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A B S T R A C T   

While annual urban growth rates are declining in many highly urbanized regions of the world, Southeast Asia 
(SEA) is experiencing an accelerated urbanization process in small and medium-sized cities (SMCs), to which 
little attention has been paid. High-precision urban land information is a prerequisite for analyzing urban 
expansion characteristics for SMCs. However, accurately extracting urban land information for SMCs in SEA has 
remained challenging, considering the lower urban land density, higher vegetation cover, and complex landscape 
mosaic. This study systematically analyzed the capacities of a set of statistical indicators of time-series optical 
and synthetic aperture radar (SAR) images in impervious surface extraction. Then, an automatic urban land 
mapping method was developed by integrating time-series optical and SAR statistical indicators to map urban 
land area at a finer spatial resolution. The method was applied to Vientiane, Laos, as a case to explore the 
characteristics of the rapid urbanization process over 2000–2019 and problems related to sustainable urban 
development. Our results show the statistical indicators of SWIR1, SWIR2, VV, and VH can distinguish urban 
land from bare soil and cropland, and statistical indicators of NDVI can separate urban land from seasonal 
vegetated land. The overall accuracies of our products on Vientiane exceeded 95%, and the kappa coefficient was 
close to 0.90. The study found that the city was experiencing accelerated urban growth, and the urban land area 
increased from 25.93 km2 in 2000 to 37.23 km2 in 2010 and 62.12 km2 in 2019. Spatially, the urbanization 
patterns of Vientiane showed a certain degree of sprawl, especially in the suburbs. Rapid urban sprawl poses a 
significant threat to the urban environment and sustainable development.   

1. Introduction 

Southeast Asia (SEA) has witnessed a notable increase in the ur-
banization process since 2000. Over the past two decades, the region has 
become one of the most economically active regions in the world due to 
the increased role of ASEAN (Association of Southeast Asian Nations) in 
the world economy (Schneider et al., 2015). With the acceleration of 
industrialization, village dwellers have moved to and settled in cities for 
the improvement of their livelihood. As a result, many small and me-
dium sized cities (SMCs) have expanded rapidly (UNDESA, 2019). In 
contrast to rates less than 1% in many developed countries (UNDESA, 
2012), the annual urban growth rate in SEA is relatively high at 2.38%. 
Rapid urbanization and urban land encroachment are highly likely to 
bring adverse ecological, economic, and social consequences (Sharifi 

et al., 2014). Although many studies have been implemented to explore 
rapid urbanization, most studies on remotely sensing urban expansion 
have focused on high- or middle-income countries such as the U.S. or 
China (Reba and Seto, 2020), or on large cities and mega-cities with 
more than 5 million people (Taubenböck et al., 2012), while little 
attention has been paid to the rapid expansion of SMCs in SEA. 

Remote sensing-based impervious surface extraction is one of the key 
issues in urban expansion studies. Since 1980 s, many methods have 
been proposed to extract impermeable surfaces from multi-source 
remotely sensed images (Wang and Li, 2019), most of which were 
based on optical remote sensing images. Considering the relatively 
dispersed urban morphology, Landsat-like data with 30 m spatial reso-
lution have often been used for urban analysis (Wang et al., 2019; Liu 
et al., 2019; Deng and Zhu, 2020). However, spectral confusions among 
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different urban land covers are main problems when a single date or 
multiple-date imageries were used for classification. For example, bare 
soil is spectrally confused with bright impermeable surfaces. In addition, 
the acquisition of enough good-quality (not affected by clouds and cloud 
shadows) observations is another challenge in cloudy regions (Hender-
son and Xia, 1997; Leinenkugel et al., 2011). Unlike optical data, syn-
thetic perture radar (SAR) has all-weather observation capability and is 
not affected by clouds, thus can reduce the errors induced by bad-quality 
observations in optical images (Wang and Li, 2019). Moreover, SAR can 
capture the structural and dielectric properties of the Earth’s surface 
materials and are sensitive to geometric features of urban land surfaces, 
which can be complementary to spectral features of optical images (Lin 
et al., 2020). Recent years, combing SAR and optical images to improve 
the impervious surface estimation has become popular in remote sensing 
domain. Correspondingly, several global land cover datasets (including 
impervious surface category) and thematic urban impervious surface 
datasets have been generated and applied to global- or national- scale 
impervious surface change analysis or metropolitan expansion moni-
toring (Gong et al., 2020; Sexton et al., 2013). However, when applied to 
SMCs in SEA, the accuracy of these data is still in question. Fluctuating 
variations in ground objects remain a major challenge for both optical 
and synthetic aperture radar imaging (Wang and Li, 2019). 

