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Abstract: With the rapid development of remote sensing with small, lightweight unmanned aerial
vehicles (UAV), efficient and accurate crop spike counting, and yield estimation methods based on
deep learning (DL) methods have begun to emerge, greatly reducing labor costs and enabling fast
and accurate counting of sorghum spikes. However, there has not been a systematic, comprehensive
evaluation of their applicability in cereal crop spike identification in UAV images, especially in
sorghum head counting. To this end, this paper conducts a comparative study of the performance
of three common DL algorithms, EfficientDet, Single Shot MultiBox Detector (SSD), and You Only
Look Once (YOLOv4), for sorghum head detection based on lightweight UAV remote sensing
data. The paper explores the effects of overlap ratio, confidence, and intersection over union (IoU)
parameters, using the evaluation metrics of precision P, recall R, average precision AP, F1 score,
computational efficiency, and the number of detected positive/negative samples (Objects detected
consistent/inconsistent with real samples). The experiment results show the following. (1) The
detection results of the three methods under dense coverage conditions were better than those under
medium and sparse conditions. YOLOv4 had the most accurate detection under different coverage
conditions; on the contrary, EfficientDet was the worst. While SSD obtained better detection results
under dense conditions, the number of over-detections was larger. (2) It was concluded that although
EfficientDet had a good positive sample detection rate, it detected the fewest samples, had the
smallest R and F1, and its actual precision was poor, while its training time, although medium, had
the lowest detection efficiency, and the detection time per image was 2.82-times that of SSD. SSD
had medium values for P, AP, and the number of detected samples, but had the highest training and
detection efficiency. YOLOv4 detected the largest number of positive samples, and its values for R,
AP, and F1 were the highest among the three methods. Although the training time was the slowest,
the detection efficiency was better than EfficientDet. (3) With an increase in the overlap ratios, both
positive and negative samples tended to increase, and when the threshold value was 0.3, all three
methods had better detection results. With an increase in the confidence value, the number of positive
and negative samples significantly decreased, and when the threshold value was 0.3, it balanced the
numbers for sample detection and detection accuracy. An increase in IoU was accompanied by a
gradual decrease in the number of positive samples and a gradual increase in the number of negative
samples. When the threshold value was 0.3, better detection was achieved. The research findings can
provide a methodological basis for accurately detecting and counting sorghum heads using UAV.

Keywords: unmanned aerial vehicle; deep learning; EfficientDet; SSD; YOLOv4

1. Introduction

Timely and accurate information on crop production is of great significance in formu-
lating agricultural policies, macro-regulating food prices, and ensuring food security [1,2].
The number of crop ears per unit area is an important factor of crop yield [3]. Therefore, it
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has important practical significance for rapidly counting the number of ears to estimate
crop yield [4–7].

However, counting the number of crop ears is a complex task. The traditional ways of
manual counting combined with sampling methods are time-consuming, labor-intensive,
and prone to human bias as they are influenced by plant density, human visual ability,
sample representativeness, and sampling methods [3,4,6,8]. They cannot meet the need for
monitoring a substantial number of plots consisting of a substantial number of varieties
over continuous space and time. Automated counting methods are becoming increasingly
important in modern precision farming, especially in smart agriculture applications [9].

With the rapid development of remote sensing platforms and sensor technology,
imagery with high spatial and temporal resolutions can be obtained to detect and quantify
crop ears in a low-cost and easy-to-use manner by unmanned aerial vehicles (UAVs) [10–13],
which are flexible for image acquisition and unaffected by cloud and terrain conditions.
UAVs can usually be equipped with a variety of sensors, such as RGB, multispectral,
hyperspectral, thermal, and Light Detection and Ranging (LiDAR) [14]. Although the
latter three sensors have better performance in crop detection, they are expensive and
difficult to spread over a large area [8]. To circumvent this, most of the current crop plant
counting studies are based on RGB and multispectral sensors [5,12,15–18], of which RGB
sensors have a lower cost and higher spatial resolution. They also meet the requirements of
crop plant counting using computer vision [4,8,19–22], which mainly uses some computer
algorithms to simulate human visual functions to extract feature information from images,
process, understand, and finally achieve counting of crop targets.

Besides the advances in remote sensors, the rapid development of computer soft-
ware and hardware has also driven rapid changes in crop plant counting methods [23].
Traditional remote sensing methods for counting crop ears are mainly based on image
processing, applying high/low pass filtering or morphological operators to achieve crop
counting through image transformation and segmentation [11]. These methods are based
on inference and are suitable for small datasets. However, these algorithms are not scalable
when applied to images of different crop stages and conditions, such as changes in light
conditions, shading, crop ear morphology, flowering status, soil background, and image
quality [18]. Machine learning (ML), a product in the evolution of statistical learning to
artificial intelligence, is suitable for non-linear crop ear counting. These types of methods
use image processing techniques to extract features such as color and texture, and then
use machine learning methods such as support vector machines (SVM) [24] and random
forests (RF) [25] to build regression models for crop identification and counting [18]. Com-
pared with traditional statistical learning methods, these methods have better scalability.
However, ML algorithms require human-defined features, and the performance will be
saturated with an increase in data, which cannot meet increasing data processing needs.
Deep learning (DL), an emerging branch of machine learning, is driven by “big data” and
aims to “minimize prediction errors” by building neural networks that mimic the human
brain for analytical learning and has been proven to be the most advanced in processing
massive, high-dimensional complex data [26,27]. Compared to ML, DL not only has the
ability to automatically learn to extract features but can also achieve a richer spatial level of
feature extraction through deep networks driven by big data [26,28]. In addition, DL has
the capability for desaturation and high precision in remote sensing big data, which can
meet the needs of accurate crop ear counting [23].

