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Daily spatial complete soil moisture (SM) mapping is important for climatic, hydrological,

and agricultural applications. The Cyclone Global Navigation Satellite System (CYGNSS)

is the first constellation that utilizes the L band signal transmitted by the Global Navigation

Satellite System (GNSS) satellites to measure SM. Since the CYGNSS points are

discontinuously distributed with a relativity low density, limiting it to map continuous SM

distributions with high accuracy. The Moderate-Resolution Imaging Spectroradiometer

(MODIS) product (i.e., vegetation index [VI] and land surface temperature [LST]) provides

more surface SM information than other optical remote sensing data with a relatively

high spatial resolution. This study proposes a point-surface fusion method to fuse the

CYGNSS and MODIS data for daily spatial complete SM retrieval. First, for CYGNSS

data, the surface reflectivity (SR) is proposed as a proxy to evaluate its ability to estimate

daily SM. Second, the LST output from the China Meteorological Administration Land

Data Assimilation System (CLDAS, 0.0625◦ × 0.0625◦) and MODIS LST (1 × 1 km) are

fused to generate spatial complete and temporally continuous LST maps. An Enhanced

Normalized Vegetation Supply Water Index (E-NVSWI) model is proposed to estimate SM

derived from MODIS data at high spatial resolution. Finally, the final SM estimation model

is constructed from the back-propagation artificial neural network (BP-ANN) fusing the

CYGNSS point, E-NWSVI data, and ancillary data, and applied to get the daily continuous

SM result over southeast China. The results show that the estimation SM are comparable

and promising (R = 0.723, root mean squared error [RMSE] = 0.062 m3 m−3, and

MAE = 0.040 m3 m−3 vs. in situ, R = 0.714, RMSE = 0.057 m3 m−3, and MAE =

0.039 m3 m−3 vs. CLDAS). The proposed algorithm contributes from two aspects: (1)

validates the CYGNSS derived SM by taking advantage of the dense in situ networks

over Southeast China; (2) provides a point-surface fusion model to combine the usage of

CYGNSS and MODIS to generate the temporal and spatial complete SM. The proposed

approach reveals significant potential to map daily spatial complete SM using CYGNSS

and MODIS data at a regional scale.
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INTRODUCTION

Soil moisture (SM) has a significant impact on the earth’s
ecosystem by affecting the hydrological processes and climate
changes. Additionally, it plays a vital role in land surface
evapotranspiration, water migration, and the carbon cycle.
Meanwhile, SM is a critical link between the precipitation
into runoff and the atmosphere (Long et al., 2019; Naz et al.,
2020). Therefore, spatial complete and temporal continuous SM
products are importantly needed for such applications. This
reveals the necessity to map and analyze daily complete SM
information with high spatial resolution (i.e., 1 × 1 km) in the
long term and over a large scale.

Remote sensing products for SM, such as the Advanced
Scatterometer (ASCAT) (Wagner et al., 2013), Soil Moisture
Active Passive (SMAP) (Entekhabi et al., 2010), and Soil Moisture
and Ocean Salinity (SMOS) (Kerr et al., 2012), which have strong
penetration of vegetation, clouds, and fog, and are sensitive
to the e?ects of water on the dielectric constant of the soil.
However, the spatial resolutions are low (≥9 km), largely limiting
the hydrological and agricultural applications. Additionally, the
revisit periods are long (2∼3 days), with a large number of gaps
in daily data. SM estimated from land surface models (LSMs)
[i.e., the Global Land Data Assimilation System (GLDAS) and the
China Meteorological Administration Land Data Assimilation
System (CLDAS)] has been released for public use, with spatial
completeness and temporal continuity (Teuling et al., 2009; Bi
et al., 2016; Meng et al., 2017). However, these products are
primarily designed for global or continental scale SM studies,
thus with a relatively low spatial resolution (i.e., 0.25◦ × 0.25◦

for GLDAS and 0.0625◦ × 0.0625◦ for CLDAS). Overall, SM
information is rarely available at adequate spatial and temporal
scales using a single remote sensing method.

The Cyclone Global Navigation Satellite System (CYGNSS)
mission, data of which are publicly available, launched into
space in December 2016 with eight microsatellites. The CYGNSS
was designed to measure ocean winds in the tropics while
reflections observed from the satellites are also proved sensitive
to land parameters (Chew and Small, 2018). Meanwhile, the
CYGNSS can capture surface-reflected GNSS signals over the
tropics with a fine spatial [∼25 × 25 km (incoherent), ∼0.6 ×

6.6 km (coherent, theoretical minimum)], and temporal (2.8–
7 h) resolution (Eroglu et al., 2019; Yang et al., 2020). With
the high spatial-temporal resolution, CYGNSS provides a new
technical way for large-scale surface SM retrieval. The University
Corporation for Atmospheric Research (UCAR) first developed
and published the sub-daily of the CYGNSS SM data product
(Chew and Small, 2020a). However, this SM product is obtained
using surface reflectivity (SR) and its correlation with SMAP SM,
heavily relies on SMAP SM product, and has a relatively low
spatial resolution (36× 36 km).