To tackle this problem, a few studies have used time-series data to 
reduce the errors in land cover classification as they can capture the 
phenological difference of vegetated land surface (Guan et al., 2015; 
Huang et al., 2020; Sun et al., 2019; Wang et al., 2019). The approaches 
can be grouped into two categories according to the way temporal in-
formation used: time series similarity measurement and time series 
statistical metrics (Lhermitte et al., 2011). In the former method, time 
series profile of each pixel or object was reconstructed, then compared 
with reference time series by using distances. The key process generally 
consists of comparing data in order to estimate a (dis)similarity (Petit-
jean et al., 2012). This method requires dense higher quality images to 
build a whole time series, which limited its use in cloud-prone tropical 
SEA. Meanwhile, in time series statistical metrics approach, the statis-
tical features of different types of land cover evolution were calculated 
from time series data stack, then fed into a classifier to improve the 
capacity for discernment among different categories (Wang et al., 2019). 
Statistical metrics have less stringent requirements regarding cloud 
contamination in time-series remote sensing images. In addition, sta-
tistical computation is simpler and more efficient compared with other 
time-series analysis methods. In our previous research, statistical met-
rics from time series optical data were employed in land cover classifi-
cation, and such metrics showed high capacity in identifying bright 
impervious surfaces due to the robustness in characterizing seasonal 
changes in the land surface (Huang et al., 2020). We supposed that 
incorporating of time series SAR should contribute to the urban imper-
vious surface discriminating, especially for dark impervious surface with 
different material. 

Although a few studies have tested time series SAR data for land 
cover classification at large scale, in which a simple threshold method 
was applied to SAR statistical indicators to generate the potential urban 
land mask (Sun et al., 2019; Gong et al., 2020), a fixed threshold cannot 
be applied to delineate the urban impervious land at a finer scale 
considering the diverse urban landscape and complex impervious ma-
terial cover. An accurate and robust urban land mapping method that 
integrates time series optical and SAR data is urgently needed for sup-
porting small and medium-sized cities studies. 

To address these issues, we proposed a synergistic approach to 
integrating the complementary optical and SAR data under the machine 
learning framework using a set of robust statistical metrics, improve the 
accuracies of urban impervious surface for SMC urban expansion 
studies. The objectives of this study are: (1) to investigate the capacities 
of different statistical indicators of time-series optical and SAR images in 
urban impervious surface extraction; (2) to integrate time-series SAR 
and optical indicators to map urban land area for SMCs at a finer spatial 

resolution; and (3) to apply our method to investigate the temporal and 
spatial patterns of urban expansion of Vientiane over the period 
2000–2019. 

2. Material and methods 

2.1. Study area 

Vientiane, the capital of Laos, is located near the middle of the 
country’s north–south extent, on the bank of the Mekong River (Fig. 1). 
It features a tropical climate with an average annual maximum and 
minimum temperature of 31.1℃ and 21.8℃, respectively. The annual 
average rainfall is 1,660.5 mm (WWIS, 2012). Since the Laos govern-
ment initiated the New Economic Mechanism (NEM) in 1986, Vientiane 
has received substantial government and foreign direct investment to 
improve the transport infrastructure (Sharifi et al., 2014). As a result, 
Vientiane is experiencing a fast urban expansion which can be typically 
observed in many SMCs of SEA (UNDESA, 2012). According to the 
master plan of central Vientiane Capital (planned by the JICA study 
team, 2010), the urban area in this study is surrounded by the ‘450 Year 
Road’, Route 13 North, and Rue Thadeua, with the Mekong River as its 
natural border to the south (Fig. 1). Despite the rapid expansion, most of 
the suburban area remains essentially pre-industrial, and has a high 
level of forest coverage, also with large areas of paddy fields and 
marshlands. 

Vientiane has five main land cover types: urban land, bare soil, 
forest, cropland, and water body. In this study, urban land refers to 
places dominated by the ’built environment’, including all impervious 
surfaces and human-constructed elements (e.g., roads, buildings) 
(Schneider et al., 2010). In optical images, urban land composed of 
metal or new concrete has high reflectance, making it appear bright, 
while urban land made up of asphalt or old concrete has low reflectance 
and tends to appear dark. Therefore, we further divided urban land into 
bright urban land and dark urban land. 

2.2. Data and processing 

2.2.1. Sentinel-2 and Landsat 
70 Sentinel-2 images for 2019, 9 Landsat TM images, 13 Landsat 

ETM + images for 2010, and 18 Landsat TM images and 5 Landsat ETM 
+ images for 2000 were collected from Google Earth Engine (GEE). 
Good observations were obtained by removing clouds and cirrus using 
the BQA (Landsat) or QA60 (Sentinel-2) bitmask band with cloud mask 
information. Three widely used vegetation indices including Nominal-
ized Difference Vegetation Index (NDVI) (Tucker, 1979), Enhanced 
Vegetation Index (EVI) (Huete et al., 2002; Huete et al., 1997), Land 
Surface Water Index (LSWI) (Xiao et al., 2004; Xiao et al., 2005) were 
calculated for each imagery using Eqs. (1)–(3): 

NDVI =
ρNIR − ρRed

ρNIR + ρRed
(1)  

EVI = 2.5 ×
ρNIR − ρRed

ρNIR + 6 × ρRed − 7.5 × ρBlue + 1
(2)  

LSWI =
ρNIR − ρSWIR1

ρNIR + ρSWIR1
(3) 

where ρBlue, ρRed, ρNIR, and ρSWIR1 are the surface reflectance values of 
Blue, Red, NIR, and SWIR1 bands for Landsat and Sentinel-2 images. 

