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Abstract

The soil antibiotic resistome is considered to be primarily determined by

bacterial community composition. However, the antibiotic resistance of

plant microbiota and its association with the soil microbiome in soil–plant
systems remain largely unknown. Here, we studied the connections

between bacteria and resistance genes (RGs) (mainly antibiotic resistance

genes, ARGs) and mobile genetic elements (MGEs) in different cropping

systems (rice monoculture, and ryegrass–rice and vetch–rice rotation),

growth periods (early, tillering and harvesting stages) and habitats (the

soil, rhizoplane and phyllosphere) through high-throughput qPCR and

16S rRNA sequencing. The results showed that habitat was the major fac-

tor affecting the distribution of bacteria, RGs and MGEs, whereas the

cropping system had less of an effect. The relative abundances of ARGs,

multidrug resistance genes, metal resistance genes and integrons were

highest in the soil and lowest in the phyllosphere, as was the α-diversity of

the soil and plant microbiota. Most importantly, we found that bacteria

had the strongest associations with RGs and MGEs in the rhizoplane

rather than in the soil and phyllosphere, which might be due to the high

network interactions among rhizoplane bacteria. These results suggest

that the rhizoplane could be a hotspot for exchange of ARGs in the soil–
plant system.

Highlights

• The distributions of bacteria, RGs and MGEs were primarily controlled by

habitat.

• The strongest associations were found between rhizoplane bacteria and RGs

and MGEs.

• Rhizoplane bacteria had the strongest network associations.
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1 | INTRODUCTION

An increasing number of studies have shown that the
acquisition and dissemination of antibiotic resistance
genes (ARGs) in microorganisms, especially pathogenic
microbes, can be essential pathways that threaten human
health, such as via plant microbiota interfaces (Chen,
Cui, Su, Penuelas, & Zhu, 2019; Forsberg et al., 2012;
York, 2017; Zhan et al., 2018). In soil–plant systems, the
intensive application of organic fertilizers, such as animal
manures, exacerbates this threat (Cheng, Chen, Su, &
Yan, 2013; Fahrenfeld et al., 2014). Organic fertilizers are
rich in nutrients and organic matter and are applied to
enhance soil fertility and crop growth; however, they also
contain high levels of antibiotics, antibiotic-resistant bac-
teria (ARB), ARGs and mobile genetic elements (MGEs),
such as transposons, integrons and plasmids (Chen
et al., 2017; Cheng et al., 2013; Joy et al., 2013). These
MGEs can facilitate the horizontal gene transfer (HGT)
of ARGs from manure-borne ARB to soil bacteria (Chen
et al., 2019; van Elsas, Turner, & Bailey, 2003). Therefore,
due to the selective effect of antibiotics in manure and
the spread of ARB and ARGs, manure-fertilized soils are
considered to be reservoirs of antibiotic resistance.

Several studies have reported that a higher abundance
of ARGs is found in the plant microbiota (e.g., lettuce,
tomato and carrot) in manure-fertilized soil (Marti
et al., 2013; Rahube et al., 2014; Zhu et al., 2017). Fur-
thermore, by analysing the distribution of ARGs and
MGEs in struvite, soil, the rhizosphere and the
phyllosphere, Chen et al. (2017) indicated that bacteria
could act as vectors for ARG transfer from struvite to the
rhizosphere and even to the phyllosphere. This result
suggests that the spread of some ARB may be an impor-
tant way to increase the content of ARGs (Xie, Shen, &
Zhao, 2018). However, despite studies showing that bac-
terial community composition determines soil ARG con-
tent (Forsberg et al., 2014; Hu et al., 2018), its relation to
plant microbiota resistance in soil–plant systems remains
unclear, especially among different cropping systems.