Deep learning-based crop detection and counting methods can usually be divided
into three categories: segmentation-based methods, density map-based methods and
object detection-based methods [23,27]. Segmentation-based methods usually use the Fully
Convolutional Network (FCN) [29] or U-net [30] algorithms to achieve crop detection and
counting by combining a deep Convolutional Neural Network (CNN) [31] with semantic
segmentation of the images in high resolution. These algorithms perform well but poorly
discriminate crop ears that overlap and occlude each other. To this end, related studies have
further proposed density map-based methods, using MCNN (Multi-Column Convolutional
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Neural Network, MCNN) [32] and CSRnet [33] to estimate the target densities of different
parts of the image by training regression and integration to obtain the number of crop
ears [23]. These methods improve the discrimination accuracy of the overlapping and
mutually occluded crop ears and show good performance, but there are still shortcomings.
The ability of the models to generalize has not been verified, and the accuracy needs to be
further improved. In addition to the above two methods, many studies have carried out
crop ear counting using object detection methods, which usually utilize Faster R-CNN [34],
EfficientDet (a new network architecture proposed in 2020 on the basis of EfficientNet) [35],
SSD (an end-to-end classical one-stage target detection algorithm that directly uses a single
deep neural network to achieve feature extraction, which balances detection efficiency and
accuracy) [36], or YOLO (an end-to-end trained real-time target detection network) [37]
to detect and count crop ears by generating multiple location frames. These methods can
visualize the target information of each crop ear, but the performance of the crop detection
algorithm on images with very dense crop spike distribution is still unclear. The size of the
crop ears also poses a challenge in selecting detection frames with appropriate aspect ratios.

Sorghum is the fifth top cereal crop in the world, planted in more than 100 countries
and regions [38]. As an important mixed crop, sorghum has multiple resistances to high
temperature, drought, flooding, salinity, and barrenness, and occupies a particularly im-
portant position in arid and semi-arid regions [6]. There are many varieties of sorghum,
including grain sorghum for human food, brewing sorghum for alcoholic beverages, and
forage sorghum for livestock hay and fodder [6]. By counting the number of sorghum
heads, growers can estimate potential final yield and it is more practical for counting
rapidly and producing timely estimates.

A series of related studies have been conducted. Zhao et al. [5] developed a pipeline
to derive reflectance data from raw multispectral UAV images that preserve the original
high spatial and spectral resolution, using these data for sorghum plant and head feature
detection. Guo et al. [22] proposed a two-step machine-based image processing method
to detect and count the number of sorghum heads from high resolution images captured
by UAVs. Lin et al. [6] demonstrated that the integration of image segmentation and
the U-Net CNN model is an accurate and robust method for counting sorghum panicles.
Ghosal et al. [21] proposed an active learning-inspired weakly supervised deep learning
framework for sorghum head detection and counting, which significantly reduced the
human labeling effort without compromising final model performance to perform synthetic
annotation. Compared to rice, wheat, and corn, the aforementioned studies on sorghum
head counting have relatively few applications of object detection-based DL methods, and
there is a lack of a systematic evaluation of the applicability of multiple object detection DL
methods for sorghum.

To fill these research gaps, this study: (1) selected three object detection DL methods,
namely EfficientDet, SSD, and YOLOv4, for sorghum head detection and counting based
on UAV remote sensing imagery; (2) systematically evaluated the adaptability of the three
DL methods and model parameters for sorghum head counting; and (3) obtained the most
optimal method for sorghum head detection and counting.

2. Materials and Methods
2.1. Study Area

The Yellow River Delta (YRD) is located in Dongying City, northeastern Shandong
Province, China, adjacent to Bohai Bay and Laizhou Bay [39]. The YRD has a temperate
continental monsoon climate with four distinct seasons, an average annual temperature
of 12.8 ◦C, and a frost-free period of 206 days. The average annual precipitation is 530
to 630 mm, of which 70% is concentrated in summer. Since the study area is in a coastal
area, the soil type is mainly coastal alluvial soil, and the soil salinization is serious (the
salt content is generally in the range of 0.40–4.00 g/kg, and the pH value is about 8.5) [40].
Sorghum has a high salinity tolerance and is one of the main crops grown in the area. The
growing period of sorghum is mainly from mid-April to mid-October.
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The study area of this experiment is located in the eastern part of the YRD at the Yellow
River Delta Research Center experimental station, Institute of Geographic Sciences and
Natural Resources Research, Chinese Academy of Sciences (37◦40′26′ ′N, 118◦54′59′ ′E). A
field was planted with sorghum, with controlled fertilizer and irrigation levels, allowing for
accurate sorghum spike detection and counting studies. The total area of the experimental
field was 2 ha, divided equally into six plots of 0.33 ha each (Figure 1).
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Figure 1. Location of the study area ((a) shows the location of the study area in China; (b) is the
location of the experimental station in the Yellow River Delta; (c) is the test plots for this study, and
(d–f) are the examples of UAV images of sorghum heads at different density conditions).

2.2. Data Collection and Preparation
2.2.1. UAV Image Collection

In this study, a DJI Phantom 4 Multispectral UAV (DJI, Shenzhen, China) was used
for remote sensing image acquisition in the experimental field. This UAV integrated with
a real-time kinematic (RTK) network, which enhances image positioning accuracy by
calibrating the position in real time through the network while performing UAV image
acquisition. The drone carries a multispectral sensor, containing one visible channel and
five monochromatic channels for multispectral imaging (blue, green, red, red edge, and
near infrared). Due to the high resolution of the visible sensor, the collected visible images
at the millimeter or centimeter level were used for sorghum head detection and counting
in this study. This drone has an integrated multispectral light intensity sensor at the top
of the fuselage. When post-processing the images, the solar irradiance data will be used
to compensate the illumination of images, eliminate the interference of ambient light on
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the data acquisition, and significantly improve the accuracy and consistency of the data
collected at different times.

The flight parameters of the UAV were set using the processing software of DJI GS
PRO (DJI, Shenzhen, China), which accompanies the DJI UAV, and the detailed aerial pho-
tography parameters are shown in Table 1. After several trials of aerial photography with
the UAV in the field, the image acquisition mode was set to waypoint hover photography.
The parameters of flight altitude, longitudinal and lateral overlap ratios were set to 20 m,
75 and 60%, respectively. The final ground resolution was 1.1 cm.

Table 1. Camera and aerial parameters of the DJI Phantom 4 Pro unmanned aerial vehicle.

