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Abstract

Sediment fingerprints have been widely used in source identification studies. Optical

features have become a powerful substitute for traditional fingerprints in recent

years due to their fast measurement and low analysis costs. However, the accuracy

of optical fingerprinting methods has received little attention. Here, artificial mixing

and indoor scouring experiments were carried out to compare and assess the accu-

racy of optical fingerprinting results using three spectroscopic ranges [visible (VIS),

near-infrared (NIR), and mid-infrared (MIR) spectroscopy] in multivariate models and

using 19 colour parameters [such as red (R), green (G) and blue (B) in an RGB system;

virtual component X (X), brightness (Y) and virtual component Z (Z) in a CIE XYZ sys-

tem and so on] coupled with the conventional method. Furthermore, we examined

how sediment sorting (particle sorting and organic matter enrichment) affects the

accuracy of source apportionments. The results showed that VIS, NIR and MIR spec-

troscopic tracers presented high accuracy in scouring and artificial mixtures, with

mean absolute error (MAE) values of 4.98% and 5.91%. In contrast, the colour param-

eters had weak performances in two experiments (MAE = 16.83% and 15.05%).

Additionally, similar fingerprinting results of the scouring mixtures (MAE = 7.95%)

and artificial mixtures (MAE = 8.20%) indicated that slight particle sorting and organic

matter enrichment have little effect on the accuracy of optical fingerprinting results.

Our study shows that sediment fingerprinting based on optical features, especially

three spectroscopic ranges, has good applicability in sediment source identification.

K E YWORD S

artificial mixtures, colour parameters, indoor simulated scouring experiments, sediment
fingerprinting, spectroscopic features

1 | INTRODUCTION

Accelerated soil erosion processes have result in on-site environmen-

tal problems such as the decline of land productivity by removing the

topsoil rich in organic matter (Amundson et al., 2015; Syvitski

et al., 2022), and off-site problems due to the entry of sediment into

rivers and reservoirs leading to siltation and a decline in water quality

(Collins et al., 2020). Determining the source of sediments is an

important prerequisite for the control of soil erosion and its associ-

ated environmental problems (Poesen, 2018). When the sediment

source is accurately quantified, targeted watershed management can

be carried out, which is an essential tool for policymakers involved in

soil conservation decision-making (Evrard et al., 2022; Xu et al., 2022).

Sediment fingerprinting is a widely used method for determining

the relative contribution of potential sediment sources (Collins

et al., 2020; Pulley & Collins, 2022). The basis of this method is to
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select soil properties that make it possible to distinguish sediment

sources as potential fingerprints, then combine them with unmixing

models to quantify the contribution of potential sediment sources. To

date, many soil properties have been used as fingerprints, such as soil

physical properties, radionuclides, geochemical elements, and bio-

markers (Chen et al., 2019; Evrard et al., 2019; Ni et al., 2017; Shi

et al., 2019). However, the measurement of traditional tracers was

not only destructive to soil samples, but also time-consuming and

expensive (Tiecher et al., 2015, 2021). This resulted in limited large-

scale application of traditional tracers in the field environment.

Optical features can be used as a powerful alternative to traditional

fingerprints due to their vast quantities of information, potential for

rapid and low-cost analysis, and their non-destructive nature (Tiecher

et al., 2021). Poulenard et al. (2009, 2012) were the first to successfully

use mid-infrared spectra for tracing surface and channel sources as well

as various lithological sources. Since then, many different spectral bands,

including visible (Lake et al., 2022; Martínez-Carreras et al., 2010), near-

infrared (Collins et al., 2013, 2014; Tiecher et al., 2016), mid-infrared

spectroscopy (Ni et al., 2019; Vercruysse & Grabowski, 2018), and com-

binations of these spectroscopies (Farias Amorim et al., 2021; Verheyen

et al., 2014) have been used to trace sediment sources.

Although optical fingerprinting methods have been successfully

applied recently in the field, the accuracy of these tracers has not been

well evaluated (Collins et al., 2017; Laceby et al., 2017). In field environ-

ments, it is difficult to verify the reliability of estimated results of sedi-

ment sources because of the limitations of measurement means and

cost (Collins & Walling, 2004). A pre-known proportion of artificial mix-

tures has become a good solution for verifying the accuracy of sediment

fingerprinting results (Gaspar et al., 2019; Laceby et al., 2015; Sherriff

et al., 2015). Haddadchi et al. (2014) used artificial mixtures to evaluate

the accuracy of different mixing model outputs. Laceby et al. (2015)

illustrated the impact of tracer selection by using different methods in

tracing studies. Additionally, different proportions of artificial mixtures

have been used to calibrate and validate spectroscopic models

(Poulenard et al., 2009, 2012). However, accuracy verification studies

using only artificial mixing experiments have been incomplete, as mixing

experiments do not represent the possible changes to sediment particle

size distribution and organic matter content which can occur during ero-

sion transport and deposition of sediment in the field environment

(Zhang et al., 2021). Therefore, indoor scouring experiments should also

be considered to simulate the real transport process and dry and wet

changes of sediments on slopes under controllable conditions.