In this study, based on high-throughput qPCR and
bacterial 16S rRNA sequencing, we detected 58 resistance
genes (RGs) and 21 MGEs in various cropping systems
(rice monoculture, and ryegrass–rice and vetch–rice rota-
tion), growth periods (early, tillering and harvesting
stages) and habitats (soil, the rhizoplane and the
phyllosphere). High availability of nutrients and carbon
sources around the roots of plants is beneficial to the
growth and reproduction of bacteria (Eisenhauer
et al., 2017; Lindow & Brandl, 2003), which is expected to
increase HGT. Rhizoplane bacteria would have stronger
interactions than soil and phyllosphere bacteria. There-
fore, we hypothesize that the linkage between bacterial

community composition and the microbial resistome is
the strongest in the rhizoplane, which would lead to the
rhizoplane being a hotspot for ARG exchange in soil–
plant systems.

2 | MATERIALS AND METHODS

Here is a brief description of the materials and methods.
The detailed process can be found in the Supporting
Information.

2.1 | Experimental design, sampling and
DNA extraction

Pig manure samples (before composting) were collected
from a pig farm in Changzhou, Jiangsu, China (31.44�N,
119.45�E). This pig farm has a modern piggery and an
area of approximately 60,000 m2, and it has been operat-
ing for more than 20 years. Antibiotics are commonly
used as a routine additive to pig feed (forbidden on 1 July
2020) to promote animal growth and reduce disease. Soil
samples without antibiotics were collected within 15 cm
of the surface soil from an agricultural field that has long
been used for growing rice. The soil is classified as Ge-
Eutric Gleysols based on the World Reference Base
(WRB) (IUSS, 2015). Total carbon, total nitrogen, ammo-
nium nitrogen, nitrate nitrogen, carbonates and pH in
the soil were: 10.17 g kg�1, 0.95 g kg�1, 64.12 mg kg�1,
10.87 mg kg�1, 55 g kg�1 and 7.65, respectively. The soil
texture is clay 9.9%, silt 62.2% and sand 27.9%. The
soil and pig manure were thoroughly mixed after pre-
treatment and then filled into 27 plastic pots
(20 � 30 cm, diameter � height), each containing 4 kg of
the mixture (see Supporting Information for details). The
mixed mass ratio of soil to pig manure (13.81 g N kg�1

pig manure�1) was 81:1 based on the standard N fertilizer
application (375 kg ha�1) ratio of rice in China. Because
organic fertilization is commonly used to improve soil
fertility and organic matter content, especially for the
acidic and infertile soils in southern China, and it can
rapidly increase agricultural soil fertility, our experimen-
tal design was based on the treatment of adding pig
manure as organic fertilizer. From April to November
2017, a pot experiment was set up with three different
cropping systems in pig manure-applied soils to see how
resistance was transmitted in the soil-cropping system in
the process of improving soil fertility.

The systems were as follows: rice monoculture, rye-
grass (Lolium perenne, 130–160 seedlings planted per
plot)–rice rotation and vetch (Vicia sativa, 40–60 seed-
lings planted per plot)–rice rotation. All 27 pots (with
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and without plants) were placed in a glassed-in green-
house. During the experiment, there was plenty of light
and no wind, the average light duration was 9 h and the
average temperature was 26.5�C. The water used in this
study was pure water (the residual chlorine had been
removed by 72 h of sunlight exposure). Microbial samples
were collected from the soil, rhizoplane and phyllosphere
using destructive sampling after 1.5 months of green
manure seedling growth (see Supporting Information).
There were no samples from the rhizoplane or
phyllosphere in the rice monoculture system during the
green manure planting period. Therefore, only 21 samples
were collected in the early stages. Of these 21 samples,
three were collected from soils without green manure
applied and nine were collected from the soil, rhizoplane
and phyllosphere with ryegrass treatments. Similarly,
another nine samples were collected from the vetch treat-
ment. Green manure was ploughed into the soil immedi-
ately after sampling, and rice was planted (four rice
plants per pot) in soils without green manure, with rye-
grass, and with vetch treatments 1 month after green
manure decomposition. Subsequently, microbial samples
of soil, the rhizoplane and the phyllosphere were col-
lected at the tillering and harvesting stages of rice. In this
study, in three soil–plant systems (rice monoculture, and
ryegrass–rice and vetch–rice rotation), we obtained a
total of 75 samples (21 early samples + 27 tillering sam-
ples + 27 harvest samples). All samples were stored at
�20�C for DNA extraction. Additionally, we measured
10 typical antibiotics based on previous antibiotic detec-
tion methods (Liang et al., 2017) in collected soils, pig
manure and pig manure-applied soils. Specifically,
detailed assay procedures and concentrations for antibi-
otic residues can be found in the Supporting Materials
and Methods.

