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Abstract

Body size determines individuals’ life history and metabolic rates and thus, regulates
community-level dynamics. However, whether body size mediates community
co-occurrences and stability, especially in complex communities across different micro-
bial trophic levels, remains unknown. Here, we investigate whether body size deter-
mines the co-occurrence pattern and stability of microbial communities across local,
regional, and continental scales in the paddy soil ecosystems.

Soil samples were collected from rice paddy fields at multiple spatial scales, and soil
microbial communities were subsequently sequenced. The microorganisms were then
divided into different groups based on taxonomic information at phylum/subphylum
level, and the average body size of each microbial group was identified based on prop-
agule size from documented literature. We examined the relationships betweenmicrobial
body size and various community traits such as potential migration rate, co-occurrence
pattern, cohesion, and community stability.

Our results consistently showed that the small-sized microorganisms such as bac-
teria had significantly higher niche breadth, niche overlap and migration rate at various
spatial scales. We found that microbial body size is consistently negatively correlated to
negative co-occurrences and community stability. Our results, for the first time, put
microbial body size into a broader community ecology framework, and contribute to
a greater understanding of howmicrobial taxa with different body sizes would respond
to future changes and perturbations.

1. Introduction

The functions and services of complex natural ecosystems are depen-

dent on a relatively stable microbiome (Cramer and Katz, 2021), which is

defined as the degree of variation or rate of turnover in the microbial com-

munities (Tripathi et al., 2018). Understanding the determinants of commu-

nity stability is highly important to sustain the functions and services

delivered by ecological communities (Chen et al., 2021). Ecological stabil-

ity is influenced by multiple biological features of microbial communities,

which nevertheless depends on microbial traits and their cumulative effects

on ecosystem functions, from individual- to community- level attributes

(Schnabel et al., 2019). Microbial species are characterized by numerous

ecological, physiological, and molecular traits and there is an emerging

interest in understanding whether they have a role in microbiome function-

ing (Green et al., 2008; Martiny et al., 2015; McGill et al., 2006). Among

these, cell size (hereafter body size) is a key eco-physiological trait that

determines life history, metabolism, physiology, and many other aspects

of an organism’s ecology (Saleem et al., 2013). For example, larger micro-

organisms (protists or fungi) may have a relatively narrow niche breadth,

whereas the niche breadth of smaller microorganisms (bacteria) may be
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relatively wider (Luan et al., 2020), though empirical evidence is required

to confirm this prediction. In addition, a significant relationship between

body size and community assembly is a general and widespread pattern

in macroecology (plants, animals) (Dumbrell, 2019; Farjalla et al., 2012;

Luan et al., 2020). However, whether body size determines community sta-

bility at different microbial trophic levels such as bacteria, protists, and

fungi, remains unknown.

The ecological pyramids demonstrate the abundance, distribution, and

biomass (including individual body-sizes) of different organisms across a

hierarchy, and thus, they reveal striking regularities among species and eco-

logical communities ( Jacquet et al., 2020). Similar to higher trophic pyra-

mids, smaller microorganisms such as bacteria generally have much higher

population density than larger ones such as protists and fungi within micro-

bial trophic levels ( Jacquet et al., 2020). While, the dynamic behaviour of

microbial groups and systems are determined by intrinsic density-dependent

phenomena such as, growth, reproduction, species interactions, and mortal-

ity (Trosvik et al., 2010). For example, the density-dependent mortality

maintains the diversity and stability of microbial communities (Blazewicz

et al., 2020), whereas quorum sensing (QS), a mechanism of microbial spe-

cies communication also depends on cell density (Abisado et al., 2018). The

density-dependent factors are likely to influence microbial community

dynamics and stability, though these remain understudied (LaManna

et al., 2017). But nevertheless, trophic and non-trophic interactions, space

constraints, virulence, and toxin production may also determine the size and

stability of microbial communities (Georgiou et al., 2017). Given that

smaller organisms have faster growth rates and higher population densities

than larger ones (Lindmark et al., 2018), the stronger effects of predation,

mortality, antagonisms, competitive exclusion, and other environmental

filters (local carrying capacities) on their densities are expected (Faust and

Raes, 2012). Meanwhile, the differences in the body size of microbial taxa

and their relative abundance may also determine microbial niche overlap.

Therefore, we assume that smaller rather than larger-sized microbes would

demonstrate more niche overlap and resultantly, they would have higher

negative co-occurrences and cohesions (an index indicating the degree of

connectivity of microbial species in the community) (Herren and

McMahon, 2017) among species in the community.