In this study, detailed artificial mixtures and indoor simulated

scouring experiments were carried out, aiming to (1) compare and

assess the accuracy of fingerprinting results using colour parameters

coupled with conventional fingerprinting methods using multivariate

methods based on three spectroscopic ranges (VIS, NIR, and MIR

spectroscopy), and (2) analyse the effect of particle sorting and

organic matter enrichment on the accuracy of optical fingerprinting

during slope sediment transport.

2 | MATERIALS AND METHODS

2.1 | Indoor simulated scouring experiments

Soil with obvious differences in physical and chemical properties can

help reduce the uncertainty of composite tracer identification. There-

fore, three soils characterized by different organic matter content and

particle size composition were selected as experimental source soils.

These source soils come from various regions in China, they are

namely black soil (Alfisols) from Shangganling, Heilongjiang Province,

Lou soil (Anthrosols) from Yangling, Shaanxi Province, and loess

(Entisols) from Mizhi, Shaanxi Province (Table 1) (Soil Survey

Staff, 2010). Soil samples were collected from the topsoil, with a

depth of approximately 0.2 m. Through visual observation of the soil

colour of the three source soils, the soil colour of the black soil with

high organic matter content was black-brown, which was in sharp

contrast to the colour of the other two source soils. The loess col-

lected on the slope is mainly of the Malan variety, which is light yellow

in colour; Lou soil is affected by long-term artificial tillage, fertilization

and irrigation, and its colour is grey-brown.

Indoor simulated scouring experiments were conducted to simu-

late sediment sorting (particle sorting and organic matter enrichment)

in the rainfall simulation laboratory of the State Key Laboratory of Soil

Erosion and Dryland Farming on the Loess Plateau, Yangling, China.

The experimental equipment consists of two parts: an inflow supply

device and an experimental flume (Figure 1) (Yang et al., 2022). The

inflow supply device is composed of a peristaltic pump, water pipes, a

water tank and three steady flow sections. The main role of the peri-

staltic pump is to accurately deliver and control the flow discharge.

The steady flow section is a flume made of aluminium alloy. The

experimental flume consists of three flumes with dimensions of 2 m

long, 0.2 m wide and 0.15 m high. The bottom of each flume is distrib-

uted with some small circular holes whose function is to remove

excess water. To adjust and control the experimental slope, we fixed

the experimental flume onto a movable steel frame. The slope of this

frame varies from 0 to 30� with a variation interval of 5�.

According to the pre-experimental results, two flow levels (1.3

and 1.8 L/min) were selected in the current study. Three experimental

TABLE 1 Basic characterization of the three source soils used in this research

Source soil Location Bulk density (g/cm3) Clay (%) Silt (%) Sand (%) SOM (g/kg)

Black soil 128.97� E, 47.97� N 1.2 21.5 47.0 31.4 67.5

Lou soil 108.07� E, 34.29� N 1.3 20.2 74.6 5.2 4.8

Loess 110.15� E, 37.91� N 1.2 6.2 34.4 59.4 5.2
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slope gradients (10, 15, and 20�) were used to simulate field condi-

tions because the gradient of sloping agricultural land in China is

mostly between 10� and 20� (Wang et al., 2019). A total of six scour-

ing experiments with different flow discharges and slope gradients

were conducted to observe the responses of sediments with different

proportions of sediment sources and to simulate particle sorting in the

process of soil transport on the slope (Dai et al., 2022). The specific

settings of the flow discharge and slope gradient of these experiments

are shown in Table 2.

The experimental source soils collected from the field were air-

dried in the laboratory, then crushed and passed through a 10 mm

sieve to remove weeds and stones before being filled into the experi-

mental flume. A layer of gauze was packed at the bottom of the flume

to ensure good water permeability. The soils were filled in the flume

layer by layer to create a filling bulk density consistent with the bulk

density of the three experimental soils in the field (Table 1). Once the

flumes were filled with the soils, the surface layer of each was slightly

raked to ensure uniformity. To reduce the sidewall effect, both sides

of the surface were compacted. Before conducting each experiment,

the experimental flumes were wetted with a sprinkler until surface

flow occurred. The purpose of sprinkling was to keep the soil water

content consistent. To prevent tested soil moisture transpiration, the

tested soils were covered with permeable gauze which was left

for 10 h.