Camera Parameters Aerial Photography Parameters
Parameters Value Parameters Value

Effective pixels (RGB) 2.08 million Flight altitude (m) 20
Field of view (FOV, ◦) 62.7 Longitudinal overlap ratio (%) 75

resolution 1600 × 1300 Lateral overlap ratio (%) 60
Ground resolution (cm) 1.1

The UAV imagery was collected on 3 October 2020. At this time, the sorghum was
fully in the milk-ripening stage and the images were collected to facilitate sorghum head
counts. On the day of image acquisition, the weather conditions were favorable, with a
southwesterly wind speed of 1.954 m/s.

Since the six plots were divided into two sides by a drainage ditch and road, separate
routes were set for each side of the three plots to reduce the impact of extraneous imagery.
In the end, a total of 928 waypoints and images were obtained and 464 UAV images were
taken for each side of the three plots in this experimental field.

2.2.2. UAV Image Dataset Construction

The improvement in detection accuracy of DL algorithms is no longer obvious when
the number of annotations reaches a certain level. Therefore, to prevent excessive du-
plication of sample data, the images of poor quality from the collected UAV data were
eliminated and the remaining images after screening were used as training and validation
samples in this study.

In the experiment, 51 images of clear sorghum heads were selected from 928 images
and nine images of 416 × 416 pixels suitable for neural network training were cropped
out of each training set image. On this basis, further image screening was conducted to
eliminate images with fewer sorghum head targets, and finally the remaining 384 images
were used for training and 96 were used for testing.

2.2.3. Image Labeling

The images needed to be labeled before training the sorghum head detection and
counting algorithm on the UAV images. LABELIMG is a widely used open-source graphical
annotation tool [41] suitable for object localization or detection. Using LABELIMG, a
rectangle was drawn for each identified sorghum ear in the image. Since this study was
conducted only for sorghum heads detection, the image was only divided into sorghum
heads and background. Only the sorghum heads needed to be labeled, while the rest of the
image was automatically labeled as background by the LABELIMG software and, finally,
all the labeled information was saved directly as an XML file.

According to the Microsoft Common Objects in Context (MS COCO) dataset, targets
smaller than 32× 32 pixels were considered small targets [42]. It was found that the average
pixels of sorghum heads in this study occupied only 7 × 7 pixels, which is a very small
target and easy to miss when labeling. In order to prevent mislabeling and improve labeling
accuracy, this study first trained the labeled images and used the trained model to detect
the targets and automatically generate labels; then, the automatically generated labels were
further corrected manually to finally obtain standard annotations for all samples (Figure 2).
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3. Method
3.1. Deep Learning Algorithms

Current target detection algorithms based on DL can usually be divided into two-stage
and one-stage detection algorithms. The former algorithm contains two target detection
processes: candidate region extraction is the first target monitoring; candidate region
classification and candidate region coordinate correction are the second target detection.
These dual target detection processes improve the accuracy but also increase the model
complexity and limit its computational efficiency. Furthermore, the algorithm extracts
target information using the feature layer after multiple convolutions, which can easily lose
small target information and is not suitable for sorghum head detection and counting.

The one-stage detection algorithm treats the target detection problem as a regression
analysis problem of target location and category information and can directly output
detection results through a neural network model. This algorithm contains only one target
detection process, which has a simple structure, high computational efficiency, and can
be easily trained end-to-end. It has great potential for application in the field of real-time
target detection. Therefore, three one-stage target detection algorithms—EfficientDet, SSD,
and YOLOv4—were selected to carry out the detection and counting of sorghum heads in
this study.

3.1.1. EfficientDet

EfficientDet is mainly composed of three parts: backbone network, enhanced feature
network, and box/class prediction network [43]. The backbone network employs Efficient-
Net, which continuously extracts the features from the input image with down-scaling and
obtains P1–P7 [43]. Since they only shallowly down-scale and do not have sufficient seman-
tic information, P1 and P2 are not used as inputs in the enhanced feature network. Then, a
total of five effective feature layers of P3–P7 obtained by down-scaling are introduced into
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the enhanced feature network for further feature extraction and the proposed weighted
bi-directional feature pyramid network (BiFPN) is used to repeat the operation to obtain
five effective feature layers with high semantic information. Finally, these feature layers are
fed into the box/class prediction network for box/class prediction or regression prediction
and the prediction results are finally obtained [35].

As a mainstream one-stage detection model, EfficientDet still uses the common frame-
work of “feature extraction, multi-scale feature fusion, and classification/regression pre-
diction”. The algorithm balances detection accuracy and efficiency by coordinating the
network depth, the number of channels in each layer and the resolution of the input im-
age, and the proposed BiFPN network structure enables the model to achieve efficient
bi-directional cross-scale connectivity and weighted feature fusion, which yields better
detection results on the COCO dataset [35]. However, the effectiveness of this algorithm in
detecting the small targets of sorghum heads needs to be further explored. Therefore, the
EfficientDet algorithm was selected for sorghum head detection and counting in this study.
The overall architecture of EfficientDet is shown in Figure 3.
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3.1.2. SSD

SSD adopts the Visual Geometry Group (VGG) model [44] as its backbone network,
which consists of 13 convolutional layers, three full connection layers and five pooling
layers. The backbone network mainly acts on the fifth convolutional layer. Compared with
AlexNet [34], VGG has stronger generalization and better performance.

The SSD algorithm has three main advantages. First, one of the core components
of the algorithm is its adoption of multi-scale features for target detection. The feature
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pyramid structure is used to set different candidate frames on different feature layers to
accommodate targets of different sizes for classification. The model has a small receptive
field in the lower feature layers and mainly detects and identifies small targets, while
a larger receptive field in the higher feature layers mainly detects and identifies large
targets [45,46]. Secondly, the model sets up anchor boxes with different ratios of height
and width. The prior box introduced by the model has a similar operation mechanism to
anchor boxes in Faster R-CNN [34]. By constantly improving the box position, the target
can be better matched. Third, the multiple data enhancement methods make the algorithm
more robust to targets with different sizes and shapes of inputs [36].