The influence of body size in ecological interactions that maintain com-

munities, such as antagonism, synergism (competition, facilitation, mutual-

ism), and predation, is apparent (Zaneveld et al., 2017; Zhou and Ning,

2017), though mostly reported in the ecology of macroorgansims.
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We do not know yet whether these body-size dependent species-interactions

regulate stability in the natural communities of soil microbes (Saleem et al.,

2013). As predicted from both theoretical and empirical studies, negative

or antagonistic interactions may promote community stability (Coyte et al.,

2015; de Vries et al., 2018). In addition to the species co-occurrence and

cohesion patterns, community stability may also be influenced by many other

factors such as microbial stress tolerance, physiological plasticity, dormancy,

stochastic gene expression, dispersal rate, and species diversity, etc. (Shade

et al., 2012). These aspects may also be microbial body size-dependent.

Given that small-sized microorganisms may have greater physiological plastic-

ity, survival strategies, and dispersal rates (Shade et al., 2012), and thus they

may demonstrate a higher community stability, though this assumption has

never been tested.

Here, we seek to test the following hypotheses: 1) negative co-occurrences

would bemore prevalent among smaller- comparedwith larger-sizedmicrobes

across microbial trophic levels; and 2) smaller- rather than larger-sized micro-

bial taxa would demonstrate wider niche breadth, greater niche overlap, and

higher community stability (Fig. 1). To test our hypotheses, we studied soil

microbial communities in rice-paddy ecosystems at local, regional, and conti-

nental scales, while considering the potential spatial-scale dependencies. As the

general term “stability” is multifaceted, we define community stability as the

degree of structural variations in the microbial communities over space (i.e.

variability), according to the “ecological checklist” of stability statement

(Grimm andWissel, 1997; Shade et al., 2012). This definition is more relevant

to this research because we only intend to compare the degree of spatial struc-

ture changes between different microbial groups, rather than focusing on

the response of individual microbial groups to a disturbance. Therefore, we

Positive co-occurrence Negative co-occurrence

Increased body size

Decreased community stability

Fig. 1 Hypothetical illustration of microbial co-occurrence patterns and community sta-
bility as a function of a gradient inmicrobial body size. The pink circles represent the size
of different microorganisms, and the grey circles represent all other microorganisms.
Increasing microbial body size would reduce negative co-occurrences among microbes
and promote positive co-occurrences, which ultimately would lead to community insta-
bility. Solid and dashed lines represent positive and negative co-occurrences, respectively.
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calculated average Bray-Curtis dissimilarity as a proxy for predicting commu-

nity stability, in the sense that a higher average Bray-Curtis dissimilarity should

indicate a lower community stability over space and vice versa (Zaneveld

et al., 2017).

2. Methods

2.1 Sample sites and data collection
At the local scale, the soil samples were collected from Yingtan Red Soil

Ecological Experiment Station (28°1503000 N, 116°5503000 E; Fig. 2),

Chinese Academy of Sciences in Yujiang County, Jiangxi Province of

China. This site has a typical subtropical monsoon climate with a mean

annual temperature of 17.6 °C and an annual precipitation of 1795mm.

The sampling field was a double-cropped rice (Oryza sativa L.) cropping sys-

tem that included early and late season rice. Planting dates were early April to

late October, and the rest of the year was fallow. Before the early cultivation

season of 2019, five soil cores (5cm�10cm�18cm, free from rice roots)

were collected using a W-shaped transect from each plot and then pooled

to form one composite sample. In total, twenty-seven soil samples were col-

lected. The distance between any two samples is less than 100m. Samples

were stored at �40 °C until further processing.

At the regional scale, soil samples were collected near the end of

December 2017 from red paddy soils in Yujiang (Jiangxi Province, China

- 116°410 E to 117°090 E, and 28°040 N to 28°370 N; Fig. 2), where

>85% of the cultivated land is paddy fields. Sampling sites were chosen

to satisfy the following conditions: 1) the whole region needed to be cov-

ered; 2) the main parent material of the soils needed to be included; and, 3)

field management including cropping system and fertilizer applications

should be uniform. Based on these principles, twenty-six sites were selected,

with pairwise geographical distances ranging from 1.3km to 50.7km

(Fig. 2). The soil samples were collected after the harvest and in the absence

of water flooding. Within each site, five soil cores (5cm�10cm�18cm,

free from rice roots) were collected using a W-shaped transect from each

plot and then pooled to form one composite sample. All samples were stored

at �40 °C before further processing.