Prior to carrying out each scouring experiment, discharge flow

was carefully calibrated. The formal experiment could be started when

the discharge flow reached the design flow level. During scouring

experiments, stopwatches were used to record the time of runoff, and

each experiment took 15 min. The scouring single samples of each

experimental flume were collected in three buckets with a volume of

approximately 5 L throughout the scouring process. Meanwhile, addi-

tional scouring samples were collected by using 220 mL plastic cups

at 1, 4 and 8 min, and then used for measuring particle size

distribution.

2.2 | Sample collection

The study involved three types of samples, namely three source soil

samples, scouring single samples and mixtures. Source soil samples

involved the collection of 10 duplicate samples from each source soil.

A total of 18 scouring single samples were collected in 6 scouring

experiments. All scouring single samples were air-dried at 40�C and

weighed by using a two-decimal place balance.

We formulated three types of mixtures, namely reference sam-

ples, scouring mixtures and artificial mixtures, respectively. A total of

45 reference samples of different ratios for calibrating spectroscopic

models were created using three source soils. The contribution of

each source soil in reference samples, shown in Figure 2, ranged from

0% to 100%, with an increment of 12.5%. Three scouring single sam-

ples from each scouring experiment were mixed with water to form

scouring mixtures with known source ratios (Water is used to ensure

the uniformity of scouring mixtures), and a total of 6 kinds of scouring

mixtures were obtained (Table 3). For each scouring mixture, 4 dupli-

cate samples were collected by using the method of quartering. Artifi-

cial mixtures were obtained by mixing three source soils, and the

mixing ratios and number of samples were consistent with those of

the scouring mixtures.

2.3 | Laboratory measurements

All samples were gently disaggregated using a pestle and mortar and

sieved to 2 mm. Source soils and scouring single samples were ana-

lysed for soil organic matter (SOM) content and particle size distribu-

tion. The particle size distribution of samples was measured by using

a Malvern Mastersizer 2000 (Malvern Instruments Ltd, Worcester-

shire, UK) instrument (Callesen et al., 2018). The tested samples first

needed to have their SOM and carbonate removed with a hydrogen

peroxide and hydrochloric acid solution, then they had sodium

hexametaphosphate added for chemical dispersion, and finally ultra-

sonic dispersion before measurement. The potassium dichromate

oxidation-external heating method was used to measure SOM con-

tent. To avoid the influence of large particles on the spectral results

during the measurement process, all samples were uniformly ground

to 150 μm. Samples were then oven-dried at 45�C for 8 h before the

spectral analysis.

F IGURE 1 Sketch of the simulated scouring experimental device.

TABLE 2 Flow and slope combination of six scouring experiments

Scouring times Flow level (L/min) Slope (�)

1 1.3 10

2 1.8 10

3 1.3 15

4 1.8 15

5 1.3 20

6 1.8 20

CHEN ET AL. 3 of 13
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Visible reflectance spectroscopy was measured in the range of

360–750 nm using a CS-820 spectrophotometer (CS-820, China) with

a resolution of 10 nm. The measurements were taken with a D65

standard illuminant and 10� angle observer, including the specular

component. A white and black calibration was applied to the device

before the samples were measured. During the measurement process,

firstly, cuvettes containing the samples were fixed on the measuring

pores (6 mm); then the measurement button was clicked to complete

the measurement; finally, the final measurement results were calcu-

lated as the average value of the three measurements. Considering

the possible heterogeneity of the soil and the small measuring area,

three separate replicates were performed for each sample (Legout

et al., 2013). Meanwhile, nineteen colour parameters (19) were also

obtained from VIS spectroscopy by using different colorimetry models

(Viscarra Rossel et al., 2006). Colour QC 2 software (CS-820, China)

was used to calculate these parameters. All the colour parameters

used in the current study are shown in Table 4.

Near-infrared spectroscopy (12000–4000 cm�1) measurements

were recorded in diffuse reflectance mode using a Bruker MPA FT-

NIR spectrometer (Bruker, USA) with gold-plated reflection

accessories. Each NIR spectral data was the average value of the

64 scans at a resolution of 8 cm�1. In order to deduct the influence of

the spectrometer itself on the sample spectrum, background measure-

ment was an essential step before soil sample measurement. After

measuring, OPUS software (Bruker, USA) provided by the spectrome-

ter producers was used to collect and process sample spectral data.