2.2.2. Sentinel-1 and ALOS PALSAR-2 
122 Setninel-1 images for 2019 were collected from GEE. Sentinl-1 

data have dual-polarization of vertical transmitting with vertical 
receiving (VV) and vertical transmitting with horizontal receiving (VH) 
bands (Torres et al., 2012). Sentinel-1 data in GEE was pre-processed 
with the Sentinel-1 Toolbox using the orbit metadata update, GRD 
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border noise removal, thermal noise removal, radiometric calibration, 
and terrain correction. A Refined Lee filter was applied to de-speckle the 
images. The final terrain-corrected values were converted to decibels 
(dB) in each pixel via log scaling 10log10(DN). 

The ALOS PALSAR-2 mosaic imagery in 2010 were used in the urban 
land identification in 2010. PALSAR-2 imagery in GEE was ortho-recti-
fied and slope corrected using the 90 m SRTM Digital Elevation Model. 
For each year and location, the strip data were selected through visual 
inspection of the mosaics available over the period, with those showing 
minimal response to surface moisture preferentially used. The DN values 
in PALSAR HH and HV bands were converted to gamma naught values in 
decibel units (dB) using γ0 = 10log10 (DN2) − 83.0 (Shimada et al., 
2009). The 25 m PALSAR imagery was resampled into 30 m imagery to 
match the spatial resolution of Landsat imagery using nearest neighbor 
interpolation. 

2.2.3. Reference data for cross validation 
We collected three other urban land products to compare the con-

sistency and differences with our urban land result in 2019: (1) 10 m 
Finer Resolution Observation and Monitoring of Global Land Cover 
(FROM-GLC10) for 2017 (Gong et al., 2019). We used the impervious 
surface layer labeled as 80 in FROM-GLC10 to compare our results; (2) 
20 m Global Human Settlements Layer using Sentinel-1 (GHS-S1) data 
for 2016 (Corbane et al., 2018); and (3) an annual global urban dy-
namics product, the 30 m Global Artificial Impervious Area (GAIA) 
between 1985 and 2018 (Gong et al., 2020). Annual impervious area 
maps were merged to obtain the urban land layer in 2018. 

2.2.4. Ground reference for training and accuracy assessment 
1,000 sample points were randomly generated and manually inter-

preted for approach training. For each point, historical very high reso-
lution (VHR) Google Earth images, and available Landsat and Sentinel-2 
imagery in 2000, 2010, and 2019 were used to interpret the land use 
type. The points without clear land cover information due to unavailable 
reference or cloud interference were excluded. Points with inconsistent 
land use types in the three years will also be excluded. The points that 
maintain the same land use type in all 3 years will be selected. In total, 
70 bright urban land points, 86 dark urban land points, 64 bare soil 
points, 72 forest points, and 64 cropland points were used as stable 
training data over the three target years. 

Another 1000 sample points were prepared for accuracy assessment 
of the resultant urban land and non-urban land map for each year. In 
total, urban land had 230, 283, and 342 validation points, and non- 
urban land had 770, 717, and 658 validation points for years 2000, 
2010, and 2019, respectively. Additionally, to compare the accuracy of 
our urban land results with other urban land products, we also labeled 
these 1000 validation points for 2016, 2017, and 2018. 

2.3. Urban land extraction framework 

We proposed an automatic urban land mapping framework by inte-
grating time-series optical and SAR imagery to extract urban land areas 
in Vientiane, Laos, in 2010 and 2019. In order to explore the process of 
urban expansion, we also extracted urban land areas for 2000 using 
time-series optical data only, due to the lack of available SAR data. The 
spatial resolution of the urban land results is 10 m for 2019 and 30 m for 
2000 and 2010, depending on the spatial resolution of the available 
satellite images. The overall framework for the urban land extraction in 
2019 is shown in Fig. 2. The urban land extraction process for 2010 and 
2000 is similar to that of 2019. 

2.3.1. Water area masking 
Before extracting the urban land, we first excluded water bodies in 

each year, as water has similar backscattering characteristics with some 
impervious surfaces in SAR imagery (Zou et al., 2018) and has similar 
spectral reflectance with dark impervious surfaces in optical imagery 
(Lu and Weng, 2006). Pixels with a water frequency (WF) value ≥ 80% 
were identified as a year-long water body (Qin et al., 2017). WF per pixel 
was calculated based on the criteria in Eq. (4) (Xiao et al., 2006): 

WF =
NLSWI− EVI≥0

NGqos
(4) 

where NLSWI− EVI≥0 is the number of observations with LSWI − EVI ≥ 0 
from high-quality observations; NGqos is the number of good-quality 
observations; and WF is the ratio of observations with LSWI − EVI ≥ 0 
out of all good observations in 1 year. 