The SSD algorithm uses a combination of shallow and deep feature information for
detection, so it can have better detection accuracy for weak targets [36]. However, the
sorghum heads in this study are smaller and more difficult to distinguish compared with
other scenes of weak targets and the adaptability of the SSD algorithm needs to be further
explored. Therefore, the SSD algorithm was selected for sorghum head detection and
counting in this study. The overall architecture of SSD is shown in Figure 4.
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3.1.3. YOLOv4

The YOLO network is a new algorithm proposed by Joseph Redmon in 2015 [37].
Unlike region-based classification algorithms, its single convolutional network can predict
the target class and bounding box of the entire image by running a single algorithm. YOLO
divides the input image into S × S grids and each grid detects one object. In each grid, m
bounding boxes are obtained. For each bounding box, the network provides an offset value
of the bounding box and class probability, which are selected and further used to locate
the object in the image with higher values than a specific threshold [37]. YOLO can obtain
information from the entire image during training and testing, thus making good use of
contextual information in detecting objects [37].
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YOLOv4 is the better-performing target detection and recognition network in the
YOLO series [47]. Compared with previous versions [48], YOLOv4 adopts a multi-scale
detection algorithm and has a more complex network structure, which can effectively
detect large and small targets in images. The YOLOv4 network structure mainly consists
of three parts: feature extraction, feature fusion, and the detection head. The network of
the feature extraction part is replaced by Cross-Stage-Partial-connections (CSPDarknet53),
from Darknet53 used in YOLOv3 [49], which consists of five CSP residual resblock body
modules, each of which contains a different number of residual block structures. The feature
fusion part adopts spatial pyramid pooling (SPP) and a path aggregation network (PAN).
SPP can integrate multi-scale perceptual field information and extract top and bottom
features without any significant decrease in the network processing speed. PAN network
structure enhances the feature hierarchy with precisely located signals using a bottom-up
path enhancement method, shortens the information path between the bottom and topmost
layers, and avoids the information loss problem, while the information obtained from
the feature map after stitching contains both bottom and semantic features, realizing the
two-way fusion of feature information from deep to shallow and from shallow to deep
layers [50,51].

The YOLOv4 network has good recognition performance for significantly separated
large and medium-sized targets [52,53], though few reports have been made on small
targets for sorghum head detection. Therefore, YOLOv4 was selected for sorghum head
detection in this study. The overall architecture is shown in Figure 5.
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3.2. Programming and Model Training Environment
3.2.1. Programming Environment

For better comparison of different deep learning methods for sorghum head detection
and counting, Python was chosen as the programming language, and the TensorFlow 2.0
programming environment framework was applied for all DL models used in this study.
The computer hardware configuration included 16 GB of RAM, a 2.60 GHz CPU (Intel®

Core™ i7-9750H), and a 4 GB graphics card (NVIDIA GeForce GTX 1650).
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3.2.2. Transfer Learning and Training

In the model training process, the shallow layers of the neural network can extract
the edge, size, shape, texture, and other information of the image, which has strong
transferability. Therefore, the method of transfer learning was adopted in this study [54,55].

All backbone feature extraction networks of the three algorithms involved in this study
were frozen without training, and only the target feature detection networks were trained.
The study was conducted using the weights trained in the Pattern Analysis, Statistical
Modeling and Computational Learning (PASCAL) Visual Object Classes (VOC) dataset,
combined with the labeled image dataset for the max training epoch value of 100, with
the initial learning rate set to 1 × 10−3 and the batch size set to 2. Then, the final trained
models were obtained.

3.3. Designing the Experiments

The study first explored the performance differences of the three deep learning algo-
rithms, EfficientDet, SSD, and YOLOv4, in terms of sorghum heads detection and counting
by training the samples. The effects of overlap ratio, confidence, and intersection over
union (IoU) parameters on sorghum heads detection were then explored.

The overlap ratio is the ratio of two overlaps between the prediction frames [18,19].
It is an important indicator affecting how many prediction frames are available, which
was reflected in the sorghum head detection performance. Seven overlap ratio thresholds
(0.1–0.7) in steps of 0.1 were set to explore the impact of each DL method on sorghum head
detection at different overlap ratio thresholds.

Confidence is used to determine whether the object in the prediction box is a positive
sample or a negative sample, which are represented as the objects detected consistent or
inconsistent with ground truth samples [20]. If the object is larger than the confidence
threshold, it is a positive sample, while it is a negative sample, namely the background,
when the object is smaller than the confidence threshold. Confidence is another important
metric affecting how many prediction frames are available and also an important measure
of the accuracy of detecting sorghum heads. Seven overlap ratio thresholds (0.1–0.7) in
steps of 0.1 were set with other parameters held constant to explore the impact of each DL
method on sorghum head detection at different confidence thresholds.

The intersection of union (IoU) is the overlap ratio between the predicted bounding
box and the corresponding labeled ground truth (GT) bounding box [20,21]. IoU also affects
prediction frames and measures detection accuracy. Seven IoU thresholds (0.1–0.7) in steps
of 0.1 were set with other constant parameters to see the impact of each DL method on
sorghum head detection at different overlap ratio thresholds.

3.4. Evaluation Metrics

Four metrics, namely the precision (P), recall (R), average precision (AP), and F1
score, were utilized in this study to evaluate the above three DL models for the purpose of
sorghum head detection and counting. P is the proportion of the number of the samples
whose predicted value is the true value in the total number of samples, while R is the
proportion of the number of samples whose predicted value is the true value out of the
total number of positive values. AP is a frequently used metric for the evaluation of object
detection and can be considered the area under the P-R curve. The F1 score is the harmonic
accuracy of P and R and is their weighted average.

To calculate the above four metrics, a predicted bounding box was considered a true
positive (TP) if it overlapped more than the IoU area threshold with the corresponding
labeled ground truth (GT) bounding box. Otherwise, the predicted bounding box was
considered a false positive (FP). When the labelled GT bounding box had an IoU with a
predicted bounding box lower than the threshold value, it was considered a false negative
(FN). The formulas for calculating the four evaluation metrics are as follows:

P =
TP

TP + FP
(1)
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R =
TP

TP + FN
(2)

AP =
k

∑
i=1

P(i)∆R(i) (3)

F1 =
2PR

P + R
(4)

where k represents the number of all images in the test set, which is equal to 96 in this
study; P(i) represents the value of P when i images can be detected; and ∆R(i) represents
the change in R when the number of detected images changes from i−1 to i.