2.2 | PCR amplification and 16S RNA
sequencing analysis

For bacterial community composition, the 16S rRNA
gene was amplified in triplicate PCRs using the 515F
and 907R primers (Tamaki et al., 2011). Detailed
amplification procedures can be found in the
Supporting Materials and Methods. After the raw reads
were quality filtered and merged, the remaining
unique reads were chimera checked compared with
the gold.fa database (http://drive5.com/uchime/gold.
fa), and clustered into operational taxonomic units
(OTUs) by QIIME2 with a 97% similarity cutoff. The
taxonomic assignment of OTUs was performed by the
Ribosomal Database Project classifier with a minimal
70% confidence score (Wang, Garrity, Tiedje, &

Cole, 2007). Taxonomic assignment was performed
using the SILVA database (Quast et al., 2012).

2.3 | High-throughput fluorescence
quantitative PCR (HT-qPCR) of RGs
and MGEs

HT-qPCR analysis was performed on an Applied Bio-
systems ViiA™ 7 Real-Time PCR System (Wcgene
Biotechnology, Shanghai). Specific PCR amplification
processes can be found in the Supporting Information.
Eighty validated primer sets targeted four major classes
of ARGs (27 tetracycline RGs, four sulphonamide RGs,
three quinolone RGs and five macrolide RGs), eight
metal resistance genes (MRGs), 11 multidrug resistance
(MDR) genes, three major classes of MGEs (three
integrase genes, six plasmids and 12 transposase genes)
and a 16S rRNA gene (Table S2) (Wang et al., 2016;
Zhu et al., 2013). In the following sections, RGs were
used to represent ARGs, MRGs and MDR genes.
According to Wang et al. (Wang, Qiao, Chen, Su, &
Zhu, 2015), we used a threshold period (Ct) of 31 as the
detection limit. The abundances of RGs and MGEs
were calculated using the ΔCt method (Equation 1, 2)
(Karkman et al., 2016):

ΔCt¼Ct RGs=MGEsð Þ �Ct 16S rRNAð Þ ð1Þ

F¼ 2�ΔCt ð2Þ

where Ct(RGs/MGEs) and Ct(16S rRNA) represent the thresh-
old cycles of the RG/MGE and 16S rRNA genes, respec-
tively, and F is the relative abundance of the final
calculated RGs or MGEs.

2.4 | Statistical analysis

Network inference (CoNet) was used to construct a
network of interactions between bacteria and between
bacteria and RGs and MGEs in Cytoscape (version
3.8.0). Detailed information can be found in the
Supporting Materials and Methods. The Shannon-
Weiner index and richness index were calculated to
estimate the bacterial α diversity by using the vegan
package (Dixon, 2003) in R (version 4.0.2) (https://
www.r-project.org/). Significant differences in the rela-
tive abundances of RGs and MGEs, bacterial α diver-
sity, and the relative abundances of different bacteria
among the soil, rhizoplane and phyllosphere were eval-
uated by ANOVA with post hoc tests of Tukey's HSD in
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R. Mantel path analysis (Hartmana, Richardsona,
Vilgalysb, & Brulandc, 2008) was employed to assess
the association of intra- and inter-habitat bacteria with
RGs and MGEs.