2.3.2. Deriving temporal statistical indicators 
Time-series NDVI statistical indicators have been proved useful for 

land cover extraction (Qin et al., 2017; Sun et al., 2019). SWIR bands are 

Fig. 1. Location of the study area.  
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also suited for distinguishing different types of impervious surfaces 
(Herold et al., 2003). In our study, we calculated the mean and standard 
deviation values of NDVI, SWIR1 and SWIR2 (i.e., NDVI_max, NDVI_-
mean, NDVI_std, SWIR1_mean, SWIR1_std, SWIR2_mean, SWIR2_std) 
from annual time-series optical images in 2019, 2010, and 2000. We also 
calculated the maximum value of NDVI (i.e., NDVI_max). Similarly, the 
mean and standard deviation values of VV and VH (i.e., VV_mean, 
VH_mean, VV_std, and VH_std) were also calculated from annual time- 
series Sentinel-1 SAR images in 2019. All these statistical indicators 
were further used as classification features to differentiate urban 
impervious surfaces from other land cover types. The features for urban 
land classification in 2000, 2010, and 2019 are shown in Table 1. 

2.3.3. Urban land extraction 
Random Forest (RF) classifier (Belgiu and Drăguţ, 2016) was selected 

to generate an urban land map using the statistical indicators (Table 1) 
of the specific year. RF classifier has high efficiency and high accuracy in 
processing high-dimensional, massive data compared with other ma-
chine learning algorithms (Belgiu and Drăguţ, 2016). Considering the 
difference in data sources used for each year, different features were 
incorporated to construct the RF model for urban land classification in 
2000, 2010, and 2019 (Table 1). The number of decision trees (num-
berOfTrees, the number of trees created by randomly selecting samples 
from training samples) was set to 100. The other parameters were set by 
default in GEE in order to avoid overfitting, as recommended by Liaw 
and Wiener (2002). 

2.3.4. Accuracy assessment of the urban land maps 
The urban land classification results in 2019, 2010, and 2000 were 

validated using confusion matrices (Foody, 2002). Indicators including 
overall accuracy (OA), kappa coefficient, producer’s accuracy (PA), and 
user’s accuracy (UA) were used to quantitatively assess the accuracy of 
urban land maps. Moreover, the three other urban land products (i.e., 
FROM-GLC, GHS-S1, and GAIA) were also evaluated in comparison with 
our results. 

2.4. Urban growth analysis 

2.4.1. Urban expansion dynamics 
Two indicators including urban expansion rate (ER) (Eq. (5)) and 

annual growth rate (AGR) (Eq. (6)) were used to evaluate the temporal 
rate of urban expansion (Zhao et al., 2018). 

ER =
ST2 − ST1

ST1
×

1
N
× 100% (5)  

AGR =

[(
ST2

ST1

)1
N

− 1

]

× 100% (6) 

where ST2 and ST1 are the urban land area at times T2 and T1, 
respectively, and N is the interval between two periods (in years). 

An urban land density distance function f (Eq. (7)) proposed by Jiao 
(Jiao, 2015) was used to fit the decay of the urban land density to the 
distance to the city center: 

f (r) =
1 − c

1 + eα((2r/D)− 1 ) + c (7) 

where f is urban land density, r is the distance from a concentric ring 
to the urban center, e is Euler’s number, and α, c, and D are parameters. 
The parameter c represents the background value of urban land density 
in the hinterland of a city, D indicates the approximate extent of a city, 
and α is used to measure the compactness of the city, where a higher 
value indicates a more compact urban form. Parameters c and D will 
increase as the urban area expands (Jiao, 2015). 

Concentric ring division is widely used to analyze urban land density 
variation, which ensures equal measurement of urban growth in any 
direction to identify the possible trend in certain positions (Jiao, 2015; 
Xu et al., 2019a). We calculated urban land density based on concentric 
ring partitioning, i.e., the ratio of urban land area to the buildable area 

Fig. 2. Workflow for mapping urban land in Vientiane in 2019.  

Table 1 
Features used for urban land extraction.  

Year Optical statistical indicators Features of SAR imagery 

2000 NDVI_max, NDVI_mean, NDVI_std, 
SWIR1_mean, SWIR1_std, 
SWIR2_mean, SWIR2_std derived from 
Landsat time series 

SAR data unavailable 

2010 NDVI_max, NDVI_mean, NDVI_std, 
SWIR1_mean, SWIR1_std, 
SWIR2_mean, SWIR2_std derived from 
Landsat time series 

HH, HV of PALSAR-2 

2019 NDVI_max, NDVI_mean, NDVI_std, 
SWIR1_mean, SWIR1_std, 
SWIR2_mean, SWIR2_std derived from 
Sentinel-2 time series 

VV_mean, VV_std, VH_mean, and 
VH_std derieved from Sentinel-1 
time series  
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in each ring. We took the birthplace of Vientiane (around the govern-
ment quarter) as the city center by inspecting historical VHR images in 
Google Earth. Considering the extent of Vientiane city, we tested the 
effect of different radius values of concentric ring (namely 0.5 km, 1 km, 
and 1.5 km) on urban expansion. Although they had a subtle effect on 
the calculation results, the overall trends were similar. We finally 
selected 0.5 km as the buffer distance. Then, a series of equidistant (0.5 
km) concentric rings were created from the city center to the outermost 
ring that almost covers the entire urban land. The non-linear least 
squares method was employed to fit the urban land density distance 
function with Matlab 2017a (Martinez et al., 2017). 