Since the CYGNSS points are discontinuous with relativity
low density, continuous SM cannot be mapped with a high
accuracy using CYGNSS data alone. Simple interpolation, such
as linear interpolation, is a widely used image-based gap-filling
method (Kornelsen and Coulibaly, 2014; Cui et al., 2020).
However, this method could not obtain a high-quality SM. Thus,

the CYGNSS points should be combined with other continuous
remotely sensed data to obtain a high-precision SM distribution.
The Moderate-Resolution Imaging Spectroradiometer (MODIS)
data can provide the spectral information of the soil surface
related to the SM and have a finer spatial resolution than
CYGNSS and passive remote sensing SM products (Babaeian
et al., 2018). Some recent studies have proposed different
multi-source remote sensing fusion methods for SM spatial
reconstruction, e.g., Kalman filtering, triple collocation, random
forest, and back-propagation (BP) neural network (Xu et al.,
2018; Fu et al., 2019; Long et al., 2019; Kim et al., 2021;
Wu et al., 2021). Nevertheless, it should be noted that the
existing algorithms mostly ignore the missing data caused by the
influence of the cloud on the optical remote sensing data, which
lead to the discontinuity of the fusion result. Fortunately, multi-
temporal reconstructionmethods have been developed to recover
the missing optical data for cloudy and foggy pixels (Long et al.,
2019).

In this study, a point-surface fusion method is proposed
integrating the CYGNSS points, MODIS data, CLDAS products,
ancillary information, and in situ SM measurements using the
BP artificial neural network (BP-ANN) model, to generate spatial
complete and daily continuous 1 × 1 km SM. To achieve this
objective, we: (1) match the CYGNSS surface reflectivity (SR)
with dense in situmeasurements, and evaluate its performance to
estimate daily SM; (2) combine land surface temperature (LST)
output from the CLDAS (0.0625◦ × 0.0625◦) and MODIS (1 ×

1 km) to generate spatial complete and temporal continuous LST
maps, and propose the Enhanced Normalized Vegetation Supply
Water Index model, hereafter, named the E-NVSWI model to
estimate SM at high spatial resolution and spatial completeness;
(3) fuse the two results with the ancillary data to establish point-
surface fusion model using the BP-ANN, subsequently, use for
mapping daily continuous SM result over Southeast China.

DATA USED

CYGNSS Data
The CYGNSS level 1 data, science data record version 2.1 product
is used in this study. The CYGNSS receivers process delay-
Doppler maps (DDM) as the main observatory product. The
DDM instruments are designed tomap the scattered signal on the
ocean and land surface, which is sampled in time and frequency,
thus delivering DDMs at the proximity of the specular point (SP)
with the surroundings (Clarizia et al., 2019; Chew and Small,
2020a). The signal-to-noise ratio (SNR) is the metadata derived
from DDM, which is used to estimate the SR at SP, since an ideal
SM retrieval approach of CYGNSS data product would acquire
the SR approximated based on the bistatic radar equation. The
associated information, e.g., the incidence angle, the noise, and
the antenna gains, are included in the metadata.

The CYGNSS data preprocessing contained four steps: (1) the
antenna gain greater than 0 dB (corresponding to uncertainties
reported in themeasured antenna gain patterns), (2) the elevation
angle of the specular points higher than 30◦ (to keep the good-
quality left hand circularly polarized (LHCP) data), (3) the data
located in bare soil and low vegetated density regions (i.e.,
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vegetation height < 5m) identified by the Global land cover map
for 2009 (GlobCover 2009) are selected to exclude the effects of
vegetation cover, buildings, inland water bodies, etc., and (4) the
Quality Flags (i.e., direct signal in DDM and low confidence in
the Global Positioning System effective isotropic radiated power
[GPS EIRP] estimate) in the CYGNSS L1b data are used to select
the good data acquisitions.

MODIS Data
The MODIS/Aqua Land Surface Temperature and Emissivity
(LST/E) Daily L3 Global 1 km Grid V006 (MYD11A1) dataset
(1 km spatial resolution) is used in this study to derive daily
night- and day-time LSTs. The final LST value used in this study
is the average value of day and night LSTs values. In addition,
vegetation index (VI) data from MODIS surface reflectance
products 8-Day L3 Global (MOD09Q1) dataset (250m spatial
resolution) product, and albedo data from daily MCD43A3 are
also obtained, respectively.