4. Results
4.1. Comparison of the Detection Results with Different Model Algorithms

Due to the salinity of the coastal soil, the distribution of sorghum heads in the exper-
imental area showed dense, moderate, and sparse conditions. Therefore, the detection
results of the three deep learning methods under different sorghum head cover conditions
were compared. The EfficientDet method detected only 42 of the 75 actual sorghum heads
with a missing rate of 44% under dense conditions, detected 13 of the 32 actual ears with
a missing rate close to 60% under moderate conditions, and detected 5 of the 12 actual
ears with a missing rate of 58.33%, and over-detected one ear under sparse conditions
(Figure 6a,d,g). Overall, the EfficientDet detection results were poor, and the algorithm suf-
fered from a large number of missed detections at different densities, where the moderate
and sparse conditions had worse results compared to dense conditions.
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For SSD, 53 sorghum heads were detected under dense conditions with a missing rate
of less than 30%, 20 sorghum spikes were detected with a missing rate of only 28.57% under
moderate conditions, and only three sorghum spikes were detected with a missing rate of
more than 70% under sparse conditions. With the decrease in sorghum head density, the
detection accuracy also decreased. In addition, SSD also had a more serious over-detection
problem under the dense conditions of sorghum spikes, with 14 ears over-detected. In
contrast to EfficientDet, SSD showed a greater improvement in detection results under both
dense and moderate conditions, but also had more serious over-detection problems. SSD
was also less effective than the EfficientDet in detection, with an actual accurate detection
rate of only 25%.

YOLOv4 had good detection accuracy under different coverage conditions. There
were six, seven, and two missed detections for dense, moderate, and sparse conditions,
respectively, at 8.00, 21.88, and 16.67%. However, the algorithm also has an over-detection
problem, but the number of over-detections was less, with four and one over-detected
sorghum heads under dense and medium conditions, respectively. The overall detection
was good.

In summary, the detection of sorghum heads was best under dense cover conditions,
and worst under moderate conditions for these three methods. Among them, YOLOv4 had
the highest detection accuracy under different coverage conditions, while EfficientDet had
the worst, with a missed detection rate of more than 40%. Although SSD was relatively
accurate under dense conditions, it also had certain over-detection problems. In conclusion,
YOLOv4 is relatively optimal in sorghum head detection.

4.2. Performance Evaluation of Different Models for Sorghum Head Detection
4.2.1. Evaluation of Positive and Negative Samples for Different Models

Based on the comparison of the detection results, the study further evaluated the
detection of positive and negative samples for the 96 test images (Figure 7). There were a
total of 3961 sorghum heads, and EfficientDet, SSD, and YOLOv4 could detect 1879, 2961
and 3608 heads, accounting for 47.44, 74.75, and 91.09% of the total number of sorghum
heads in the test set, respectively. For the detected sorghum heads, the number of positive
samples detected by the three methods accounted for 90.69, 71.43, and 94.12% of the total
number of detected samples, respectively.
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To sum up, YOLOv4 had the best detection rate of sorghum heads both in terms of
the number of detections and positive samples. EfficientDet detected the fewest sorghum
heads, but the accuracy of positive samples in the detected sorghum heads was also high.
SSD was in the middle in the number of detections, and the worst in terms of accuracy of
positive samples. Therefore, YOLOv4 could obtain the best detection results in terms of
positive and negative sample evaluation.
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4.2.2. Accuracy Evaluation of Different Methods

The four evaluation metrics of P, R, AP, and F1 were used to evaluate the detection
performance of the DL methods (Table 2). It was found that EfficientDet had the highest
precision P and the lowest recall R, and its AP and F1 score were the lowest, at 40.39% and
0.06, respectively. SSD had the lowest P and moderate R, at 84.38 and 38.05%, respectively.
Its AP and F1 score were medium, at 47.30% and 0.52. The P of YOLOv4 was 97.62%,
the recall rate was 64.20%, and the AP and F1 scores of YOLOv4 were 84.51% and 0.77,
respectively. Among the three methods, YOLOv4 had relatively good performance in the
four metrics.

Table 2. Accuracy evaluation of each model based on the whole testing dataset.

Method P (%) R (%) AP (%) F1 Scores

EfficientDet 99.20 3.13 40.39 0.06
SSD 84.38 38.05 47.30 0.52

YOLOv4 97.62 64.20 84.51 0.77

The study further compared the actual number of sorghum heads per test image in the
test set with the number of detections by different methods (Figure 8). It was found that
the three methods of EfficientDet, SSD and YOLOv4 all had good correlation between the
detected sorghum head count and the true count, with coefficients of determination (R2) of
0.90, 0.92, and 0.99, respectively. However, EfficientDet counting had the largest bias, with
a representative slope of 0.54, while YOLOv4 had the best fit with the actual number of
detections, with a representative slope of 0.99. Therefore, YOLOv4 had the best sorghum
head detection and counting results, which were closest to the actual number of sorghum
heads and better reflected the actual conditions.
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4.2.3. Comparison of Computational Efficiency of Different Methods

In addition to accuracy, detection efficiency is also an important metric for DL target
detection. The study further compared the computational efficiency of the three methods in
sorghum head detection and counting. In Figure 9, the training times of EfficientDet, SSD,
and YOLOv4 were relatively long due to the computer configuration, but SSD consumed
the least time in both training time and detection time under the uniform computer con-
figuration, with an average time of 23 s per training epoch and the most efficient average
detection time of 0.0160 s per image. YOLOv4 had the slowest training time, with an
average time of 32 s per training epoch, while EfficientDet was the most time-consuming in
terms of image detection time, with an average detection time of 0.0451 s per image, which
is 2.82-times the SSD detection time.
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Therefore, when performing sorghum head detection, the DL method could be selected
according to the actual needs. If we focused on detection efficiency, SSD was the best
method with the shortest training and detection time. Considering the detection accuracy
and efficiency, YOLOv4 had an acceptable image detection speed.

4.3. Comparison of Overlap Ratio Thresholds

It was concluded that as the overlap ratio increased, the positive and negative samples
detected by each method showed an increasing trend, with the number of positive samples
changing relatively slowly and the number of negative samples changing more dramatically
(Figure 10 and Table 3). Especially after 0.3, the number of negative samples gradually
increased significantly.