2.4.2. Urban expansion patterns 
Urban expansion is generally divided into infilling, edge-expansion, 

and leapfrogging (Fei and Zhao, 2019). Infilling refers to the formation 
of new urban patches by filling gaps within existing urban patches. 
Edge-expansion is defined as a new urban patch extending outward 
along the edge of existing urban patches. If the expanded patch does not 
overlap with any existing urban patches, then it is considered leap-
frogging. These three types of urban expansion were identified using the 
metric E (Eq. (8)) (Fei and Zhao, 2019): 

E =
Lcom

Pnew
(8) 

where Lcom is the length of the common border between the new 
urban patch and existing urban patches, and Pnew is the perimeter of the 
new urban patch. Leapfrogging occurs when E = 0, edge-expansion 
when 0＜ E ≤ 0.5, and infilling when 0.5 ＜E ≤ 1. 

3. Results 

3.1. Capacities of different statistical indicators in differentiating 
impervious surface from other land cover 

Fig. 3 shows the two-dimensional scatter plot/density maps of the 

representative urban land pixels along with three other types of non- 
urban land pixels (i.e., forest, cropland, and bare soil) collected from 
Vientiane in 2019. Different land cover types hold their specific distri-
bution patterns in SWIR, NDVI, VV and VH statistical indicators. The 
SWIR_mean values for urban land and bare soil are around 0.2–0.4 and 
greater than 0.4, respectively. The average SWIR_std values for urban 
land and bare soil are around 0.05–0.075 and 0.1, respectively. There-
fore, SWIR is helpful to distinguish between urban land and bare soil, as 
bare soil is larger than urban land in both the mean and standard de-
viation of SWIR annual time series (Fig. 3a, b). NDVI_max can effectively 
distinguish urban land from forest and cropland, as urban land has a 
relatively low amount of vegetation throughout the year, and its 
NDVI_max values are around 0.2, while forest and cropland have large 
vegetation during the peak growing season and their NDVI_max values 
are around 0.9 and 0.7, respectively. The NDVI_mean and NDVI_std can 
reflect the phenological characteristics and inter-annual varieties of 
vegetation (e.g., forest, cropland). The NDVI_mean values in cropland 
(around 0.3) and forest (around 0.7) are significantly greater than in 
urban land (around 0) (Fig. 3c). NDVI_mean values for bare soil (around 
0.1) are also greater than those for urban land. Furthermore, cropland 
and forest exhibited a larger NDVI_std value than urban land, indicating 
NDVI on urban land remains relatively stable at smaller values 
throughout the year (Fig. 3d). 

SAR imagery doesn’t have an apparent difference in dark urban land 
and bright urban land, so the values of VV and VH statistical indicators 
of dark urban land and bright urban land samples are very similar 
(Fig. 3e, f). Urban land and other land cover types differ significantly in 
VV and VH statistical indicators values. For example, both dark and 
bright urban land have higher values in VV_mean and VH_mean due to 
their strong corner reflectance, which is significantly higher than bare 
soil and cropland. Forest likewise has higher VV_mean and VH_mean 
values due to its complex structure and internal reflective conditions, 
but is still weaker than those of urban land (Fig. 3e, f). The roughness of 
urban land, bare soil and forest varied slightly throughout the year, so 
the variation in backscatter values is small, resulting in small standard 

Fig. 3. Two-dimensional scatter plots of (a) SWIR1_mean and SWIR1_std, (b) SWIR2_mean and SWIR2_std, (c) NDVI_mean and NDVI_max, (d) NDVI_mean and 
NDVI_std, (e) VV_mean and VV_std, and (f) VH_mean and VH_std of Vientiane in 2019. The red crosses are the core values of typical land cover type distributions. (BS: 
Bare soil; BUL: Bright urban land; DUL: Dark urban land). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
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deviations of VV and VH for these types. Bare soil has slightly larger 
standard deviation of VH than urban land and forest, as VH is more 
sensitive to changes in soil moisture. The standard deviation of VV and 
VH for cropland is greater than for urban land, forest, and bare soil 
because the roughness varies greatly during the year due to sowing, 
growing, and harvesting. Therefore, the mean values of VV and VH are 
useful to distinguish urban land from cropland and bare soil, and the 
standard deviation of VV and VH are useful to identify urban land from 
cropland. 

In summary, statistical indicators of SWIR1, SWIR2, VV, and VH can 
distinguish urban land from bare soil and cropland, and statistical in-
dicators of NDVI can separate urban land from vegetation (cropland and 
forest). The optical and SAR statistical indicators can be integrated to 
assist in a more accurate urban land classification. 