The MODIS data are processed based on the MODIS
Reprojection Tool (Dwyer and Schmidt, 2006; Duan et al.,
2017), and all these products are transformed and registered
to the geographic coordinate system. The MOD09Q1 data and
MCD43A3 data are then resampled to 1 km using the nearest
neighbor resampling method.

CLDAS Data
The China Meteorological Administration Land Data
Assimilation System is a grid fusion product covering the
Asian region (0–65◦ N, 60–160◦ E), with a spatial resolution of
0.0625◦ × 0.0625◦ and temporal resolution of 1 h (Meng et al.,
2017). The CLDAS released the official products of forcing data
from 2009. The dataset is generated from multiple sources (i.e.,
the in situ measurement and satellite products), and contains
air temperature, pressure, LST, SM, precipitation, and solar
radiation, etc. The CLDAS data are downloaded via http://data.
cma.cn.

In this study, LST and SM from the CLDAS product are used
as inputs of the algorithms to reconstruct the daily LST, and the
final verification data, respectively. The CLDAS products from
0:00 to 23:00 are averaged in the present study.

In situ Measurements
Daily averaged in situ SM data of 596 sites collected on day 1,
11, and 21 in March, April, July, August in 2018 are provided
by the China Meteorological Administration (CMA) (Figure 1).
The data are collected by the ASMO sensors at a depth of
10 cm. Considering the complex geographical environment and
climate conditions in China, the selected sites are distributed
in six provinces of China (i.e., Henan, Hunan, Shandong,
Jiangxi, Sichuan, and Yunnan), with different land covers,
climate conditions, and terrain distributions (Table 1). All the
in situ SM data are collected. The background map is MODIS
The International Geosphere-Biosphere Program (IGBP) dataset.
Table 2 is the summary of the datasets used in this study.

METHOD

The methodology section consists of: (1) the SM estimation
over CYGNSS points using CYGNSS derived SR and in situ
measurements; (2) the LST reconstruction using the Enhanced
Spatial and Temporal Adaptive Reflectance Fusion Model
(ESTARFM) model, and E-NVSWI model development as the
SM proxy using optical remote sensing data; (3) the CLDAS,
MODIS, and auxiliary data fusion using the BP-ANNmodel, and
the daily spatial complete SMmapping; and (4) evaluation results
with in situ and CLDAS SM. The overall approach is summarized
in the flowchart shown in Figure 2.

SM Derived From CYGNSS
Surface reflectivity is the primary parameter in the SM retrieval
algorithm of CYGNSS, since the peak value of each DDMmainly
presents the SR and is sensitive to the changing SM values and

FIGURE 1 | Locations of the 596 in situ SM sites in the southeast of China. The background map is the MODIS IGBP data set.
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TABLE 1 | Characteristics of the in situ measurements.

Province Numbers of sites DEM value (m) Climate condition Land cover

Henan 194 20–2,318 Temperate continental monsoon Cropland

Deciduous Broadleaf Forest

Savannas

Urban Areas

Sichuan 178 192–6,457 Subtropical monsoon Evergreen Broadleaf Forest

Woody Savannas Cropland - Natural

Vegetation Mosaic

Yunnan 36 81–5,929 Tropical monsoon/ Plateau mountain Evergreen Broadleaf Forest

Savannas

Croplands

Hunan 60 9–1,993 Subtropical monsoon Evergreen Broadleaf Forest

Woody Savannas Cropland - Natural

Vegetation Mosaic

Jiangxi 49 6–2,093 Subtropical humid Evergreen Needleleaf Forest

Evergreen Broadleaf Forest

Woody Savannas Cropland - Natural

Vegetation Mosaic

Shandong 79 39–1,451 Temperate monsoon Croplands

Grasslands

TABLE 2 | Summary of the datasets used in this study.

Dataset Temporal resolution Spatial resolution

CYGNSS L1 Daily 0.6–6.6 km

MODIS LST(MYD11A1) Daily 1 km

CLDAS LST/SM Daily 0.0625◦

MODIS VI (MOD09A1) 8-day 500 m

MODIS Albedo MCD43A3 Daily 500 m

In situ data (0–10 cm) Daily /

GPM precipitation Daily 3 km

SRTM DEM / 90 m

SRTM Aspect / 90 m

SRTM Slope / 90 m

surface conditions. So, in this study, SR is primarily characterized
by the bistatic radar equations to acquire the SR. Moreover, the
peak value of the DDM is affected by other variables unrelated to
the reflecting surface, such as the incidence angle and distances
from SP to the transmitter and receiver. The SR (in dB) can be
described as follows (Chew and Small, 2020a,b):

SR = SNR− 10 log Ptr − 10 logGt
− 10 logGr

− 20 log λ

+20 log(Rts + Rsr)+ 20 log (4π) (1)

where SNR is the peak power minus the noise N, Ptr is the
transmitted power, Gt is the gain of the transmitting antenna, Gr

is the antenna gain toward the specular reflection point, and λ

represents the wavelength of the GPS L1 bands signal, Rts is the
range from the transmitter to the specular reflection point, Rsr is

the range from the specular reflection point to the receiver, and is
the incidence angle.