3 | RESULTS AND DISCUSSION

3.1 | Distribution of RGs, MGEs and
bacterial communities in soil–plant
systems

Principal component analysis (PCA) and three nonpara-
metric multivariate analyses were employed to determine
the effects of cropping systems, habitats and growth periods
on RGs, MGEs and bacterial communities. Our results
showed that regardless of RGs, MGEs or bacteria, their dis-
tributions were mainly affected by habitat and then by
growth period, whereas different cropping systems had no
significant influence on them (Figure S2, Table S3). This
result may be because both the RGs and the MGEs were

predominantly controlled by their host bacteria (Forsberg
et al., 2014; Hu et al., 2018). Compared with growth periods
and short-term planting of green manure (Table S4), there
were significant differences among habitats, including
resources (e.g., moisture content and nutrient availability)
and physicochemical properties (e.g., pH) (van Elsas
et al., 2003; Vandenkoornhuyse, Quaiser, Duhamel, Van
Amandine, et al., 2015). Hence, bacteria were mainly
affected by habitats because resources and physicochemical
properties are the main abiotic factors affecting bacterial
community composition (Leff et al., 2015; Liu et al., 2020).
Based on these results, we focused on the differences in
RGs, MGEs and bacteria and their relationships in separate
plant compartments.

We found that RGs (such as ARGs, MRGs and MDRs)
and MGEs (such as integrons) had the highest relative
abundance in the soil, followed by that in the rhizoplane,
and the lowest abundance was in the phyllosphere except
for plasmids and transposons (Figure 1a and b). More-
over, bacterial community diversity showed a similar pat-
tern, with the highest α-diversity in the soil and the
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FIGURE 1 Effects of habitats on resistance genes (RGs), mobile genetic elements (MGEs) and bacteria. Relative abundance of different

RGs (a) and MGEs (b) in the soil, rhizoplane and phyllosphere. (c) Bacterial richness in the soil, rhizoplane and phyllosphere. (d) Relative

abundance of dominant bacteria in different habitats. Significance test: “Ns” p > 0.05, “*”p < 0.05, “**” p < 0.01, “***” p < 0.001
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lowest α-diversity in the phyllosphere (Figure 1c and
Figure S3). It can be expected that soil has the highest
resource heterogeneity and that the phyllosphere has
relatively homogeneous resources and high light expo-
sure (Lindow & Brandl, 2003; van Elsas et al., 2003).
However, for different bacterial taxa, their relative
abundance was not always consistent with the pattern
(Figure 1d). For example, we found that the relative
abundances of Proteobacteria and Cyanobacteria were
the highest in the phyllosphere and the lowest in the soil.
Consistent with previous studies (Rastogi et al., 2012), our
results showed that Proteobacteria were the dominant bac-
teria among the phyllospheric bacteria. However, inconsis-
tent with some studies on the plant phyllospheric
microbiome (e.g., Arabidopsis thaliana, Oryza sativa and
Lactuca sativa) (Delmotte et al., 2009; Knief et al., 2012;
Rastogi et al., 2012), we found that Cyanobacteria also
accounted for a large proportion of the rice phyllospheric
bacterial community. Some studies have shown that many
Cyanobacteria members have strong multihabitat coloniza-
tion abilities, including colonization in the rhizoplane and
phyllosphere (Furnkranz et al., 2008; Nilsson,
Bhattacharya, & Bergman, 2002). This result means that
some bacteria with multihabitat adaptability
(e.g., Cyanobacteria) can be actively and/or passively trans-
formed from the soil to the root surface and even to plant
leaves. This process may increase the associations of bacte-
rial communities in soil–plant systems, thus affecting the
relationship between antibiotic-resistant groups and RGs
and MGEs.