3.2. Urban land extraction and accuracy assessment 

The urban land maps derived in 2000, 2010, and 2019 are shown in 
Fig. 4. We calculated the confusion matrix based on the urban land and 
non-urban land validation points for each year. The overall accuracies of 
the three urban land maps exceeded 95%, considered good results for 
remote sensing image-based analysis. The kappa coefficient of all results 
was close to 0.90. The PAs were 89.13%, 92.93%, and 95.03%, and the 
UAs were 90.31%, 92.61%, and 95.59% for 2000, 2010, and 2019, 
respectively. 

We also verified and compared the accuracy of our optical/SAR- 
based urban land map in 2019 with other urban land products, using 
the validation points in the same period as each product. Fig. 5 showed 
the spatial distributions of the urban land maps from FROM-GLC10 
(2017), GHS-S1 (2016), and GAIA (2018). Generally, our urban land 
map in 2019 and the three public urban land products showed a similar 
spatial pattern. Our results had the highest overall classification accu-
racy of 96.80% among the four urban land products (Fig. 6). In partic-
ular, the PA of our results reached 95.03%, while the PA values of 

FROM-GLC10 and GAIA were around 80% but only 55.56% for GHS- 
S1 (Fig. 6), which indicates the omission error is relatively high in the 
existing public products, resulting in underestimation of urban land 
area, especially for GHS-S1. 

3.3. Dynamics of Vientiane urbanization 

Table 2 shows that the urban area of Vientiane increased from 25.93 
km2 in 2000 to 37.23 km2 in 2010, and 62.12 km2 in 2019. The ER and 
AGR values between 2010 and 2019 were 7.43% and 5.79%, respec-
tively, which were larger than those between 2000 and 2010, indicating 
the urban land area in the second decade experienced more rapid 
growth. 

Fig. 7 shows the spatial distribution of urban land in 2000, 2010, and 
2019. Generally, Vientiane was characterized by continuous urban 
expansion from 2000 to 2019. Urban area became denser between 2000 
and 2019, and the territory encroached into the forests and paddy fields 
in the suburbs, especially after 2010. Additionally, there was an obvious 
increase in the number and area of urban land along major 

Fig. 4. Urban land maps in 2000, 2010, and 2019.  

Fig. 5. Urban land maps of Vientiane by (a) FROM-GLC10 in 2017, (b) GHS-S1 in 2016, and (c) GAIA in 2018.  

Fig. 6. Accuracy assessment (PA, UA, and OA) of our result in 2019 and other 
public data. 
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transportation corridors like national roads. 
Scatter plots and fitted curves of urban land density are shown in 

Fig. 8, and the estimated parameters for urban land density functions are 
shown in Table 3. Spatially, urban land densities in concentric rings 
decrease from the city center to the fringe, dropping down quickly and 
then decreasing slowly (Fig. 8). The urban land density in each 
concentric ring increased in the period 2000–2010 and further in 2019. 
Obviously, urban land densities in 2010–2019 were larger than those in 
2000–2010, which is consistent with the trend of ER and AGR (Table 2). 
Parameter α increased in the first period (2000–2010) and then declined 
in the second period (2010–2019), meaning the spatial relationship 
between the new urban patches and the existing urban patches shifted 
from compact to dispersed. The urban extent increased in 2000–2019, as 

the parameters c and D increased with time. In addition, there was an 
obvious bump in the urban land density from 7 km to 9 km in 2019 (box 
in Fig. 8), thus indicating a possible sub-center. 

3.4. Patterns of Vientiane’s urban expansion 

Fig. 9 demonstrated the spatial distributions of the urban expansion 
patterns from 2000 to 2019 for Vientiane. Generally, urban expansion 
was dominated by leapfrogging and edge-expansion growth, which are 
the most typical characteristics of a fast urbanization process. 

Leapfrogging mostly happened in the area within the early stage of 
urbanization, characterized by scattered or isolated urban land patches 
in small areas. In the first period, leapfrogging patches were mainly 
distributed in the northeastern part of Vientiane, with an area of 3.60 
km2. From 2010 to 2019, the area of the leapfrogging increased to 7.15 
km2, nearly a two-fold increase. A significant increase in leapfrogging 
has occurred in the southeast, a formerly untapped area. 

Following the leapfrogging patches, edge-expansion has been the 
main form of urban development of Vientiane. Between 2000 and 2010, 
edge-expansion growth was mainly present in the northeast to the core 
area, with an area of 5.18 km2, while between 2010 and 2019, the area 
of edge-expansion increased to 14.77 km2, which is almost three times 
that of the first period. Also, edge-expansion patches can be found 
throughout the suburbs in the second phase. 

Infilling patches often denote a later stage of the urbanization pro-
cess, through filling gaps within existing urban patches. In both periods, 
most infilling patches happened in the core area, with areas of 2.52 km2 

and 2.98 km2, respectively, indicating that Vientiane has not yet 
developed a fully compact urban core area. After 2010, a certain degree 
of increase in infilling patches was witnessed in the northeast, indicating 
an obvious urbanization process along this direction. 