At the continental scale, the data were collected from a published arti-

cle, which quantified the soil microbiome of paddy fields (Fig. 2) ( Jiao et al.,

2020). Briefly, 122 rice soil samples ranging from 18.30°N to 48.35°N
and 87.61°E to 99.91°E across Eastern China were collected in

July–September 2017.
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Fig. 2 Sampling sites at local, regional, and continental scale. The red dots represent sampling locations.



2.2 Molecular methods, metabarcoding and bioinformatics
For samples at local and regional scales, the soil DNA was extracted from 0.5g

of soil (fresh weight) using a Fast®DNA SPIN Kit (MP Biomedicals, CA,

USA) and then subsequently purified using a PowerClean® DNA Clean-up

Kit (MoBio, CA,USA) according to themanufacturers’ instructions. The con-

centration and quality of the extracted DNA were measured using a

NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, DE,

USA). Three commonly used primer sets were applied to metabarcode micro-

bial communities, targeting bacterial 16S rRNA genes (Biddle et al., 2008), the

fungal ITS (Gardes and Bruns, 1993), and protist 18S rRNA genes (Stoeck

et al., 2010), respectively. Detailed information about primers and PCR con-

ditions for each primer set are shown (Table 1). The purified amplicons were

pooled in equimolar concentrations, and then sent for paired-end sequencing

on an Illumina MiSeq (300bp�300bp) at Majorbio Bio-Pharm Technology

Co. Ltd. (Shanghai, China).

For continental-scale data, raw sequences (protists were not sequenced)

were downloaded from NCBI Sequence Read Archive (SRA) using the

SRA toolkit “prefetch”, and the sequences were then transformed to fastq for-

mat for downstream analyses using the SRA toolkit “fastq-dump”.

Raw sequence data were analysed using the Quantitative Insights into

Microbial Ecology (QIIME) pipeline (v1.9.1) (http://qiime.org/) (Caporaso

et al., 2010). Paired-end reads were merged using the FLASH (Magoc and

Salzberg, 2011). Reads with length of <200bp or with average quality scores

of<25 were removed. The UPARSE software was used for chimera removal,

and operational taxonomic units (OTUs) were clustered at 97% sequence sim-

ilarity and a representative sequence of each OTU was selected and used for

taxonomic assignments (Edgar, 2013). The taxonomic identity of the bacteria,

fungi, and protist OTUs was determined based on comparisons against the

RDP (http://rdp.cme.msu.edu/) (Wang et al., 2007), UNITE (v7) (https://

unite.ut.ee/) (Nilsson et al., 2019), and PR2 databases (http://bigd.big.ac.cn/)

(Guillou et al., 2013) respectively using the RDP naı̈ve Bayesian classifier.

It should be noted that some non-protist OTUs originating from other

eukaryotes were removed from the 18S datasets. The OTU data were rar-

efied for all microbial groups to an even sequencing depth (6677 sequences

per sample) based on the sample with the minimum numbers of reads

(McKnight et al., 2019).

2.3 Determination of microbial body sizes
The body-size data for species-level taxonomic assignation and/or morpho-

logical descriptions does not exist for most microbes. Thus, we distinguished
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Table 1 Detailed information about primers and PCR conditions

Primers Primer sequence (50- 30)
Target
gene

Target
subfragment PCR reaction condition

Bacteria Forward: 515F GTGCCAGCMGCCGCGGTAA 16S V4-V5 An initial denaturation at 95 °C for

3min, followed by 27 cycles of 30 s at

95 °C, annealing for 30 s at 55 °C and

elongation for 45 s at 72 °C, the last step
being extension at 72 °C for 10min.

Reverse: 907R CCGTCAATTCCTTTGAGTTT

Fungi Forward: ITS1F CTTGGTCATTTAGAGGAAGTAA ITS ITS1 An initial denaturation at 95 °C for

3min, followed by 35 cycles of 30 s at

95 °C, annealing for 30 s at 55 °C and

elongation for 45 s at 72 °C, the last step
being extension at 72 °C for 10min

Reverse: ITS2 GCTGCGTTCTTCATCGATGC

Protist Forward:

TAReukFWD1F

CCAGCASCYGCGGTAATTCC 18S V4 An initial denaturation at 95 °C for

5min, followed by 10 cycles of 30 s at

94 °C, annealing for 45 s at 57 °C and

elongation for 60 s at 72 °C, and
followed by 25 cycles of 30 s at 94 °C,
annealing for 45 s at 45 °C, 47 °C, 48 °C,
49 °C, respectively and elongation for

60 s at 72 °C, the last step being

extension at 72 °C for 2min.

