001). Indeed, a significantly
positive relationship between host N and δ13CM-H was found in
our multiple linear mixed-effects model selection, indicating
that higher host N drives smaller δ13CM-H (more similar δ13C).
However, other studies found no correlation between host N
and δ13CM-H (Scalon & Wright, 2015; Richards et al., 2021).
Scalon & Wright (2015) found that δ13CM-H was not signifi-
cantly different between nitrogen-fixing and non-nitrogen-fixing
hosts, and host N was marginally related to δ13CM-H, conclud-
ing lack of support for the ‘N-parasitism hypothesis’ in a global
analysis. In our model selection, host growth form, nitrogen-
fixing, and leaf habit exhibited nonsignificant effects on the
δ13CM-H (Table 4, model 1). Taken together, we provided evi-
dence to support the ‘N-parasitism hypothesis’ using a more
robust regression framework to exclude the confounding effects,
after considering the exact host N concentrations and control-
ling for host life-history classification and host- and mistletoe-
species-specific influences.

Differences in δ13CM-H may be more related to the host gas
exchange characteristics rather than that of mistletoes (Givn-
ish, 1986). The δ13C has been shown to increase with the
increasing N values in nonparasitic plants (Sparks & Ehlerin-
ger, 1997), and here, we found that δ13C was not significantly
correlated with N concentration across all species, with non-
significant correlations between δ13C and N in either hosts or
mistletoes (Fig. S4). Yet, we found that host N rather than
mistletoe N was positively correlated with mistletoe δ13C values,
which was also found by Schulze et al. (1991). This might sug-
gest that mistletoes regulate their water use efficiency according
to host N supply. Moreover, host δ13C was negatively corre-
lated with δ13CM-H, but mistletoe δ13C was positively linked
with δ13CM-H. It means that smaller δ13CM-H depends on
mistletoe δ13C rather than host δ13C. Together with the posi-
tive relationship between host N and mistletoe δ13C, we con-
cluded that host N does drive smaller δ13CM-H. Thus, our
study comprising 11 mistletoe species growing on 104 host spe-
cies from four sites, 344 mistletoe and host pairs in total, pro-
vided evidence for ‘N-parasitism hypothesis’ (Schulze
et al., 1984; Schulze & Ehleringer, 1984). Our results did not
support the ‘P-parasitism hypothesis’ and ‘C-parasitism hypoth-
esis’ because δ13CM-H was not related to mistletoe P, but nega-
tively related to mistletoe C, implying that mistletoes did not
regulate their water use efficiency according to P or C demands.
Besides, the method for calculating mistletoe heterotrophy is
still on debate (Bannister & Strong, 2001; Tennakoon
et al., 2011). More work is needed to falsify the ‘P-parasitism
hypothesis’ and ‘C-parasitism hypothesis’.
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Determinants of the mistletoe nutrient status and isotope
ratios

The host nutrient concentration (a proxy for each corresponding
mistletoe nutrient concentration) was the best predictor of mistle-
toe nutrient status in most cases. Given that we integrated multiple
factors and random effects in one model and conducted robust
model selection, we empirically tested previous assumptions that
the best predictor of mistletoe nutrient status is often (but not
always) the host nutrient status (Panvini & Eickmeier, 1993; Glat-
zel & Geils, 2009; Gebauer et al., 2012). Mistletoes absorb all their
essential mineral nutrients and water from their hosts via haustoria
connected to their hosts (Kuijt, 1969; Glatzel & Geils, 2009).
Therefore, element concentrations in mistletoes might be expected
to highly correlate with those in the hosts, especially when the
nutrient uptake is mainly passive (Glatzel &Geils, 2009).

Apart from host nutrient concentration, other variables also
explained parts of the variation in mistletoe nutrient concentra-
tion. For instance, sites explained much more variation than host
nutrient concentration in mistletoe C, K, and Fe. Indeed, hosts
may acquire nutrients more easily from the soil in an environ-
ment with higher water availability. Similarly, other environmen-
tal factors, such as soil type, mean annual precipitation and
temperature, and vegetation type are all likely to affect the nutri-
ents available to the hosts, which will, in turn, affect the vascular
sap composition (Irving & Cameron, 2009). Therefore, consider-
ing site effects may contribute to our understanding of nutri-
tional interactions between mistletoes and hosts, which is in line
with a previous study (Türe et al., 2010).