The UCAR developed the CYGNSS SM data product using
SR and its correlation with SMAP SM, which led to heavy
reliance on SMAP SM products. Previous studies have shown
that the SMAP may underestimate in vegetation-disturbed areas
primarily as a result of biased surface temperature data (Fan et al.,
2020). Subsequently, the UCAR SM product may also transmit
the biases. Additionally, the product is gridded with a relatively
coarse spatial resolution of 36× 36 km. In contrast to the UCAR
SM product, the SM on the CYGNSS point in this paper is
estimated using in situ measurements. Figures 3a,b show the
distribution of CYGNSS SR against the GLADS SM on April 21,
2018. Overall, the SR can well reflect the SM dynamics during the
observed period. Spatially, the estimated SR varies significantly.
Figure 3c is the result of the comparisons of the CYGNSS SR
against CLDAS SM for the location with latitudes between 22 and
31.5◦. The correlation coefficient (R) between SR derived from
CYGNSS and CLDAS SM data is 0.616.

For each in situ site shown in Figure 1 during the entire
observation period, the CYGNSS observations located less than
0.5 km from this site are selected. Additionally, the values of SR
are normalized to 0–25 dB overall, to the product values in a
range that intuitively makes sense. Then, the linear regression
between SR and in situ SM match-ups is calculated. The linear
regression between SR and in situ SM match-ups is calculated,
the R for the relationship is shown in Figure 4. The data of
both CYGNSS and in situ are selected from March to July
2018. The segmented calculation equation of SM derived from
CYGNSS is:

{

SMCYGNSS = 0.0011× SR+ 0.0352 (SR < 5dB)
SMCYGNSS = 0.0089× SR+ 0.1336 (SR > 5dB)

(2)
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FIGURE 2 | Flow chart of the approach to estimate SM based on data fusion and BP-ANN models in this study.

FIGURE 3 | (a) Distribution of CYGNSS SR on April 21, 2018, (b) Distribution of CLDAS SM on April 21, 2018, and (c) Comparisons of the SR derived from CYGNSS

against CLDAS SM for locations with latitudes between 22◦ to 31.5◦.
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FIGURE 4 | Comparisons of SR and in situ SM.

SM Derived From MODIS Data
LST Reconstruction Using ESTARFM Model
The ESTARFM is used to generate spatio-temporally consistent
LST. The ESTARFM produces a synthetic MODIS-like (1 ×

1 km) image from a CLDAS (0.0625◦ × 0.0625◦) input image
on the prediction date (Zhu et al., 2010; Long et al., 2019).
Two pairs of cloud-free MODIS and CLDAS images should
be input in the first step. The effective pixels of MODIS
need to account for more than 85%. Then, based on these
shoulder pairs, the statistical relationship between MODIS and
CLDAS is first established with ESTARFM model using linear
regression. Finally, the resulting linear regression models are
used to translate the coarse and spatial complete CLDAS data to
reconstructed LST changes.

Figure 5 shows the spatial comparisons of MODIS LST,
CLDAS LST, and reconstructed LST. The reconstructed LST
can provide more details and spatial complete and temporally
continuous LST information at MODIS resolution, which
provides a critical input for SM estimating to be illustrated in the
following sections.

E-NVSWI From MODIS as SM Proxy
The vegetation index and LST combined usage method is
widely used to estimate SM in optical remote sensing. NVSWI
based on the division of normalized difference vegetation index
(NDVI) and LST has been proven to be useful in estimating
regional SM. Result accuracy is better than other methods,
e.g., the TVDI method (Cong et al., 2017). The NVSWI can
represent not only the relative spatial location but also the
comparison of the time series. NVSWI is most commonly
calculated as:

NVSWI =
(VI/LST)− (VI/LST)min

(VI/LST)max − (VI/LST)min

(3)

where VI is the vegetation index, LST is the land surface
temperature, (VI/LST)min and (VI/LST)max are the minimum
and maximum ratio values of the pixel during the period of
study, respectively,

In previous studies, NDVI is the most used VI in NVSWI.
However, studies have shown that NDVI is sensitive to the

chlorophyll pigment in plants, which may lead to a better
performance at high-vegetation periods and a low correlation
at low-vegetation periods. Additionally, VSWImin and VSWImax

are calculated from the whole region. However, a large-sized
sampling window helps to increase pixel heterogeneity but also
results in variation in the sampling window.