A Thermo Nicolet iS50 infrared spectrometer (Thermo Nicolet,

USA) was used to measure mid-infrared spectroscopy in diffuse

reflectance mode. The spectroscopy can range from 4000 to

400 cm�1 in a resolution of 4 cm�1 with 64 co-added scans of each

spectroscopy. The scraper equipped with the instrument was used to

create a smooth surface of the measured samples. The range of

2400–2300 cm�1 from the analysis needed to be removed to avoid

CO2 effects (Tiecher et al., 2017). OMNIC software (Thermo Nicolet,

USA) was used to collect the spectral data.

2.4 | Sediment source discrimination and
apportionment

2.4.1 | Spectroscopy approach

Spectroscopic data are composed of a set of continuous variables.

Therefore, we performed a series of statistical analyses proposed by

TABLE 3 The contributions of sources in six scouring
experiments

Experiment number Black soil (%) Lou soil (%) Loess (%)

1 31.00 28.00 41.00

2 6.00 36.00 58.00

3 17.00 26.00 57.00

4 8.00 16.00 76.00

5 20.00 36.00 44.00

6 23.00 40.00 37.00

TABLE 4 Nineteen colour parameters calculated using Colour QC
2 software

Colour space

model Colour parameter

Parameter

abbreviation

RGB red R

green G

blue B

CIE XYZ virtual component X X

brightness Y

virtual component Z Z

CIE xyY chromatic coordinate x x

chromatic coordinate y y

CIE Luv metric lightness function L

chromatic coordinate opponent

red–green scales

u*

chromatic coordinate opponent

blue–yellow scales

v*

CIE Lab chromatic coordinate opponent

red–green scales

a*

chromatic coordinate opponent

blue–yellow scales

b*

CIE Lch CIE hue c

CIE chroma h

Decorrelated

RGB

hue HRGB

light intensity IRGB

chromatic information SRGB

Index redness index RI

F IGURE 2 Ternary diagram with 45 reference samples with
different sediment source ratios. Each point represents a mixing ratio.

4 of 13 CHEN ET AL.

 10991085, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.14870 by N

orthw
est A

gri &
 Forestry, W

iley O
nline L

ibrary on [01/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Poulenard et al. (2009) to differ from conventional fingerprinting

methods. Specifically, the steps of the method based on spectroscopic

data are as follows. First, a principal component analysis (PCA) was

performed to reduce the dimension of spectral data of the three sedi-

ment source samples. Then a linear discriminant analysis (LDA), based

on maximizing the distances between sediment source groups and

minimizing the distances within sediment source groups, was con-

ducted by using the scores generated by the PCA as input variables to

evaluate the discrimination power of the spectroscopic tracers.

To calibrate spectral models, three commonly-used multivariate

methods were combined, with 45 reference samples with different

ratios (Figure 2). These multivariate methods are partial least squares

regression (PLSR), principal component regression (PCR) and support

vector machines (SVM), respectively. The spectral models were veri-

fied by using the leave-one-out cross validation (LOOCV) method.

Root mean square error (RMSE) and coefficient of determination (R2)

were selected to evaluate model prediction performance [Equation (1)

and (2)]. Then, the differences in RMSE and R2 values of different

spectral models were compared. And the optimal model was defined

as the spectral model with the lowest RMSE and highest R2 value in

the condition of the same sediment source and spectral range. In

short, nine independent spectral models were established to calculate

the sediment contribution of three sediment sources in this study.

R2 ¼1�
Pn

i¼1 yi�byið Þ2
Pn

i¼1 yi�yð Þ2
ð1Þ

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
y�byið Þ2

r

ð2Þ

Where n is the number of sources, yi is the measured value, byi is

the predicted value, y is the mean value.

2.4.2 | Conventional fingerprinting methods–colour
parameters

The conventional fingerprinting method based on colour parameters

was performed for this research. This method mainly consists of two

parts: construction of the best composite fingerprints and calculation

of the relative contribution of sediment source. Firstly, the range test

was used to examine the conservation of tracers. The purpose of this

test was to ensure that tracer concentrations in sediments were

located between sources with the highest and lowest concentrations.