Reverse:

TAReukREV3R

ACTTTCGTTCTTGATYRA



groups based on their taxonomic affiliation at the phylum or subphylum

level, and their body sizes were identified based on propagule size through

literature estimates. Recent research calculated the average microbial body

sizes based on approximately 576 dominant genera, covering almost all com-

mon soil microbial phyla or subphyla (Luan et al., 2020). We also calculated

and added average body sizes of some microbial groups based on our own

OTU tables. The microbial groups and the average body sizes used in this

study are shown in Table 2. We restricted our analysis to the most abundant

phyla or subphyla (i.e., relative abundance>1% or very close to 1%), which

assumed that the broadly defined functional traits such as body size and tro-

phic status are generally conserved within the microbial taxa at phyla level

(Geisen et al., 2015; Luan et al., 2020; Mulder and Elser, 2009; Zinger et al.,

2019). Overall, we investigated 25, 32, and 22 microbial groups at local,

regional, and continental scales, respectively (Table 2).

Table 2 Average body size of the selected microbial groups. The “+” and “-“ represent
whether the group was analysed or not at a particular spatial scale, respectively

Microbial group
Average body size
(um)

Local
scale

Regional
scale

Continental
scale

Acidobacteria 0.5 + + +

Actinobacteria 4 + + +

Alphaproteobacteria 0.4 + + +

Armatimonadetes 1 + + �
Bacteroidetes 0.5 + + +

Betaproteobacteria 5 + + +

Chlorobi 0.8 + � �
Chloroflexi 1.2 + + +

Cyanobacteria 4 + + �
Deltaproteobacteria 0.5 + + +

Gammaproteobacteria 5 + + +

Nitrospirae 5 + + +

Planctomycetes 1 + + +

Elusimicrobia 0.2 � + �
Firmicutes 3 � + +

Continued
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2.4 Statistical analysis
Weperformed network analysis to explore the microbial co-occurrence pat-

terns using the plugin CoNet in Cytoscape 3.5.1 (Shannon et al., 2003).

Robust correlations between two OTUs were defined as those with

Spearman’s correlation coefficients (ρ) >0.6 and with false discovery rate-

corrected at P values <0.01. With these, we constructed a correlation

network in which each node represented one OTU, and each edge repre-

sented a strong and significant correlation between two nodes. The topology

parameters of each network were determined in Cytoscape using the

NetworkAnalyzer (Shannon et al., 2003).

Table 2 Average body size of the selected microbial groups. The “+” and “-“ represent
whether the group was analysed or not at a particular spatial scale, respectively—cont’d

Microbial group
Average body size
(um)

Local
scale

Regional
scale

Continental
scale

Gemmatimonadetes 0.5 � + +

Ignavibacteriae 5 � + +

Verrucomicrobia 0.5 � + +

Dothideomycetes 28.3 + + +

Eurotiomycetes 18.3 + + +

Leotiomycetes 12.5 + + +

Sordariomycetes 21 + + +

Basidiomycota 10 + + +

Mortierellomycota 14.3 + + +

Rozellomycota 1.1 � + +

Chytridiomycota 4.85 � + +

Glomeromycota 130 � + �
Cercozoa 13.8 + + �
Chlorophyta 18.1 + + �
Ciliophora 71.9 + + �
Conosa 40.2 + + �
Lobosa 22 + + �
Ochrophyta 40.5 + + �
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We calculated the cohesion pattern to investigate community intercon-

nectedness of each microbial group (Herren and McMahon, 2017). Briefly,

we first calculated pairwise correlations between all taxa in each microbial

group, and then used a null model to account for how the features of micro-

bial datasets might affect correlations, and we subtracted these values. For

each taxon, we averaged the positive and negative corrected correlations

separately and recorded these values as the positive and negative connected-

ness values. Cohesion values were obtained by multiplying the relative

abundance table by the connectedness values. Finally, we got two metrics

of cohesion, corresponding to positive and negative values. Detailed mech-

anism and diagram generating cohesion metrics are available elsewhere

(Herren and McMahon, 2017).

The Bray-Curtis dissimilarity of each microbial group was calculated in

QIIME using the “beta_diversity.py” script to reflect community stability.