In this study, an E-NVSWI model is proposed to solve
the aforementioned problems. First, the Modified Soil Adjusted
Vegetation Index (MSAVI) is more advantageous than NDVI in
describing the bare soil line and the vegetation coverage in the
soil background (Zhang et al., 2014). Therefore, the MSAVI is
used in this study instead of NDVI to calculate the E-NVSWI.
The MSAVI can be described as:

MSAVI = 0.5 ∗ (2 ∗ DNband1 + 1

−

√

(2 ∗ DNband2 + 1)2 − 8 ∗ (DNband2 − DNband1)

)

(4)

Second, a suitable range is proposed for defining an ideal VI–LST
diagram. The range can be considered as the upper limit of the
sampling window size. The most optimal sampling window size
is chosen as 10× 10 km, after times of testing.

Figure 6 shows the density plots of the NVSWI and E-NVSWI
versus the in situ SM on March 1, 2018, and April 1, 2018,
respectively. The NVSWI and E-NVSWI are normalized between
0 and 1 to show a visual consistency, which does not affect the
final accuracy. Overall, E-NVSWI better reflects the SM dynamics
during the observed period, and shows a better agreement with
in situ SM (R varies from 0.649 to 0.708 vs. R varies from
0.587 to 0.689).

Indicator Screening of Input Parameters
and Structures for the ANN Model
The geophysical parameters such as vegetation, topography, air
temperature, and precipitation have all been proved to affect
SM to some extent (Murphy et al., 2009; Eroglu et al., 2019;
Yang et al., 2020). On the other hand, the physical basis of
using CYGNSS for SM monitoring is that the L band is highly
sensitive to the changes in soil dielectric constant, which is
mainly with respect to the presence of SM. Meanwhile, the
confounding factors of vegetation (i.e., vegetation water content
[VWC]) and surface roughness would reduce the sensitivity of
the L band to SM. Thus, the utilization of these ancillary data
is necessary. In addition to E-NWSVI, six auxiliary variables
representing the abovementioned parameters are also considered
(i.e., precipitation, VWC, digital elevation model [DEM], slope,
aspect, surface roughness, slope, and air temperature). Then,
a new model considering the aforementioned variables is
constructed using the BP-ANN to estimate continuous SM over
the study area.

The VWC and roughness are computed fromNDVI and slope
with empirical relations as follows (Jackson et al., 1999; Campbell
et al., 2018; Eroglu et al., 2019),
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FIGURE 5 | Spatial comparisons of MODIS LST, CLDAS LOT and reconstructed LST (A1–A4) are MODIS LST in April 7, April 14, April 21, and April 28 in 2018,

(B1–B4) are CLDAS LST in April 7, April 14, April 21, and April 28 in 2018, (C1–C4) are reconstructed LST in April 7, April 14, April 21, and April 28 in 2018.

FIGURE 6 | Comparision of NWSVI/E-NWSVI with in situ SM on March 1, 2018 and April 1, 2018, (A) March 1, 2018; (B) April 1, 2018.

Frontiers in Big Data | www.frontiersin.org 7 February 2022 | Volume 4 | Article 777336

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Yang et al. Daily Soil Moisture Mapping

VWC =
(

1.9134× NDVI2 − 0.3215× NDVI
)

+ stemfactor ×
NDVImax − NDVImin

1− NDVImin
(5)

Roughness =
C2

cos(DEMslope ×
π�180 )

(6)

Where stemfactor is the parameter from a land cover-based
lookup table (LUT), and C is the cell size.

Before establishing the BP-ANN SM estimation model, the
mean impact values (MIVs) are used to choose the variables.
Table 3 lists the degree ranking of nine variables with their MIVs
on April 1, 2018. The output layer is in situ measurements.

TABLE 3 | Indicator screening for BP-ANN SM model.

Variables MIV Accumulative contribution

E-NWSVI 0.213 30.93%

VWC 0.154 53.29%

Slope 0.078 64.61%

Aspect 0.085 76.96%

DEM 0.041 82.91%

Surface roughness 0.085 95.25%

Precipitation 0.022 98.45%

Albedo 0.0088 99.72%

Air temperature 0.0019 100.00%

The variables are chosen when they have an accumulative of at
least 98%. Seven variables: E-NWSVI, VWC, slope, aspect, DEM,
surface roughness, and precipitation accounted for 98.45% of the
cumulative MIV contribution and are subsequently further used.