3.2 | Relationships among bacteria, RGs
and MGEs in soil–plant systems

It is generally believed that RGs can be transferred hori-
zontally between different bacterial cells through MGEs
(such as integrons, plasmids and transposons) (Chen
et al., 2019; van Elsas et al., 2003). Therefore, the abun-
dance of RGs may be positively correlated with that of
MGEs. In this study, based on linear fitting analysis, our
results confirmed that there was a significant positive
correlation between RGs and MGEs (p < 0.001,
Figure S4a). However, we found that only 18% (R2 in
Figure S4a) of variations in RGs could be explained by
MGE changes. This result may be because the correlation
between RGs and MGEs can be influenced by the type of
RGs and the type of MGEs. For example, the results
showed that ARGs had a higher correlation with
integrase genes in the same habitat than that of other
types of RGs and MGEs (Figure S4b). In addition to the
HGT pathway, the growth and propagation of some ARB
carrying single or multidrug-resistant genes may be an
essential way to increase the abundance of RGs (Xie
et al., 2018), thus weakening the correlation between
RGs and MGEs within a given habitat because these ARB
may be able to spread among different plant compart-
ments (Chen et al., 2019). Additionally, we found that
the correlation strength between RGs and MGEs was
affected not only by gene types but also by habitats
(Figure S4b). Specifically, the strongest correlation
between RGs and MGEs occurred in the rhizoplane,
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FIGURE 2 Relationships between bacteria and shared (a) resistance genes (RGs) and mobile genetic elements (MGEs), and unique

(b) RGs and MGEs in different habitats. Solid black lines represent a significant correlation (p < 0.05), whereas dashed grey lines represent

an insignificant correlation. The width of the line reflects the strength of the correlation
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followed by that in the phyllosphere and that in the soil.
This result means that the rhizoplane may be a key site
for HGT (van Elsas et al., 2003).

In this study, we found that almost all 58 RGs
(including eight MRGs) and 21 MGEs were detected
simultaneously in the soil, rhizoplane and phyllosphere
(Table S2). This result suggested that there may be a close
correlation between RGs and MGEs in the soil, rhizo-
plane and phyllosphere (Chen et al., 2017). In addition,
considering the possibility of an intrinsic resistome
within a habitat, we classified the RGs and MGEs into
“shared” and “unique” categories, respectively. Shared
RGs and MGEs indicate that the same RG or MGE is sig-
nificantly correlated with the same bacteria at the phy-
lum level simultaneously in two or more habitats (the
soil, rhizoplane and phyllosphere). For example, intl1
was classified as a shared gene because it was signifi-
cantly correlated with Proteobacteria in both the soil and
the rhizoplane (Figure S5a). Accordingly, RGs and MGEs
are defined as “unique” when a significant correlation
occurred only in one habitat. For example, tetT was clas-
sified as a unique gene because it was significantly

correlated with Actinobacteria only in the soil (-
Figure S5b). We found that the number and total abun-
dance of shared RGs were significantly higher than those
of unique RGs regardless of habitat (Figure S5 and
Table S5). Moreover, our results showed that although
the relative abundance of shared genes was not signifi-
cantly different among different habitats (Figure S6), the
correlation between shared genes and bacterial commu-
nity composition was stronger in the rhizoplane than in
the soil and phyllosphere (Table S5). A previous study
showed that ARGs could be transferred from struvite to
the plant surface through bacteria as a spreading vector
(Chen et al., 2017). Therefore, the high connection
between shared RGs and bacteria means that sharing
RGs may have a high risk of dissemination in soil–plant
systems.

We further used Mantel path analysis to assess the
sequential relationship among soil, rhizoplane and phy-
llospheric bacteria, and to determine whether they would
affect the relationship between RGs and MGEs. The
results showed there was a significant correlation
between adjacent-habitat bacterial community
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represent the positive and negative correlations among nodes, respectively. (c) Conceptual diagram of the connections among bacteria, RGs

and MGEs in different habitats. The width of the line reflects the strength of the connection. With the application of organic fertilizers,

antibiotic-resistant bacteria (ARB) from the manure could spread into the soil and influence the community composition of soil bacteria and