Then, a two-step procedure was performed to construct the compos-

ite fingerprints with the best discriminative ability (Collins, 1997). The

first step was to carry out a nonparametric Kruskal-Wallis H (KW-H)

test to select individual fingerprint property that can distinguish

between sediment sources. Subsequently, a stepwise discriminant

function analysis (DFA) was performed to determine an optimal

source fingerprint combination by minimizing Wilk's lambda. Subse-

quently, the multivariate mixing linear (MML) model and MixSIAR

model were used to calculate the relative contribution of each sedi-

ment source to the target sediments. The MML model (Walling, 2005)

is the most widely used model, and the equation is shown in

Equation (3). The genetic algorithm (MML-GA) (Chen et al., 2016) was

selected to calculate the MML model. Matrix Laboratory software

(Matlab) was used to perform the genetic algorithm. The algorithm

searched for the best source contribution rate of the target sediment

through adaptive iteration (Collins et al., 2010; Dai et al., 2022). The

advantage of GA is that it can search for the optimal result globally. In

addition, 2500 iterations of Monte Carlo techniques were used as an

alternative to traditional random sampling methods for solving unmix-

ing model in this research. When R value is the minimum value. Ps

value is the relative contribution value of the sediment source to the

target sediment.

R¼
Xm

i¼1
Ci�

Xn

s¼i
PsCsi

� �h i
=Ci

n o2
ð3Þ

Where n represents the number of sediment sources. m is the

number of the tracer. Ci is the tracer i concentration in the target sedi-

ment sample. Csi is tracer i concentration of sediment source s. Ps is

the relative contribution of the sediment source s. Meanwhile, two

limitations [Equation (4) and Equation (5)] need to be considered when

applying Equation (3):

0≤Ps ≤1 ð4Þ

Xn

s¼1
Ps ¼1 ð5Þ

The MixSIAR model was introduced into sediment source

research from the ecological field (Stock et al., 2018). This method

used prior information to calculate the probability distribution of the

relative contribution of each sediment source. According to Bayesian

theory, the posterior probability distribution of the relative contribu-

tion of different sediment sources is the direct proportion to the prior

probability based on prior information as shown in Equation (6):

P fqjdatað Þ¼ L datajp fqð Þð Þ
P

L datajfqð Þ�p fqð Þ ð6Þ

Where L datajfqð Þ represents the likelihood function of the given

data fq. p fqð Þ is the prior probability based on prior information. fq rep-

resents the relative contribution of each sediment source. In addition,

the likelihood function is obtained by Equation (7):

L xjbμj,bσj
� �¼

Yn

k¼1

Yn

j¼1

1

bσj�
ffiffiffiffiffiffiffiffiffiffiffi
2�π

p � exp � Xkj�bμj
� �2

2�bσ2
 !" #

ð7Þ

where bμj and bσj represent the mean and standard deviation values in

the jth tracer concentration in the target sediment, respectively. Xkj is

the jth tracer of the kth target sediment sample.

The actual calculation of the MixSIAR model is implemented on

R using the MixSIAR package (Stock et al., 2018). Firstly, the three

sets of files of Mixture (the colour parameter data of the target sedi-

ment), Source (mean and standard deviation value of the source col-

our parameters), and TDF (discrimination factor data) are loaded into

CHEN ET AL. 5 of 13
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the model; then the Markov Chain Monte Carlo (MCMC) run length is

set to normal (chain Length = 100 000, burn = 50 000, thin = 50,

chains = 3); finally, the mean value of each source obtained by run-

ning the MixSIAR model is the contribution rate of the source to the

target sediment.

2.5 | Evaluating indicators of sediment sorting

The enrichment ratio was used to evaluate the particle sorting degree

of scouring single samples (Martínez-Mena et al., 2002). The enrich-

ment ratio of particle size could be calculated by Equation (8):

ERPS ¼PSscouring
PSsource

ð8Þ

Where PSsource is the particle size (%) in the three source soils and

PSscouring is the particle size in the scouring single samples. ERPS repre-

sents the enrichment ratio of particle size in the scouring process.

The enrichment ratio of soil organic matter [Equation (9)] was

used to assess the enrichment degree of the organic matter content

of scouring single samples:

EROM ¼OMscouring

OMsource
ð9Þ

Where OMsource is the organic matter content (g/kg) in the three

source soils and OMscouring is the organic matter content (g/kg) in the

scouring single samples. EROM represents the enrichment ratio of

organic matter content in the scouring process.

2.6 | Accuracy of optical fingerprints

The accuracy of fingerprinting results by using different optical finger-

prints was tested based on mean absolute error (MAE) [Equation (10)]

for target sediments:

MAE¼
Pn

j¼1 jXj�Yj j
n

ð10Þ

where Xj is the actual percentage of source in target samples, Yj is the

calculated contribution of source ( j); n is the number of sediment

sources.