BP-ANN Method
The BP-ANN is a supervised learning algorithm, which referred
to a multi-layers forward neural network with an input layer, one
ormore hidden layers, and an output layer, structurally. Themain
idea of the BP-ANN regression task is to establish the nonlinear
function between the input layers and output layer. BP-ANN can
feasibly add more related samples and variables, not limited in
parametric, and is widely used for downscaling microwave SM
products (Yang et al., 2018; Cui et al., 2020).

The CYGNSS reflectivity is not only sensitive to SM, but also
sensitive to other geophysical parameters, e.g., vegetation canopy,
elevation, slope, surface roughness, and precipitation. Thus,
for daily SM estimates, multifactor non-linear regression BP-
ANN considering the aforementioned variables is constructed
to estimate continuous SM over the study area (Figure 7). In
the training stage, the input layer contains seven nodes which
are “surface scale” data with continuous distribution in terms
of E-NWSVI, precipitation, VWC, DEM, etc. The output layer
is the CYGNSS SM, which is calculated using the in situ SM
measurements combined with equation (2), and in the form
of scattered points. Then, a non-linear relationship can be

FIGURE 7 | The BP-ANN model to estimate daily SM. (A) Training. (B) Testing.
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FIGURE 8 | Spatial comparisions of the estimated SM (1 × 1 km). CLDAS SM, SMAP SM on fourteen consecutive days from April 1 to April 14, 2018.

FIGURE 9 | Boxplot of three statistical indices (i.e., R, RMSE, and MAE) between the estimated SM and in situ SM. (A) R, (B) RMSE, and (C) MAE.
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constructed between the surface and point scale data. Thus, in the
testing stage, the non-linear relationship can be used to estimate
the continuous SM. Data from March to August 2017 are used
as the training dataset, and data from March to August 2018 are
used as the testing dataset.

The training set is used to adjust the weights on the neural
network, and the testing set is used for testing the network
performance. The datasets are normalized to obtain values
between 0 and 1 prior to the training. Repeated training sets are
tested to obtain an optimal neural network structure to achieve
reasonable results. The ANN structure used in this paper is as
follows: the input layer has six nodes, which is the same as
the number of used features. The input parameter is E-NWSVI,
VWC, albedo, DEM, surface roughness, and precipitation,
respectively. The output layer has a single node representing the
SM derived from CYGNSS in the training stage, and the SM
values in the testing stage, respectively. There are three hidden
layers, and the number of nodes is seven. The hyperbolic tangent

is chosen as the activation function. The last layer is a regression
layer with no activation function. The maximum train number
is set to 6,000, the error metric is being minimized as root mean
squared error (RMSE), the error threshold is set to 0.001, and the
learning rate is set to 0.05.

The study area is southeast China. When training the model,
each input layer is “surface scale” data with a continuous
distribution, and the number of valid pixels is 4,780,129. The
number of points in the output layer depends on the number of
CYGNSS per day, varying from 62,332 to 824,13.

RESULTS

Spatial Distributions
Figure 8 compares the estimated SM, CLDAS SM, and SMAP SM
on 14 consecutive days from April 1 to April 14, 2018 (using the
R, RMSE, and mean absolute error (MAE) as indicators). Here,
it should be noted that the CLDAS LST and CLDAS SM are

FIGURE 10 | Temporal variations in the estimated SM, CLDAS, and in situ SM at three validation sites, (A) is Hunan, (B) is Jiangxi, and (C) is Yunnan.
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different products. The CLDAS LST is obtained by integrating
the ground station data and atmospheric driving products and
the near real-time. The CLDAS SM is comprised mainly based
on Ensemble Kalman Filter (EnKF) and land process models
integrating precipitation of atmospheric forcing data and surface-
incident solar radiation data received from hourly outputs of
the FY2 geostationary meteorological satellite, and observation
data (Zeng et al., 2021). The spatial resolution of SMAP SM
grid is 36 km. Due to the design of satellite orbits, gaps exist
in daily SMAP SM products provided by microwave sensors.
The MAE, RMSE, and R of the estimated SM vs. CLDAS SM
during the 14 days varied from 0.046–0.051 m3 m−3, 0.050–
0.069 m3 m−3, and 0.607–0.735, respectively. The MAE, RMSE,
and R of the estimated SM vs. SMAP SM during the 14 days
varied from 0.042–0.049 m3 m−3, 0.044–0.061 m3 m−3, and
0.629–0.757, respectively. Overall, the results indicate that the
BP-ANN models can produce spatial complete and temporally
continuous daily SM of high accuracy. In addition, the estimated
SM showed similar spatial patterns with the CLDAS SM and
the SMAP SM. This is mainly attributed to the SM estimated
from CYGNSS providing high-precision SM information. The
SM showed an increasing trend, particularly in the central
study region. Furthermore, SM values on some days are higher
than those on other days, mostly due to precipitation that
maintained the SM at higher values, particularly on April 4
and 5, 2018.