the relationship among bacteria, RGs and MGEs. ARB were expected to strengthen the connections between rhizoplane bacteria and RGs

and MGEs during plant growth. This process is related to water flow, plant recruitment, higher bacterial community biomass and bacterial

interactions. As the plant grows, ARBs would passively or actively colonize in the phyllosphere and influence the community composition of

phyllosphere bacteria, increasing the resistome
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compositions (Figure 2, p < 0.001). Additionally, we
found that changes in bacterial community composition
can not only directly affect the abundance of RGs and
MGEs within the native habitat but also indirectly affect
their abundance by changing the community composi-
tion of the adjacent-habitat bacteria (Figure 2). Moreover,
compared with the soil and phyllosphere, the correlations
between genes and bacterial communities were the stron-
gest in the rhizoplane (Figure 2 and Table S5). This result
may be because plant mucilage and root exudates pro-
duced during plant growth can provide abundant organic
carbon for bacteria in a short time in the rhizoplane
(Dennis, Miller, & Hirsch, 2010; Eisenhauer et al., 2017).
This process can increase the relative abundance of ARB
and directly enhance the rhizoplane resistome (Forsberg
et al., 2014). Meanwhile, high nutrient availability helps
to improve microbial activity. The increase in microbial
activity may contribute to HGT (van Elsas et al., 2003),
which is expected to strengthen the relationship between
bacteria and RGs and MGEs. Therefore, bacteria had the
highest connections with RGs and MGEs in the rhizo-
plane compared with the phyllosphere and soil
(Figure 3c).

3.3 | Changes in the interactions among
bacteria, RGs and MGEs in different
habitats

Previous studies have shown that the bacterial commu-
nity composition may be the determinant of soil ARG
content (Forsberg et al., 2014). In this study, we found
that the effects of bacteria on RGs and MGEs varied
from habitat to habitat (Figures 2 and 3c). In addition
to the abiotic factors such as resource availability and
physicochemical properties, this may also be due to the
difference in interactions among microbes in different
habitats (Huang et al., 2019; Lindow & Brandl, 2003).
It has been shown that enhanced interspecific interac-
tions may enhance the frequency of HGT in microor-
ganisms by increasing bacterial conjugation (Braga,
Dourado, & Araújo, 2016; Tecon, Ebrahimi, Kleyer,
Erev Levi, & Or, 2018). This process will promote the
connections of bacteria with RGs and MGEs. In our
study, based on the analysis of the bacterial
cooccurrence network, we found that there was a
strong network interaction among rhizoplane microbes
(Figure 3a and b). Specifically, the number of edges,
clustering coefficients, network density and average
network degree of the bacterial network in the rhizo-
plane were significantly higher than those of the soil
and phyllosphere, regardless of the shared or unique
RGs and MGEs (Table S6). Therefore, there was a

strong relationship between the rhizoplane bacteria
and RGs and MGEs (Figure 3c). In contrast, there was
no significant difference in relationships between bac-
terial communities and RGs and MGEs in the soil and
phyllosphere, along with less difference in bacterial
interactions (Figure 3).

4 | CONCLUSION

Based on bacterial 16S rRNA sequencing and the high-
throughput quantitative PCR of RGs and MGEs, we
found that bacteria had the strongest associations with
RGs and MGEs in the rhizoplane rather than in the
soil and phyllosphere, although the α-diversity of bac-
teria and the abundances of RGs and MGEs were not
the highest in the rhizoplane. Moreover, there were
stronger network interactions among bacteria in the
rhizoplane than in the soil and phyllosphere. These
results suggest that the rhizoplane could be a hotspot
for ARG exchange in the soil–plant system. The find-
ings of our work provide evidence that the cropping-
plant system is an important medium for ARG dissem-
ination. Additionally, preventing or disturbing ARG
transfer in rhizosphere soils of plants might be valu-
able for control of the risk of spreading ARGs from
contaminated soils to crops and potentially to human
beings and animals.
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