Niche breadth and niche overlaps were calculated according to the

Levin’s niche breadth index and Levin’s niche overlap index respectively

(Li et al., 2020). A dominance test was used to determine the potential

migration rate (m) of each microbial group (Sloan et al., 2007). The m is

a parameter for evaluating the probability that a random loss of an individual

in a local community would be replaced by dispersal from the met-

acommunity, and, therefore, it is a measure of dispersal limitation. Higher

m values indicate that microbial communities have higher dispersal potential

( Jiao et al., 2020). The formula is as follows:

Freqi ¼ 1� I 1=N jN∗m∗pi, N∗m∗ 1� pið Þð Þ
where Freqi is the occurrence frequency of taxon i across communities; N is

the number of individuals per community;m is the estimated migration rate;

pi is the average relative abundance of taxon i across communities; and I is the

probability density function of beta distribution.

3. Results

3.1 Inferring microbial community structure
and body size

We investigated soil microbial communities at local (27 samples), regional

(26 samples), and continental scales (122 samples) using the metabarcoding

data (Fig. 2). At the local scale, the metabarcoding analysis revealed 6677

sequences of bacterial, fungal, and protist communities per sample after

excluding singletons and rarefying to an even depth. These sequences were

11Linking microbial body size to community co-occurrences and stability



clustered into bacterial (4641), fungal (2478), and protistan (2044) OTUs,

respectively. We sorted twenty-five microbial groups based on their body

size, while these groups included 13 bacterial, six fungal groups and six pro-

tistan groups at a higher-level taxonomy (Table 2). These groups were used

for the downstream analyses. At regional scale, the metabarcoding analysis

revealed 7664 sequences of bacterial, fungal, and protist communities per

sample after excluding singletons and rarefying to even depth. These

sequences were clustered into 12,353 bacterial, 6634 fungal, and 1969 pro-

tistan OTUs, respectively. Thirty-two groups including 17 bacterial, 9 fun-

gal, and 6 protistan groups were used for downstream analyses at regional

scale (Table 2). At the continental scale, the metabarcoding data yielded

8315 sequences of bacterial and fungal communities per sample after exclud-

ing singletons and rarefying to even depth, but did not contain any protistan

data. These sequences were clustered into 18,364 bacterial and 6166 fungal

OTUs. From this data, we sorted twenty-two groups that included 13 bac-

terial and nine fungal groups for the downstream analyses.

In total, we studied 33 microbial groups in this study. Our results showed

that body sizes of these 33 microbial groups ranged from 0.2 μm to 130 μm
in the paddy soils. The bacterial cell size varied between 0.2 μm
(Elusimicrobia) and 5 μm (Betaproteobacteria, Gamaproteobacteria, Nitrospirae,

and Ignavibacteriae). The size of fungal spores ranged between 1.1 μm
(Rozellomycota) and 130 μm (Glomeromycota). The size of protistan cells

ranged from 13.8 μm (Cercozoa) to 71.9 μm (Ciliophora) (Table 2).

3.2 Microbial niche breadth, niche overlap, and migration rate
The bacteria consistently had significantly higher niche breadth, niche over-

lap, and migration rate than fungi and protists at all three spatial scales, aside

from a non-significant difference in niche breadth between bacteria and pro-

tists at the regional scale (Fig. 3A-C). The protists had significantly higher

niche breadth, niche overlap, and migration rate than fungi at the local scale;

but at the regional scale, protists and fungi had similar niche breadth and

niche breadth, and fungi had higher migration rate (Fig. 3A-C).

The microbial body size consistently negatively correlated with their

niche breadth (Fig. 3D; local scale: r ¼�0.566, P ¼0.003, n ¼25;

regional scale: r ¼�0.216, P ¼0.235, n ¼32; continental scale:

r ¼�0.628, P ¼0.003, n ¼22) and niche overlap (Fig. 3E; local scale:

r ¼�0.582, P ¼0.002, n ¼25; regional scale: r ¼�0.573, P ¼0.001,

n ¼32; continental scale: r ¼�0.455, P ¼0.038, n ¼22), thus suggesting
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that smaller-sized microbes occupy a wider niche breath, but their niches are

more overlapped than the observed in larger organisms. Furthermore, our

results showed that microbial body size consistently negatively correlated

with the migration rate (Fig. 3F; local scale: r ¼�0.768, P <0.001,

n ¼25; regional scale: r ¼�0.811, P <0.001, n¼32; continental scale:

r ¼�0.784, P <0.001, n¼22).