Roadside development is another feature of Vientiane’s urban 
expansion. Fig. 10 further clarifies the directions of the new urban patch 
expansion. The new development areas are primarily concentrated in 
the national roads including the northern (Route 13 North) (Fig. 10A), 
western (Route 13) (Fig. 10B), and southern (Rue Thadeua) (Fig. 10C) 
transportation corridors during the past two decades. The national 
highway ‘450 Year Road’, which is far from the city center, was 
completed in 2010. Since then, urban land development along ‘450 Year 
Road’ has begun to increase (Fig. 9b), resulting in an arc of development 
around the city center. Increased roadside development has made the 
boundary between the urban core and the swathes of urban areas 
outside the core indistinct. The new road construction that started in 
2016, northwest of central Vientiane (Fig. 10E), may lead to a new ur-
banization hot spot. 

4. Discussion 

4.1. Potential of integrating time-series optical and SAR data for SMCs 
land estimation 

Small and medium-sized cities have spatio-temporally heteroge-
neous landscapes with similar spectral reflectance characteristics than 
large cities with high-density, contiguous impervious surfaces, pre-
senting a greater challenge for remote sensing extraction of impervious 
surfaces. This study built a set of statistical indicators based on time- 
series remote sensing images and demonstrated the ability and robust-
ness of these metrics in identifying impervious surfaces in small and 

Table 2 
Urban areas in 2000, 2010, and 2019; and expansion rate and annual growth 
rate in two time periods (2000–2010, 2010–2019).  

Year Urban land area (km2) Time period ER (%) AGR (%) 

2000  25.93    
2010  37.23 2000–2010  4.36  3.68 
2019  62.12 2010–2019  7.43  5.79  

Fig. 7. Spatial distribution of the urban extent of Vientiane in 2000, 2010, and 
2019, and a series of concentric rings with a 0.5 km interval. 

Fig. 8. The fitted urban land density functions in 2000, 2010, and 2019.  

Table 3 
Parameters of the fitted urban land density functions in 2000, 2010, and 2019.   

α c D SSE R2 

2000  1.52  0.03  4.23  0.02  0.98 
2010  1.62  0.04  5.20  0.03  0.98 
2019  1.56  0.11  7.08  0.05  0.97  
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medium-sized cities. 
Time-series analysis can fully utilize all available clear pixels of the 

optical image stacks, which is critical for remote sensing of land cover, 
especially in low-latitude regions with severe cloud cover (Huang et al., 
2020). Statistical indicators have a loose requirement for data acquisi-
tion time and cloud cover, which largely extends their applicability. For 
example, Zhang et al. (2016) showed that the SWIR band of optical 
images in summer can better distinguish impermeable surfaces from 
bare soil. However, in the middle and low latitudes, the cloud cover is 
severe in summer and high-quality images are difficult to obtain. Using 
annual time-series statistical analysis, we found in this study the annual 
statistical features of SWIR showed capacity to accurately distinguish 
impermeable surfaces from seasonal bare soil. Moreover, the method 
can extract the temporal variation of different land cover types (Li et al., 
2018), and magnify the spectral differences between urban land and 
other cover. In our results, the misclassification between bright urban 
land and fallow cropland was greatly improved, since bright urban land 
had much lower mean and standard deviation of annual NDVI than 
fallow land once covered by seasonal crops in a yearly cycle. 

One typical biophysical feature of urban land compared to non-urban 
land is that it is covered by various artificial impermeable materials. For 
spectral classification using one or several-scene images, urban land may 
be misclassified into different land cover types depending on the 

artificial impermeable materials and seasonal land surface variation. In 
this study, when SAR data were also incorporated for urban land 
extraction, we extended the feature space from the spectral to both 
spectral and structural dimensions to further minimize confusion. 
Fig. 11 shows the spatial comparison between our results (2019) and the 
three other urban land maps in urban core, suburb, and fringe areas. As 
we can see, the four products presented good consistency in the core 
area, although GAIA overestimated the area of urban land due to its 
coarse spatial resolution (30 m) and mixed pixel effect (Fig. 11a). 
However, all three other products underestimated urban land area in the 
suburbs (Fig. 11b). This low-accuracy problem in low-density urban 
land regions has been widely reported in many studies (Chen et al., 
2015; Liu et al., 2018). Among the heterogeneous landscape, bare soil is 
regarded as the main disturbance in urban land detection (Zhang et al., 
2016) because of its similar high reflection information and temporal 
statistical values are prone to be mixed up with urban land. It can be 
seen that a patch of bare soil in a suburban area (Fig. 11 c1, 2) was 
classified as urban land by both FROM-GLC10 (Fig. 11 c4) and GAIA 
(Fig. 11 c6), but was effectively excluded from the urban land category 
in our results from 2019 with the contribution of both optical and SAR 
statistical information (Fig. 11 c3). 

In summary, our results showed a more accurate and comprehensive 
extraction of urban land than other products. Due to the robustness in 

Fig. 9. Spatial distributions of the three types of urban expansion in the two periods (2000–2010 and 2010–2019) in Vientiane.  

Fig. 10. Growth of urban land along the national roads.  
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catching land surface reflectance variation both in temporal and spatial 
dimensions, our method is capable of more accurately identifying urban 
land in heterogeneous urban landscapes, and has great potential to be 
applied to urban expansion analysis for other SMCs. 