We found that the δ13CM-H only had a significant influence
on mistletoe C, N, and K concentrations and their corresponding
mistletoe and host nutrient ratios. Panvini & Eickmeier (1993)
investigated one mistletoe species growing on seven deciduous
host species (in total 46 mistletoe–host pairs) and found that the
δ13CM-H was only correlated with mistletoe Ca concentration
and mistletoe and host P ratio. They suggested that water and
nutrient uptake of mistletoes were not tightly coupled. Previous
studies also found that mistletoe and host nutrient ratios for Ca,
Mg, and P were associated with host transpiration or host δ13C
rather than mistletoe transpiration or δ13C (Bannister
et al., 2002). Yet, we found that both mistletoe and host water
use efficiencies (δ13C) only significantly affected the status of Ca,
Fe, and B of mistletoes (Figs S5, S6). Accordingly, we concluded
that mistletoe water and nutrient acquisition may not be tightly
coupled because nutrient acquisition may only be partly passive
through the apoplast pathway. There are abundant parenchyma
cells in the haustorium interface (Cocoletzi et al., 2016; Lambers
& Oliveira, 2019), with interesting variation among different
haustorium morphotypes (Teixeira-Costa et al., 2020), suggest-
ing potential existence of active and selective uptake. Overall, we
found little evidence of transpiration-controlled nutrient acquisi-
tion in mistletoes except for N, as proposed by other studies that
high transpiration in mistletoes seems more likely to reflect other
physiological processes (Richards et al., 2021).

Mistletoe nutrient status could also be influenced by mistletoe
leaf structural traits like LDMC and SLA. Mistletoe LDMC

influenced nine out of 11 mistletoe nutrient concentrations,
while mistletoe SLA influenced only two. Mistletoes had much
lower SLA and LDMC than their hosts in this study, suggesting a
succulent leaf structure, which is in consistent with other studies
(Scalon & Wright, 2017; Mostaghimi et al., 2021; Richards
et al., 2021). We postulate that succulent leaves and higher water
content might be a strategy involved in balancing nutrient con-
centrations in mistletoes. Besides, host growth form, nitrogen-
fixing, and leaf habit also influenced mistletoe nutrient status, as
well as mistletoe and host nutrient ratios. Yet, the variation
explained by these variables was relatively small compared with
host nutrient concentrations, site-specific or species-specific
(mistletoe- and host-specific) sources of variation. This suggests
that quantifying site-specific or species-specific uncertainty in
nutrient variation will be the way forward.

Mistletoe and host δ13C were positively correlated, which is in
accordance with previous studies (Bannister & Strong, 2001; Sca-
lon & Wright, 2015), but in contrast with studies in Australia
(Ziegler, 1995), Brazil (Lüttge et al., 1998) and Borneo (Ten-
nakoon et al., 2011). Tennakoon et al. (2011) have postulated that
the absence of correlation may result from a small sample size or
may be derived from the differences between species and sites or the
limited range of hosts (Bannister & Strong, 2001). In our study,
host δ13C, host N, sites, and mistletoe SLA showed significant
influences on mistletoe δ13C, with sites explaining the largest varia-
tion, followed by random effects (mistletoe and host species). We,
therefore, supported this previous postulation using robust regres-
sionmodels and large data sets. Mistletoe δ15N showed a significant
correlation with host δ15N, which explained most of the variation,
in support of the results of numerous studies in which mistletoe N
is entirely derived from their hosts (Bannister & Strong, 2001; Ten-
nakoon et al., 2011; Mostaghimi et al., 2021).

Conclusions

We found that mistletoe nutrient concentrations mainly depend on
host nutrients, but other factors, such as environmental conditions,
host life-history classification, and mistletoe morphological traits,
also play important roles for some nutrients. Moreover, our results
supported the ‘N-parasitism hypothesis’ with a robust regression
model framework across 11mistletoe species and 104 different host
species. Mistletoes had significantly higher P, K, and B than their
hosts, which may be interpreted by active and selective uptake, in
addition to passive uptake driven by higher transpiration than
hosts. Moreover, transpiration-related parameters (either mistletoe/
host δ13C or δ13CM-H) explained little variation in mistletoe nutri-
ent concentrations, implying that water and nutrient uptake may
not be tightly coupled inmistletoes. These results suggest that selec-
tive uptake of nutrient elements might exist in the haustoria of
mistletoes. Additionally, mistletoe and host species explained a
large proportion of the variation in mistletoe nutrient elements,
stable isotope ratios, and leaf morphological traits. Overall, our
findings shed light on the importance of combining sites, species,
transpiration-related parameters, host life-history traits in under-
standing the water and nutrient relations of mistletoes and nutri-
tional interactions between mistletoes and hosts.
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Těšitel J, Li AR, Knotková K, McLellan R, Bandaranayake PCG, Watson DM.

2021. The bright side of parasitic plants: what are they good for? Plant
Physiology 185: 1309–1324.
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