3.3 Co-occurrence patterns of different microbial groups
We calculated co-occurrence parameters of microbial groups after con-

structing the multitrophic co-occurrence network (Fig. 4). Our results indi-

cated that microbial body size was consistently negatively correlated with

the average negative co-occurrences and PNC across all three spatial scales

(Fig. 5A-C; local scale: negative co-occurrences, r ¼�0.690, P <0.001,

n ¼25; PNC, r ¼�0.679, P <0.001, n¼25; regional scale: negative

Fig. 3 Relationships between microbial body sizes and niche breadth, niche overlap,
and migration rate. The average niche breadth (A), niche overlap (B), and migration rate
(C) within each trophic level at various spatial scales are provided in the top row. The
Relationships between microbial body sizes and niche breadth (D), niche overlap (E),
and migration rate (F) at various spatial scales are provided in the bottom row.
Significant differences in the niche breadth, niche overlap, and migration rate between
trophic level were determined by the nonparametric Mann-Whitney U tests. *, **, and
*** represents significant difference under P <0.05, 0.01, and 0.001, respectively. ‘ns’
represents non-significant difference. The “n” represents the sample size of microbial
groups. We applied one-side F and two-side t-tests, and then calculated P values
as shown.

Local                                         Regional                                  Continental

Bacteria              Fungi              Protists         Others Positive co-occurrence
Negative co-occurrence

Fig. 4 Co-occurrence networks at local, regional, and continental scale. The networks
were constructed under the parameters ρ >0.6 and corrected P-values <0.01. Each
node represents an OTU, and each line represents a significant and strong
co-occurrence. The size of the nodes is plotted based on the total co-occurrences of
each node.
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co-occurrences, r ¼�0.438, P ¼0.014, n ¼31; PNC, r ¼�0.595,

P <0.001, n¼31; continental scale: negative co-occurrences,

r ¼�0.687, P <0.001, n ¼21; PNC, r ¼�0.567, P <0.001, n¼21).

However, the correlations between microbial body size and both total and

positive co-occurrences were consistently weak at all three spatial scales inves-

tigated (Fig. 5D-F).

3.4 Cohesion of differently sized microorganisms
Microbial body size was consistently positively correlated with the negative

cohesion at all spatial scales (Fig. 6A-C; local scale: r ¼0.442, P ¼0.027,

n¼25; regional scale: r ¼�0.401, P ¼0.023, n ¼32; continental scale:

r ¼�0.518, P ¼0.014, n ¼22), thus suggesting that smaller microorgan-

isms had consistently higher negative cohesion than larger ones.

Microbial body size was also significantly negatively correlated with positive

cohesion at the continental scale (Fig. 6F; r ¼�0.537, P ¼0.010, n¼22),

but not at the local or regional scales (Fig. 6D-E).

3.5 Community stability of differently sized microorganisms
The Bray-Curtis dissimilarity of each microbial group was also calculated to

predict community stability, and the results showed that the microbial body

size consistently positively correlated with the Bray-Curtis dissimilarity

across all three spatial scales (Fig. 7; local scale: r ¼0.542, P ¼0.005,

n¼25; regional scale: r ¼0.483, P ¼0.005, n¼32; continental scale:

r ¼0.493, P ¼0.023, n¼22).

In addition, our results showed a significant relationship between nega-

tive co-occurrence and Bray-Curtis dissimilarity at local and regional scales,

but not at the continental scale (Fig. 7; local scale: negative co-occurrences,

Fig. 5 Relationships between microbial body sizes and community co-occurrences. The
Relationships between microbial body sizes and negative co-occurrences and PNC at
local (A), regional (B), and continental (C) scales are provided in the top row. The red
dots and lines indicate the relationships between microbial body sizes and negative
co-occurrences, while the dark blue dots and lines describe the relationships between
microbial body sizes and the PNC. The Relationships between microbial body sizes and
total and positive co-occurrences at local (D), regional (E), and continental (F) scale are
provided in the bottom row. The grey dots and lines indicate the relationships between
microbial body sizes and total co-occurrences, while the blue dots and lines describe the
relationships between microbial body sizes and the positive co-occurrences. The “n”
represents the sample size of microbial groups. We applied one-side F and two-side
t-tests, and then calculated P values as shown.
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r ¼�0.534, P ¼0.006, n¼25; PNC, r ¼�0.481, P ¼0.015, n¼25;

regional scale: negative co-occurrences, r ¼�0.722, P <0.001, n¼31;

PNC, r ¼�0.452, P ¼0.011, n¼31; continental scale: negative

co-occurrences, r ¼�0.304, P ¼0.192, n¼21; PNC, r ¼�0.158,

P ¼0.507, n¼21).