3 | RESULTS

3.1 | Characterization of source soils and target
sediments

Figure 3 displays the mean reflectance spectroscopy in VIS, NIR and

MIR ranges for three sediment sources and two target sediments

(scouring mixture and artificial mixtures). These spectroscopies reflect

the information on organic matter and minerals in soil and sediment

(Madari et al., 2006). The positions of the characteristic peaks of the

F IGURE 3 Mean VIS (a), NIR (b) and MIR
(c) reflectance spectroscopy of the three sediment
sources and two target sediments.
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three sediment sources in VIS and NIR spectroscopic ranges are

roughly the same, but the reflection values are significantly different.

In the MIR spectral bands, the characteristic peak positions of Lou soil

and loess are the same, both with an absorption peak (2515, 1795,

1450 and 879 cm�1) related to carbonate, but their absorbance is dif-

ferent (Andersen & Brecevic, 1991; Ni et al., 2019). The absorption

peak position and absorbance of black soil are different from those of

the other two sources. Comparing the positions and values of the

characteristic peaks of the mixture and sediment source spectra, the

characteristic peaks of the two target sediments (artificial mixtures

and scouring mixtures) and the source samples have the same posi-

tions, and the absorptions or reflection values of the target sediments

are between the three source samples. The comparison results show

the conservation of spectral features.

Table 5 shows the colour parameters concentrations and coeffi-

cient of variations (CV) of three sediment sources and two target sedi-

ments. Among the 19 colour parameters, the CV of the HRGB

parameter was between 8.63% and 20.07%, indicating that this

parameter varied largely from three sediment sources and was

removed in the following analysis. The CVs of the remaining 18 colour

parameters were less than 5%. Additionally, the concentrations of

18 colour parameters between sediment sources and target sediments

were compared to verify the conservative behaviour of colour param-

eters. The results showed that only the h parameter was excluded due

to the maximum value of this parameter of the target sediments

exceeded that of these sediment sources, while other parameters

have passed the range test.

The results of particle size distribution and SOM in three source

soils are shown in Table 1. The SOM content of black soil was signifi-

cantly higher than that of Lou soil and loess, reaching 67.5 g/kg

(p < 0.05). Lou soil and loess were characterized by low values of SOM

and no significant differences between them. The particle size distribu-

tion was also significantly different between the three source soils.

3.2 | Discriminant results and optimal tracers

The PCA results showed that the first two, two and seven principal

components explained more than 99% of the variation in VIS, NIR and

MIR spectroscopy, respectively. Subsequently, LDA was performed by

using these principal components. The LDA results showed that VIS,

NIR and MIR spectroscopic data could effectively distinguish these

experimental source soils. Nine independent optimal predictive

models were selected by comparing the differences in RMSE and R2

(Table 6). The performance of these models was excellent with R2

close to 1. Moreover, the values of RMSE were lower than 0.12 show-

ing that these models had good predictive performance.

In this study, 17 colour parameters were selected as potential

tracers. The KW-H test was used to exclude tracers with no signifi-

cant difference between sediment sources (Table 7), the results indi-

cated that all tracers passed the test. Then the DFA results

determined that the optimal combination of tracers obtained could

correctly classify the three sources 99% (Table 7). T
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3.3 | Source apportionments of four optical
fingerprints

The MAE values of fingerprinting results of two target sediments

(scouring mixtures and artificial mixtures) by using four optical proper-

ties (VIS, NIR, MIR and colour parameter) are shown in Figure 4 and

Figure 5. For the VIS, NIR and MIR spectroscopic tracers, the MAE

values of three spectroscopic ranges were lower than 12%, indicating

that spectroscopic tracers could provide high prediction accuracy in

the condition of artificial mixing and indoor scouring. For colour

parameters, MAE values ranged from 8.98% to 25.33% in scouring

mixtures and from 8.11% to 18.56% in artificial mixtures, which were

significantly higher than those of VIS, NIR and MIR spectroscopy.

In addition, we compared the difference in prediction accuracy of

VIS, NIR and MIR spectroscopy by using MAE values. The MIR spec-

troscopy exhibited the lowest MAE values of fingerprinting results

with mean values of 2.45% and 3.16% in two target sediments, indi-

cating that MIR spectroscopic tracers could more accurately predict

target sediments compared with VIS and NIR spectrums. This was fol-

lowed by VIS spectroscopic tracer ranging from 3.41% to 9.16%. The

highest MAE values (MAEscouring = 7.00% and MAEartificial = 8.83%)

and variations (SDscouring = 1.98% and SDartificial = 2.08%) in three

spectroscopic ranges were acquired by using NIR spectroscopy.