It is apparent that more abundant information of the
estimated SM is presented than that of the CLDAS SM on the
same day. Compared with the CLDAS SM, the estimated SM
shows good performance and more detailed information on
spatial characteristics, e.g., the western part of the region. It
should be noted that, there are apparent mistakes in CLDAS SM
simulations, with Taiwan showing quite low levels throughout
April. Since the CLDAS SM is simulated based on the land
process models, driving data, and data assimilation method, the
complex calculation process may lead to this phenomenon.

Figure 9 displays the numerical distributions of three
statistical indices (i.e., R, RMSE, and MAE) of performances
at a daily scale for the estimated SM compared with in situ
measurements from March to August in 2018. Generally, all
the performances of the three indices are poorer during the
period from June to August than other months. Specifically,
in Figure 9A, R reaches its highest value in April and obtains
its lowest value in August. From June to August, the R values
exhibit a decreasing trend. The variation of RMSE is contrary to
that of R, which means that a higher R-value always indicates
a lower RMSE value (Figure 9B). It is clear that the RMSE
in April is the lowest in the observed period. As for the
variations of MAE (Figure 9C), it shows similar trends as RMSE.
Incoherent scattering due to volume scattering from dense
vegetation from June to August could be the possible reason for
this phenomenon.

FIGURE 11 | Validations of estimated SM against CLDAS and in situ SM at four days in 2018 over southeast Mainland China. The solid point represents estimated sm

vs. in situ SM, and the hollow point represents estimated sm vs. CLDAS SM. (A) March 11, 2018, (B) April 11, 2018, (C) July 11, 2018, and (D) August 11, 2018.
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Temporal Distributions
Three sites in Hunan, Jiangxi, and Yunnan, representing different
climate conditions and vegetation densities, are chosen randomly
to further analyze the temporal variations of the estimated
SM from the day of year (DOY) 60 to 240. Figures 10A–C
shows the time series at each site. The synchronous ground
precipitation data are also provided for comparison purposes.
All of the estimated SM time series generally capture temporal
variations in CLDAS SM and SMAP SM and showed good
temporal consistency with the CLDAS SM and SMAP SM at
different locations (R varies from 0.709 to 0.871 vs. CLDAS
SM, R varies from 0.612 to 796 vs. SMAP SM). Several peaks
are shown in Figure 10 during the observation period, which
is consistent with the variations of precipitation events. Note
that in Figures 10A,C, relatively low SM values mainly appear
in the harvest periods of June and October without irrigation.
Oppositely, the SM at the Jiangxi site appears upward trend with
the monthly growth. The rainy season in this site may lead to
this phenomenon.

To further evaluate the performances of the estimated SM,
the estimated SM is validated separately against CLDAS SM and
in situ SM at 4 typical days in 2018 (i.e., March 11, April 11,
July 11, and August 11). Figures 11A–D shows the validation
results, respectively. Table 4 shows the statistical indices of the
four days. In general, the R values are more than 0.65, and the
RMSE andMAE values are less than 0.062 and 0.040m3 m−3 over

TABLE 4 | Statistical indices for the China Meteorological Administration Land

Data Assimilation System (CLDAS) SM, in situ soil moisture (SM) and

estimated SM.

Data type Indices March, 11 April, 11 July, 11 August, 11

In situ SM R 0.701 0.723 0.669 0.650

RMSE (m3m−3) 0.059 0.062 0.057 0.051

MAE (m3m−3) 0.038 0.040 0.024 0.023

CLDAS SM R 0.693 0.714 0.606 0.619

RMSE (m3m−3) 0.054 0.057 0.059 0.052

MAE (m3m−3) 0.025 0.039 0.027 0.024

the entire period time, respectively. In addition, according to the
validation results, the statistical indices of estimated SM against
CLDAS SM outperform the indices of estimated SM against in
situ SM. In terms of MAE, the results of estimated SM against
CLDAS SM are also lower than those of estimated SM against
in situ SM.

DISCUSSION

Comparison With Other Methods
To obtain daily SM data, many studies have focused on
developing algorithms using multi-source remote sensing data.
Table 5 shows a summary of relevant studies using multi-source
remote sensing data to estimate daily SM. From Table 5, it
can be concluded that our advantages exist in: (1) for the first
time ever, provides a point-surface fusion model to combine
the usage of CYGNSS and MODIS to generate the temporal
and spatial complete SM; and (2) produce spatial complete and
daily continuous 1 × 1 km SM in the southeast China with
a comparable result and even slightly better result with the
previous studies.