Furthermore, our results showed a very strong relationship between neg-

ative cohesion and Bray-Curtis dissimilarity at all three scales (Fig. 7; local

scale: r ¼0.835, P <0.001, n¼25; regional scale: r ¼0.764, P <0.001,

n¼32; continental scale: r ¼0.963, P <0.001, n¼22). Similarly, there

was also a significant relationship between positive cohesion and

Bray-Curtis dissimilarity at all three scales (Fig. 6; local scale:

r ¼�0.507, P ¼0.010, n¼25; regional scale: r ¼�0.510, P ¼0.003,

n¼32; continental scale: r ¼�0.960, P <0.001, n¼22).

The microbial niche breadth, niche overlap, and potential migration rate

were consistently positively correlated with the negative co-occurrences,

PNC, and positive cohesion (Fig. 7). On the contrary, the niche breadth,

niche overlap, and potential migration rate were consistently negatively cor-

related with the negative cohesion and Bray-Curtis dissimilarity at all three

scales (Fig. 7).

4. Discussion

Using high-throughput sequencing and ecological models, this study

discerns the role of body size in microbial co-occurrence, community cohe-

sion, and stability patterns at local, regional, and continental scales. We show

that body size is the primary determinant of microbial co-occurrence pat-

terns and community cohesion and stability. Our results consistently dem-

onstrated that small-sized microorganisms exhibited higher negative

co-occurrences and negative cohesion, and subsequently a higher commu-

nity stability across spatiotemporal scales. This study puts microbes into a

common body-sized based community ecology framework that has been

previously applied to the macroorganisms to determine their interactions

and roles in food webs (Woodward et al., 2005).

Our results show that microbial body size consistently correlated with

the average negative co-occurrences, PNC, and negative cohesion across

all three spatial scales (Fig. 5, Fig. 6). These results support our first hypoth-

esis that negative rather than positive co-occurrences and cohesion are more

prevalent among small-sized microorganisms. The decreasing negative

co-occurrences and negative cohesion with increasing body sizes implies
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that small-sized microorganisms may experience relatively higher competi-

tion, antagonistic interactions, and predation pressure in the community

(Saleem et al., 2013). For instance, our analysis indicated a significant niche

overlap between small-sized microorganisms (Fig. 3), thus implying that

these fast-growingmicrobesmay demonstrate intense intra- and inter- specific

competition under resource limited conditions (Allen et al., 2006; Berendsen

et al., 2012). Moreover, predation exerts a fundamental selective pressure on

small-sizedmicrobes, while trophic regulation ofmicrobial taxamay influence

microbial populations and interactions (Allen et al., 2006; Saleem et al., 2013).

For instance, the selective removal of certain body-sized microbial taxa

may significantly reduce their population densities, while it may release other

taxa from predation and competition pressures. Thus, these microbial taxa

may expand their niches and population densities (Moksnes et al., 1998;

Pennings, 1990). Consequently, such a trade-off could result in the evolution

of novel interactions among species that may lead to strong interactions and

cohesion among species in the community.

Our results also confirm our second hypothesis that microbial commu-

nities dominated by small-sized microorganisms may demonstrate a higher

community stability (Fig. 7). The decreasing community stability with

increasing microbial body sizes hints that smaller- as opposed to larger- sized

taxa may have: (1) a wider range of strategies to adjust to a broad range of

environmental conditions; and, (2) higher dispersal potential, propensity,

and ecological ranges. Moreover, our results support previous empirical

and theoretical predictions that smaller-sized microbes, for instance bacteria,

often have a wider niche breadth than larger-sized microorganisms such as

protists and fungi (Fig. 3) (Finlay, 2002; Langenheder et al., 2005; Luan

et al., 2020), which nevertheless, suggests an increased niche overlap in these

taxa (Fig. 3). Generalists are typically small-sized microbes with wider niche

breadth, thus implying that they can frequently evolve, adapt or acclimate to

changing environmental conditions ( Jiao et al., 2020). In contrast, large-sized

microbes with a narrower niche breadth and higher positive co-occurrences

may respond in tandem to environmental fluctuations that may compromise

their community stability (Coyte et al., 2015; de Vries et al., 2018). The envi-

ronmental fluctuations resulting from locally less favourable conditions, can

cause mass effects that may be more prominent on the large-sized taxa with

narrow niches and limited dispersal propensity (Shmida and Wilson, 1985).