3.4 | The influence of sediment sorting on
fingerprinting accuracy

Figure 6 shows the results of particle size distribution and enrichment

ratio (ERPS) of 18 scouring single samples. The results indicated that

each scouring single sample experienced different degrees of particle

sorting. The smallest particle sorting occurred in loess scouring single

samples with a variation of enrichment ratio of 0.94–1.21. The parti-

cle sorting ability of black scouring single samples with ERPS values

from 0.85 to 1.22 was slightly stronger than that of loess scouring sin-

gle samples. The enrichment ratio of most Lou scouring single samples

ranged from 0.84 to 1.03. Though some of the high values of enrich-

ment ratios with 1.72, 1.85, 1.96, 2.21 and 2.83 occurred in Lou

scouring single samples, they were all sand fractions with a very small

proportion (volume percentage: 8.88%–14.60%). Black scouring single

samples had the lowest variation of enrichment ratio of organic mat-

ter of 0.89–1.04 and the highest organic matter content (mean-

= 66.66�3.79 g/kg). In contrast, although the enrichment ratio of

SOM of Lou scouring single samples and loess scouring single samples

varied greatly (EROM=0.67–1.07), their SOM contents were signifi-

cantly lower than those of black scouring single samples.

To evaluate the influence of particle size and organic matter on

the accuracy of four optical properties, the fingerprinting results of

scouring mixtures and artificial mixtures (Figure 7) were compared. For

fingerprinting results of scouring mixtures using VIS, NIR and MIR

spectroscopy and colour parameters, the MAE values were 5.50%,

7.00%, 2.45% and 16.83%, with a mean value of 7.95%. The MAE

values of artificial mixtures by these tracers were 5.74%, 8.83%, 3.16%

and 15.05%, with a mean value of 8.20%. In general, the mean MAE

values of scouring mixtures were consistent with artificial mixtures.

4 | DISCUSSION

4.1 | Prediction accuracy of different optical
features

Our results confirmed that the source apportionments were sensitive

to the selection of spectroscopic ranges, in agreement with the find-

ings of previous studies (Farias Amorim et al., 2021; Tiecher

et al., 2021). This may be attributed to differences in soil absorption

characteristics in VIS, NIR and MIR wave bands. In this study, the MIR

spectroscopic tracer showed the highest prediction accuracy com-

pared with the other two spectra (Figure 4 and Figure 5). High predic-

tion accuracy from MIR spectroscopy also was observed in several

other studies (Chapkanski et al., 2020; Poulenard et al., 2009). This

result may be attributed to soil absorption characteristics in the MIR

wave bands. This spectrum not only had obvious absorption features

but also carried a larger amount of soil information compared with VIS

and NIR spectrum. Therefore, the sensitivity of MIR spectra to organic

compounds is higher than that of VIS and NIR spectroscopy (Rossel &

Behrens, 2010; Tiecher et al., 2021). MIR spectroscopy can identify

C-H, C-O, and C-N functional groups that dominate soil organic mat-

ter (Knox et al., 2015; Soriano-Disla et al., 2014). However, the high

dependence of MIR spectroscopy on the organic matter can also lead

to an overestimation of the surface source of sediments (Evrard

et al., 2013; Tiecher et al., 2017).

Colour parameters and VIS spectroscopy were characteristic

parameters of visible absorption in soil samples. In our results, a

TABLE 6 R2 and RMSE values of nine optimal models selected in
VIS, NIR and MIR spectroscopic ranges

Spectral range Source soil Model R2 RMSE

VIS Black soil PCR 0.941 0.048

Lou soil SVMR 0.919 0.079

Loess SVMR 0.841 0.113

NIR Black soil PLSR 0.980 0.047

Lou soil PLSR 0.964 0.054

Loess PLSR 0.947 0.065

MIR Black soil PLSR 0.986 0.036

Lou soil SVMR 0.966 0.052

Loess SVMR 0.960 0.056

TABLE 7 Results of failed KW-H test and optimal tracers by DFA
for colour parameters in scouring mixtures and artificial mixtures

Target sediment type
Scouring
mixtures

Artificial
mixtures

Colour parameter that failed

KW-H test

— —

Optimal colour parameters by

DFA

C, y, u* C, y, u*
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significant difference was found between colour parameters and VIS

spectroscopy (Figure 4 and Figure 5), which was also consistent with

that of Tiecher et al. (2015). There are two possible explanations for

this difference. First, fingerprinting results of target sediments were

obtained by using small numbers of colour parameter tracers selected

by discriminant analysis. In contrast, VIS spectral models were estab-

lished to use 45 reference samples containing different ratios of sedi-

ment source (Gaspar et al., 2019; Ni et al., 2019). Then, the colour

parameters were only calculated from a part range of the VIS spectra,

which might lead to the loss of information and affect the accuracy of

F IGURE 4 The mean absolute error (MAE) of fingerprinting results for VIS, NIR, MIR spectroscopy and colour parameters (CP) in six scouring
experiments (a-f represents the first to sixth scouring mixtures respectively).