In terms of performance, P, R, AP, and F1 changed relatively slowly as the overlap
ratio increased. Each method obtained relatively optimal sorghum head detection results
with an overlap ratio of 0.3–0.5. The optimal overlap ratio for EfficientDet was 0.3, with AP
and F1 score values of 40.39% and 0.06, respectively; for SSD, it was 0.5 (AP and F1 were
47.52% and 0.53); and for YOLOv4, the rate was 0.5 (AP and F1 were 84.56% and 0.77).

Considering the number of samples and performance evaluation metrics, an overlap
ratio of 0.3 was chosen to obtain relatively optimal sorghum head detection results.
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Table 3. Performance evaluation results of each method with different overlap ratios.

Method
Evaluation

Metrics

Overlap Ratios

0.1 0.2 0.3 0.4 0.5 0.6 0.7

EfficientDet

P (%) 99.20 99.20 99.20 99.20 99.20 99.20 99.20
R (%) 3.13 3.13 3.13 3.13 3.13 3.13 3.13

AP (%) 40.32 40.35 40.39 40.35 40.36 40.27 40.04
F1 0.06 0.06 0.06 0.06 0.06 0.06 0.06

SSD

P (%) 84.36 84.39 84.38 84.39 84.31 83.99 83.49
R (%) 37.87 37.94 38.05 38.07 38.12 38.15 38.17

AP (%) 46.82 47.15 47.30 47.44 47.52 47.45 47.27
F1 0.52 0.52 0.52 0.52 0.53 0.52 0.52

YOLOv4

P (%) 97.79 97.73 97.62 97.47 97.44 96.23 89.83
R (%) 64.00 64.10 64.20 64.30 64.33 64.40 64.43

AP (%) 83.95 84.36 84.51 84.55 84.56 83.97 80.56
F1 0.77 0.77 0.77 0.77 0.77 0.77 0.75

4.4. Comparison of Confidence Values

It can be seen that as the confidence threshold increased, the number of positive
and negative samples for all three methods tended to decrease (Figure 11 and Table 4).
Especially after 0.3, the number of negative samples decreased gradually. In terms of
performance, all three methods had small changes in P, R, and F1 score as the confidence
increased, but AP decreased significantly. Although the optimal threshold was 0.1, the
counts of negative samples were high, at 7276, 25,675, and 2200, respectively, resulting in
poor performance in sorghum head detection.

Considering the number of samples and performance evaluation metrics, a confidence
threshold of 0.3 was chosen to obtain relatively optimal detection results.
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confidence thresholds (the histogram in the figure corresponds to the number of positive samples,
the line graph corresponds to the number of negative samples; blue, green, and orange correspond to
the three methods, EfficientDet, SSD, and YOLOv4, respectively).

Table 4. Performance evaluation results of each method with different confidence thresholds.

Method
Evaluation

Metrics

Confidence

0.1 0.2 0.3 0.4 0.5 0.6 0.7

EfficientDet

P (%) 99.20 99.20 99.20 99.20 99.20 10.00 100.00
R (%) 3.13 3.13 3.13 3.13 3.13 0.91 0.25

AP (%) 80.74 72.61 40.39 11.23 3.12 0.91 0.25
F1 0.06 0.06 0.06 0.06 0.06 0.02 0.01

SSD

P (%) 84.38 84.38 84.38 84.38 84.38 84.46 92.59
R (%) 38.05 38.05 38.05 38.05 38.05 20.40 23.33

AP (%) 59.41 53.80 47.30 42.10 35.18 28.58 22.19
F1 0.52 0.52 0.52 0.52 0.52 0.45 0.37

YOLOv4

P (%) 97.58 97.62 97.62 97.62 97.58 97.64 99.40
R (%) 64.23 64.20 64.20 64.20 64.23 54.83 46.07

AP (%) 89.93 87.42 84.51 73.72 63.91 54.69 46.02
F1 0.77 0.77 0.77 0.77 0.77 0.70 0.63

4.5. Comparison of IoU Thresholds

It was found that with an increase in IoU, the positive samples of the three algorithms
showed a decreasing trend, but the negative samples showed an opposite increasing trend,
and the inflection points of the positive and negative samples of the three methods were
about 0.3 (Figure 12 and Table 5). In terms of performance, the P and R values of the three
methods remained basically unchanged as IoU increased and AP and F1 scores decreased
gradually and significantly, so after the IoU threshold was equal to 0.3.

Considering the number of samples and performance evaluation metrics, an IoU
threshold of 0.3 was chosen to obtain relatively optimal sorghum head detection results.
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Figure 12. Statistical results of positive and negative sample numbers for each method with different
IoU thresholds (the histogram in the figure corresponds to the number of positive samples, the line
graph corresponds to the number of negative samples; blue, green, and orange correspond to the
three methods, EfficientDet, SSD, and YOLOv4, respectively).

Table 5. Performance evaluation results of each method with different IoU thresholds.

Method
Evaluation

Metrics

IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7

EfficientDet

P (%) 99.20 99.20 99.20 99.20 95.20 92.00 80.00
R (%) 3.13 3.13 3.13 3.13 3.00 2.90 2.52

AP (%) 40.87 40.68 40.39 39.96 37.38 33.21 22.93
F1 0.06 0.06 0.06 0.06 0.06 0.06 0.05

SSD

P (%) 91.55 90.31 84.38 63.77 29.79 8.85 1.40
R (%) 41.28 40.72 38.05 28.76 13.43 3.99 0.63

AP (%) 55.94 53.96 47.30 27.51 6.04 0.54 0.04
F1 0.57 0.56 0.52 0.40 0.19 0.05 0.01

YOLOv4

P (%) 97.77 97.77 97.62 97.16 95.82 92.67 88.10
R (%) 64.33 64.30 64.23 63.90 63.01 60.99 57.94

AP (%) 84.79 84.74 84.51 83.62 81.16 76.48 69.29
F1 0.78 0.78 0.77 0.77 0.76 0.74 0.70

5. Discussion
5.1. Effect of Different DL Methods on Sorghum Head Detection

It was concluded that EfficientDet was the least effective in sorghum head detection for
small targets, with the lowest average accuracy AP and F1 scores. Most of the detected tar-
gets were still concentrated in the low confidence region, proving that EfficientDet required
high target clarity and was suitable for large target detection, which was consistent with
the conclusion of related studies focused on detecting large targets such as crop growing
circles [56], ships [57], pedestrians [58], and solid waste garbage [59]. In addition, the
BiFPN network with integrated bidirectional cross-scale connectivity and fast normalized
fusion was largely inferior to the SSD algorithm of the VGG-16 network and the YOLOv4
algorithm of the SPP+ PANet network in terms of detection efficiency [60]. However, the
EfficientDet detected very few wrongly detected high-confidence targets, i.e., among the
1879 sorghum heads detected in Figure 7, there were only 175 wrongly detected negative
samples, and the number of negative samples accounted for only 9.31% of the number
detected, indicating that this method could have high detection accuracy if sufficiently
detailed information could be provided [57,60]. Meanwhile EfficientDet had a medium
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number of parameters and the time required for model training was in the middle among
the three methods [56].