Moreover, dispersal potential is a size-dependent factor that may influence

community stability. Although historically microorganisms are categorized

as non-dispersal limited or cosmopolitan, recent research has consistently
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challenged this narrative (Farjalla et al., 2012). In a manner consistent with

recent predictions (Luan et al., 2020), we found a significant decrease in

the dispersal potential in the large-sized microorganisms such as protists and

fungi (Fig. 3), suggesting the expectation that these taxa might be more

sensitive to climate and land-use change (Saleem and Moe, 2014). A higher

dispersal propensity of smaller-sizedmicroorganismswould potentially homo-

genize microbial populations, thus creating similar microbial communities

across different patches and scales (Fodelianakis et al., 2019). However, we

could not directly link a given taxon’s dispersal potential to the microbial neg-

ative co-occurrence patterns. This is most likely because highly motile organ-

isms that can rapidly disperse into the surrounding environment are less likely

to interact with other individuals of the same species, either via competition or

cooperation (Hibbing et al., 2010; Reichenbach et al., 2007).

The co-occurrence and connectivity of microbial taxa have been previ-

ously hypothesized to influence the community dynamics (Coyte et al.,

2015; Nilsson and McCann, 2016), and our study clearly demonstrated that

community “negative patterns” especially negative cohesion can well pre-

dict the community’s stability. Our results are in line with findings from a

previous study on phytoplankton communities in the Lake Mendota, which

also reported a significant relationship between negative cohesion and com-

munity stability (Herren andMcMahon, 2017). These results may well indi-

cate that negative interactions (as indicated by either co-occurrences or

cohesion indices) between microbial species are arranged non-randomly

to interact with each other, thereby stabilizing the community composition.

While, the strong negative interactions betweenmicrobial species would act as

a buffer as opposed to a source of community variations. From the perspective

of correlation parameters, the negative cohesion (Fig. 7; r ranges from 0.764 to

0.963) may be more powerful than negative co-occurrences (Fig. 7; r ranges

from �0.304 to �0.722) in predicting microbial community stability. This

is possibly because the co-occurrence network analysis only considers signif-

icant and strong correlations between microbial taxa, whereas the cohesion

index considered all pairwise correlations between microbial taxa. Natural

ecosystems are always dominated by many weak interactions and a few strong

interactions, while these prevalent weak interactions are also ecologically

important in affecting community variation and stability (McCann et al.,

1998). Therefore, the co-occurrence network analysis overlooks these

important weak and intermediate interactions, resulting in a relatively

weak correlation between network parameters and community stability.
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On the contrary, all possible interactions, either weak, intermediate or strong,

are considered in the cohesion matrix (Herren and McMahon, 2017),

strengthening its power in predicting community stability.

We acknowledge that correlation between community stability and

“negative patterns” might also be related to species diversity (Shade et al.,

2012), which has not been taken into consideration in this study. This is

because comparing species diversity at phylum or class level using

metabarcoding sequencing is not a tractable and representative method as

we cannot rarefy all investigated microbial groups into an even sequencing

depth. However, not considering diversity does not affect our conclusions

regarding microbial co-occurrence and cohesion patterns because these

indices were calculated using average parameters of each microbial taxon

(co-occurrence), or average pairwise correlations between taxa (cohesion).

Finally, our findings robustly demonstrate that microbial “negative

patterns” and community stabilities are tightly linked to their body size,

irrespective of the spatial scale. Thus, this study provides the foundations

for a mechanistic and predictive role of body size in microbial community

ecology. Specifically, our results provide solid evidence that body size is

the primary determinant of microbial co-occurrence, cohesion, and commu-

nity stability in the paddy soil ecosystems across spatiotemporal scales.

Meanwhile, we acknowledge that there might be discrepancies resulting from

variations in the microbial sizes. Therefore, further studies testing the

body-size dependent interactions in microbial communities would be

required to generalize the role of body size in the microbial community ecol-

ogy. Particularly, the manipulated experiments representing microbial com-

munities of differently sized taxa at various trophic levels will further add

into the understanding of microbial community assembly, co-occurrence,

cohesion, and stability. Our findings also highlight the need for more accurate

quantification of body sizes among microbial taxa in situ, and the integration

of these data with microbial community parameters to discern the significance

of body sizes in microbial community assembly and stability. Despite these

various limitations, our study provides a foundation for a mechanistic under-

standing of microbial communities and trophic groups with respect to body

size and community stability. Moreover, our results may contribute to a

greater understanding of how microbial taxa with different body sizes would

respond to future changes and perturbations. In particular, the results suggest

the expectation that fungal and protistan taxa will be more sensitive to pertur-

bations than bacterial communities in the agricultural soils. Overall, we antic-

ipate that body size will determine the stability of bacterial, protist, and fungal

communities at all trophic levels.
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