Advantages and Limitations
In this study, the satellite data (CYGNSS, MODIS, and ASTER
DEM), model simulation data (i.e., CLDAS), and in situ
measurements are integrated to buildmodels to estimate the daily
SM. The results showed that the model could be successfully
applied to produce spatial complete and daily continuous 1
× 1 km SM in the southeast of Mainland China. First, for
CYGNSS data, the results show it can estimate SM with
accuracy comparable with CLDAS. Moreover, as the first GNSS-
R constellation, CYGNSS can provide detailed spatial variabilities
of SM with a very short revisit time. The GNSS-R payload is
light in weight and cost-effective, which makes it possible to
design small satellite constellations. Second, LST is reconstructed
to reduce the impact of clouds on MODIS remote sensing
data. Thus, an important variable with full spatial coverage is
provided in reflecting spatial and temporal variability in SM.
Third, the E-NVSWI model can consider the pixel heterogeneity

TABLE 5 | Summary of relevant studies to obtain daily SM data using multi-source remote sensing data.

Publication Data used Spatial

resolution

Objectives Key results

Abbaszadeh et al.

(2019)

MODIS SMAP Precipitation,

topography, In situ SM

1km Downscales the level 3 daily SMAP

SM at 1-km spatial resolution over

clear-sky

(1) R varies from 0.44 to 0.86

(2) RMSE varies from 0.015 to

0.065 m3m−3

Hongtao et al. (2019) SMAP In situ SM 9km Extends the SMAP 9-km SM by

developing a non-local filter based

on STFM Model

(1) R varies from 0.7 to 0.9

(2) RMSE varies from 0.052 to

0.101 m3m−3

Long et al. (2019) MODIS ESA CCI CLDAS

GLDAS In situ SM

1km Generates spatially complete and

daily continuous SM

(1) R varies from 0.64 to 0.72

(2) RMSE varies from 0.050 to

0.063 m3m−3

Liu et al. (2020) MODIS DEM ECV SM In situ SM 1km Validates the performance of

multiple machine learning

algorithms in downscaling the ECV

SM dataset

(1) R varies from 0.2 to 0.713

(2) RMSE varies from 0.053 to

0.076 m3m−3
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and variation in the VI and LST in the sampling window
and improve the accuracy to estimate SM with full spatial
coverage than the NVSWI model. Finally, the BP-ANN is used to
fuse the point-surface multi-sources. The final estimated results
can well reflect temporal variability and spatial heterogeneity
in SM, which demonstrated that BP-ANN can be a potential
method to solve the classification problem or fusion of point and
surface heterogeneity.

The estimated SM results showed a temporal and spatial
change consistent with the CLDAS SM products, and in situ
SM. However, it is necessary to investigate the error source of
the SM retrievals. Possible limitations of this study may be the
following: (1) different spatial scales between CYGNSS points,
optical remote sensing pixels, and the CLDAS data. The spatial
resolution of CYGNSS (∼0.6–6.6 km) is quite different from that
of the in situ measurements (∼0.0025 m2), meaning that data
inconsistency exists between the different products. Although
in situ measurements from dense sites are used to address the
issue, the differences in spatial resolution continue to reduce the
deviations. In addition, since the CLDAS pixel with a relatively
coarse spatial resolution, simple downsampling methods may
lead to the lack of detailed information on CLDAS. (2) Difficulty
in matching different remote sensing datasets to each other in
daily values. Since the daily MODIS VI and LST datasets are
severely affected by cloud and fog, for VI applications, the 8 days
of synthetic data are used.

CONCLUSION

This article explored the feasibility of generating daily spatial
complete SM mapping over Southeast China using CYGNSS
and MODIS data. The results indicated that combining the
CYGNSS data and MODIS data, the daily spatial complete SM
with a relatively high accuracy can be mapped over southeast
China (R = 0.723, RMSE= 0.062 m3 m−3, and MAE = 0.040
m3 m−3 vs. in situ, R = 0.714, RMSE= 0.057 m3 m−3, and
MAE= 0.039 m3 m−3 vs. CLDAS).

The in situ, model, and satellite data are integrated to
estimate the SM dataset, which leverages the advantages
of every single product. The result will meet the need
for daily continuous monitoring of SM for land surface
evapotranspiration and water resources management. Our
future work will focus on improving the accuracy of the
public SM product, such as calibrating the attenuation of
vegetation and surface roughness and downscaling its spatial
resolution. Additionally, since land cover may have a significant
impact on the SM of a location, future research may use
the land surface type to cluster the data first and try other
machine learning methods (i.e., random forest) to continue
the research.
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