Compared with EfficientDet, SSD had better results on the detection of sorghum heads.
The number of sorghum heads detected and the AP and F1 scores were all higher than
EfficientDet, but lower than YOLOv4, mainly because SSD is based on the VGG-16 network
with deeper network layers. In the process of convolution, the effective feature information
of the sorghum heads extracted by the shallow feature layer was less, causing it to be
insufficient to accurately detect the sorghum head targets, generating a large number of
negative samples with low confidence. The deeper detection layers only detected fewer but
higher confidence targets [46,61], causing SSD to detect a higher number of sorghum heads,
but the detected results had more wrongly detected sorghum heads. In terms of algorithm
efficiency, SSD had the least number of parameters and the shortest training time among
the three methods, and also its detection efficiency was the highest because its detection
layers detected the target alone and finally only needed to be fused by FNMS to obtain the
detection results, which was also consistent with the findings of Liu et al. [36], Yi et al. [46]
and Aziz et al. [62].

YOLOv4 had the highest detection count and highest R, AP, and F1 scores for sorghum
head detection. The main reason was that YOLOv4 used the PANet network structure
to fully fuse the features of different feature layers. Compared to EfficientDet, which
required higher clarity of sorghum heads, and the SSD network, which predicted targets for
each feature layer individually, the YOLOv4 algorithm had better sorghum head detection
results. The YOLO series of algorithms has been used for detecting corn plant seedlings [19],
rice ears [10], cotton seedlings [63], cherry fruit [64], apples and apple flowers [49,51], and
greenhouses [65], all of which have more extensive applications and better detection results.
However, there are more convolutional layers stacked on each other in the CSPDarknet53
backbone network of YOLOv4, so that YOLOv4 had a larger number of parameters and
floating-point computation, and its number of parameters was the largest among the
three methods. This resulted in the longest training time, but the detection efficiency was
better than EfficientDet with BiFPN network structure and was only less efficient than
SSD detection.

Therefore, considering its recognition accuracy and efficiency, YOLOv4 should be preferred
as the optimal method for sorghum head detection and counting in practical applications.

5.2. Effect of Model Parameters on Sorghum Head Detection

In addition to the differences in sorghum head detection caused by different network
structures and depths of the deep learning methods [4,66], the differences in overlap ratio,
confidence, and IoU in sorghum head detection are also discussed separately.

Overlap ratios have been less explored in previous research, and the default threshold
of 0.5 has been commonly used [18,19,52,67]. Our results show that the overlap ratio
was neither larger nor smaller: with a larger overlap ratio and a weakened ability to
detect sorghum heads, while the detection results also contained some anchor frames of
mutual inclusion relationships, causing certain over-detection problems (Figure 10). This
conclusion was consistent with the findings of Ma et al. [4] on wheat ear counting. Through
experiments, we found that the optimal interval of the overlap ratios on different methods
was 0.3–0.5. When combining the number of positive and negative samples, it finally
obtained the overlap ratios at 0.3, which balanced all factors and yielded better sorghum
head detection.

For each UAV image, each DL method returned a set of prediction anchor frames with
a confidence value (threshold range 0–1). By setting the confidence threshold, the NMS
directly filters out prediction anchor frames smaller than this confidence threshold [20].
On the other hand, the NMS also removed images in the high overlap region with a
high overlap ratio with the maximum confidence prediction frame [68] and the impact
of this part was mainly controlled by setting the threshold value of the overlap ratios.
Unlike previous studies where the default confidence threshold of 0.5 was commonly
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used [20,53,69], this study concluded that a confidence of 0.3 was the best for sorghum head
recognition. The main reason was that the sorghum heads in this study were weak, small
targets on the image and the confidence returned by the prediction frame was generally
not high due to factors such as the UAV image, the sorghum heads themselves, and the
environmental background (see Section 5.3 for details). A high confidence threshold setting
would eliminate many correct prediction frames and affect the final detection results. On
the contrary, a small confidence threshold would cause a geometric increase in negative
samples and affect the final detection.

Most of the previous studies set IoU at the default 0.5 or 0.75 for the threshold when
evaluating the performance of common algorithms [8,15,20,21,53,68,70]. Our results found
that the number of positive and negative samples of the three methods rapidly decreased
when IoU exceeded 0.3, while AP and F1 values rapidly decreased, and detection perfor-
mance rapidly decayed in sorghum head detection. Therefore, the optimal IoU threshold
was 0.3, indicating that in practical target detection studies, appropriate IoU thresholds
need to be set according to the size of different detection targets. The sorghum heads in
this study are small targets or have a high overlap ratio, so a smaller IoU threshold needed
to be selected, and this conclusion was consistent with the results of Velumani et al. for
corn planting density [69]. On the contrary, for medium and large targets or targets with a
low overlap ratio, an IoU threshold of 0.5 or more was selected to obtain better detection
results; for example, the average IoU detected by Malambo et al. exceeded 0.8 [71] and the
IoU value of Tian et al. for the detection of apples exceeded 0.85 [49].

5.3. Effects of Other Factors

In addition to DL methods and associated model parameters, there were many factors
that affected sorghum head detection and counting performance from three main aspects:
the UAV image, the sorghum head itself, and the environmental context [4,5].