F IGURE 5 The mean absolute error (MAE) of fingerprinting results for VIS, NIR, MIR spectroscopy and colour parameters (CP) in six artificial
mixtures (a-f represents the six designed ratio of artificial mixtures respectively).
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the fingerprinting results (Sellier et al., 2021; Tiecher et al., 2015). To

further explore the applicability of colour parameter tracers, 42 refer-

ence samples (excluding 3 single source samples; the details of refer-

ence samples can be seen in Section 2.2 of the manuscript) were

divided into two groups, namely two source reference samples (sam-

ples were mixed from two source soils) and three source reference

samples (samples were mixed from three source soils). A low MAE

value of 4.81% was obtained in two source reference samples, while a

high MAE value of 22.67% was obtained in three source reference

samples (Figure 8). A possible explanation for this might be that an

increase in the number of sources may increase the complexity of the

running of the model (Vale et al., 2016, 2022). The main reason for

reduced prediction accuracy as the number of sources increases is

that these sources may have similar colour characteristics. In our

study, the differences in colour characteristics between Lou soil and

loess were significantly lower than those between black soil and Lou

soil or loess in three source reference samples. Most of the colour

parameters are related to each other and can show similar values in

Lou soil and loess, which may lead to a decline in the ability to distin-

guish Lou soil and loess in the prediction process of three source ref-

erence samples, thus reducing the prediction accuracy (Collins

et al., 2020).

4.2 | Effect of sediment sorting on optical
fingerprinting

Particle size and organic matter are key factors affecting the accuracy

of sediment source fingerprinting results (Laceby et al., 2017). They

affect conservative behaviour by changing the concentration distribu-

tion of soil components and particle size distribution (Koiter

et al., 2015), and they then affect the source assignment results

(Gaspar et al., 2022). In this study, we found only minor differences

between artificial mixtures and scouring mixtures that were subjected

to particle sorting and organic matter enrichment (Figure 7). This may

be attributed to slight particle sorting and organic matter enrichment.

F IGURE 6 Volume percentage (a-c) and enrichment ratio of particle size (ERPS) (d-f) of three scouring single samples in six scouring
experiments (a, d represent black scouring single samples; b, e represent Lou scouring single samples; c, f represent loess scouring single samples).

F IGURE 7 The mean absolute error (MAE) of fingerprinting
results for two target sediments (scouring mixtures and artificial
mixtures) by using VIS, NIR, MIR spectroscopy and colour
parameters (CP).
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The research of Pulley and Rowntree (2016) showed that the results

were affected only when the content of organic matter was increased

to the proportion of more than 30% of the mass of matter during the

tracing study of obvious differences between the source soils. In our

study the organic matter content of these scouring mixtures ranged

from 0.75% to 2.16%. In addition, although the scouring mixtures had

particle sorting with the highest value of 2.83, the particle size enrich-

ment ratios of most of the samples ranged from 0.84 to 1.22

(Figure 6) (Han et al., 2019). The sand fraction of the 4 scouring single

samples with only Lou soil exceeded 1.5 and this fraction did not con-

tribute much to the whole sample. Therefore, it is necessary to study

the influence of stronger particle size sorting on the accuracy of sedi-

ment source fingerprinting results in the future.

5 | CONCLUSIONS

In this paper, artificial mixing and simulated scouring experiments

were designed to verify the accuracy of fingerprinting results using

19 colour parameters with conventional method and three spectral

ranges (VIS, NIR and MIR spectroscopy) with multivariate methods. In

general, VIS, NIR and MIR spectroscopic tracers presented high accu-

racy in sediment source identification. Among the tested three spec-

troscopic features, the lowest MAE values of fingerprinting results

were obtained by using MIR spectroscopy. Furthermore, colour

parameters were less reliable than spectroscopic methods, especially

to estimate sediments with multiple sources.

Among the two target sediments (scouring and artificial mix-

tures) tested in this study, similar MAE values indicated that the

accuracy of fingerprinting results was not affected by slight particle

sorting and organic matter enrichment. Future work is needed to

fully understand the implications of greater particle sorting and

organic matter enrichment in the accuracy of fingerprinting results

by using spectroscopic tracers and to discuss the applicability of col-

our parameter tracers in tested soils with low colour differences. In

short, the results of this study can be used to deepen the under-

standing of fingerprinting results obtained by optical features and

provide a reference for the application of optical features in sedi-

ment source identification.
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