The main influencing factor in terms of UAV images was the spatial resolution of
the images [4], which was an important indicator affecting the accuracy of sorghum head
detection, and was mainly affected by the UAV flight altitude [8], which in this study was
20 m and the spatial resolution of the image was 1.1 cm. Compared to existing studies
on crop spike detection and counting that commonly used millimeter-level (generally
less than 5 mm) spatial resolution images [4,6,10,18,20,22,71], the sorghum head targets
in this study were smaller and their boundaries were more blurred in the images used
in this study at the centimeter level. The lower spatial resolution directly affected the
learning performance of the DL methods [72,73], which undoubtedly hindered sorghum
head detection and counting from the UAV images. Fortunately, by studying the impact of
sorghum head detection with three different DL methods and related parameters in this
study, we found that we could also obtain better sorghum head detection at centimeter-
level spatial resolution using the YOLOv4 method combined with appropriate overlap
ratios, confidence, and IoU. However, the centimeter-level spatial resolution images had
geometrically increased image elements compared to previous satellite data at the meter,
100-m, or kilometer level. The collected UAV images generally needed to be cropped into
many small images for DL training, detection, and counting due to the detected window
size and computational performance limitations of DL methods [4,5,7,68]. In this study,
the original UAV images were cropped to 416 × 416 pixels for sorghum head detection,
which resulted in duplicate identification and secondary counting of sorghum heads in
the cropped edge regions, resulting in overestimation of the results [4,5]. In subsequent
studies, more efficient image processing algorithms and image fusion counting algorithms
should be used to avoid duplicate detection and secondary counting problems.

The main indicators that affect the detection accuracy of sorghum heads themselves
are planting density and growth period [3,4,74]. (1) In terms of planting density, it has
been generally accepted that as planting density increases, crops overlap and shade each
other, which, in severe cases, causes some duplicate detection, a large number of missed
detections, underestimation of crop counts, and a reduction in the performance of DL
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methods [5,8,10,18]. However, the opposite conclusion was drawn in this study and it was
found that the detection accuracy tended to be worse for moderate and sparse conditions
than for dense conditions (Figure 6). The main reasons involved two aspects. First, the
sample plot of this experiment was not planted with dense sorghum varieties, and the
density of sorghum planted was only 75,000–82,500 plants/ha. There were few problems
with sorghum heads overlapping and shading each other. At the same time, affected by the
high salinity of the coastal soil, the overall plant growth condition was moderate, and there
was a plant loss phenomenon. Under the condition of relatively dense sorghum heads, the
methods had fewer missed detections and over-detections, and had their best detection
accuracy. Second, for sorghum heads in sparse conditions, the soil, weeds, and other
backgrounds (discussed in the next paragraph) could introduce noise, causing a significant
decrease in detection accuracy. (2) In terms of growth period, the existing studies have
generally argued that the texture information of crop spikes at the flowering stage is not
obvious and would result in poor detection accuracy due to insufficient performance of
features learned by DL methods [3,4], while the texture information of crop spikes at the
filling-ripening stage (especially late filling stage) is obvious and differs significantly from
the plant canopy, yielding better detection accuracy [15,74,75]. The UAV acquisition date
for this study was also selected for the maturity stage (3 October) when the difference
between the sorghum heads and the plant canopy is large, which was consistent with the
growth stage. However, there was some immature discoloration of the sorghum head in
the grouting stage due to ground conditions, which introduced detection errors. A separate
study is needed for different colors of sorghum heads. In addition to these two main factors,
different crop varieties also affect the detection accuracy of DL to a certain extent [3], but
the sorghum samples used in this study were of the same variety, so variety differences
were not a factor in detection accuracy in this study.

The factors that affect the accuracy of sorghum head detection in terms of environmen-
tal context mainly include the meteorological conditions of insolation [76], wind speed [5],
and soil and weeds [6]. Previous studies have shown that strong insolation can seriously
affect the quality of UAV images. Strong insolation could bring shadows to high spatial
resolution UAV images and it could have a serious negative impact on crop head detec-
tion, leading to false detection [15,76]. Meanwhile, under strong direct light conditions,
highlighted areas of soil, weeds, and leaves can have duplicate misdetection with sorghum
heads in UAV images [6,21], so, in practice, it is best to choose cloudy or soft light condi-
tions to reduce shadows for UAV data acquisition [6,15]. Wind speed mainly affects the
image quality of the UAV imagery and thus indirectly affects the accuracy of sorghum
head detection [5,77]. The UAV in this study was flown in a Force 2 wind, which had a
small impact on the quality of the images but not enough to hinder the subsequent research
conducted on sorghum head detection and counting. The impact of soil and weeds was
mainly due to their color and texture being similar to sorghum heads [5,77], which led to
errors in detection. Furthermore, the lack of effective field management at the experimental
site due to the epidemic had resulted in sparse sorghum plants mixed with a many dense
weeds such as reeds and alkali puffs. The presence of a large number of plant tassels and
panicles impeded the counting of sorghum heads, resulting in poorer detection accuracy
under sparse conditions. Subsequent studies could be conducted with the introduction of
image segmentation techniques to remove background effects such as soil and weeds to
enhance accuracy.

6. Conclusions

In this study, we evaluated the performance differences of three DL methods, Efficient-
Det, SSD, and YOLOv4, for sorghum head detection in RGB UAV imagery. Based on this,
we further analyzed the effects of model parameters such as overlap ratio, confidence, and
IoU and concluded the following.

(1) Among the three DL methods, YOLOv4 had the highest accuracy in sorghum head
detection, with a detection rate of positive samples at 94.12%, P of 97.62%, R of 64.20%,
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and AP and F1 scores of 84.51% and 0.77, respectively. Although the average elapsed
time of the training epoch was 32 s, which was not as efficient as EfficientDet and SSD,
the image detection time was 0.0451, which was more efficient than EfficientDet.

(2) For the analysis of the model parameters, it was concluded that the highest sorghum
head detection accuracy was obtained when the overlap ratios, confidence, and IoU
were each 0.3.

Although YOLOv4 is a relatively optimal method for sorghum heads detection and
can obtain the best detection results when the overlap, confidence, and IoU are all set at
0.3, it is still necessary to focus on the algorithm structure, prediction frame size, training
efficiency, and repetition detection issues to further improve the algorithm performance for
sorghum heads detection and counting in subsequent studies for the future monitoring
and yield estimation of sorghum in the field using UAV remote sensing.
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