4.2. Dynamics of urban expansion in Vientiane 

The difference in AGR indicators between the two periods and the 
distance decay of the urban land density confirm that Vientiane is still in 
the primary stages of urban development. The AGR value of the second 
period was significantly greater than that of the first period (Table 2), 
while in most other developed megacities such as Melbourne, Australia 
(Rahnama et al., 2020), or Shanghai, China (Zhang et al., 2020), the 
AGR value showed an obvious decrease. 

The pattern of distance decay of the urban land density is another 
indicator of urban development dynamics. Distance decay curves of the 
urban land density vary among different sizes of cities, which reveals the 
disparities of urban expansion and urban form among them (Xu et al., 
2019a). According to the stage of city development, there are three 
patterns of distance decay of the urban land density, namely, the inverse 
S-shape, two stages of linear decay, and linear decay (Xu et al., 2019a). 
Urban land density of most large cities have an obvious inverse S-shape, 
such as those in China (e.g., Beijing, Shanghai, and Shenzhen), in Africa 
(e.g., Kinshasa, Luanda, and Khartoum) (Xu et al., 2019a), and in 
Southeast Asia (e.g., Bangkok, Manila, and Ho Chi Minh City) (Xu et al., 
2019b). Our results found the pattern of distance decay in Vientiane is 
between the inverse S-shape and the two stages of linear decay (Fig. 8). 
This is partly attributed to its relatively low urban land densities. Urban 
land densities near the city center in Vientiane are around 80%, 
compared to most other large cities that are more than 90% (Xu et al., 
2019a). This implies that Vientiane has not yet formed a compact urban 
core and therefore is far from the well-established inverse S-shape. 
Vientiane’s urban form is still relatively dispersed compared to medium 
and large cities (e.g., Manila in Philippines (Xu et al., 2019b), Beijing in 
China (Jiao, 2015) as these cities have higher α values (usually greater 
than 3), whereas the α values of Vientiane are all around 1.5 (Table 3). 
The relatively dispersed urban form in small cities needs to be given 
attention, and controlling measures should be implemented in future 
urban planning (Xu et al., 2019a). 

4.3. Spatiotemporal patterns and driving forces of urban development in 
Vientiane 

According to population, economic conditions, and cultural factors, 
urban expansion can be divided into outward ring expansion (Jiao, 
2015), inner-city expansion (Kuang et al., 2014), and sprawl (Cobbinah 
et al., 2015). Our results show that the urbanization patterns of Vien-
tiane showed a certain degree of sprawl, especially in the suburbs. 
During the period 2000–2019, the pace of outward-oriented growth in 
Vientiane is rapid and mostly unplanned, featuring sparse, disordered, 
and low-density growth of peri-urban areas, which was also observed by 
Cao et al. (Cao et al., 2019) in the study of the urbanization process from 
1990 to 2015. 

Uncontrolled urban spatial sprawl has also been found in African 
cities, characterized by noncontiguous or leapfrogging growth often 
with low-density physical development (Cobbinah et al., 2015). The 
rapid increase in population is the main driving force for urban sprawl in 
developing countries. Rural–urban migration is the most important 
contributor to the increased population density in Vientiane. As the 
capital city and the primary economic center (Cohen, 2006), Vientiane 
has attracted many rural people for a better life, economic opportunities, 
and social services. Unlike immigrants in Africa or other Asian cities 
who have low income and thus have to live in the high-density central 
areas of the city, the preference for living in low-rise houses might also 
be one of the main reasons for the continued growth of urban sprawl in 
Vientiane, considering the relatively low living cost in suburban areas 
(Vongpraseuth and Choi, 2015). 

As many rural people pour into cities, it is common for governments 
to implement orderly development strategies in cities through the pro-
cess of urban growth planning. For some modern metropolitan areas in 
America and Europe, the originally designed master plan is integrated 
and the urban development often follows in step. In China, the urban 
expansion of many large cities, such as Beijing, Shanghai, and Guangz-
hou, has been strictly manipulated by master planning with less sprawl 
(Kuang et al., 2014). However, for Vientiane, master plans guiding 
urban development have rarely been successful (Cohen, 2006). 

The urbanization process enormously expanded urban areas of 
Vientiane over the past 20 years. Transportation, unsurprisingly, played 
an important role in this process. As the “skeleton” of the city, the 
transportation network essentially directs urban development. Roadside 
expansion characterized urban sprawl in most cities in Southeast Asia, 
such as Chiang Mai and Nakhon Ratchasima, Thailand (Jongkroy and 

Fig. 11. Comparison of urban land maps using the Sentinel-1/2 statistical indices approach (our results), FROM-GLC10, GHS-S1, and GAIA of an (a) urban core, (b) 
suburb, and (c-d) outer suburb in Vientiane. 
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Thongbai, 2014), Yangon, Myanmar (Cao et al., 2019), and Hanoi, 
Vietnam (Mauro, 2020). Different from megacities with efficient public 
transport systems and higher utilization density (Kuang et al., 2014), 
small to medium-sized cities usually have underdeveloped trans-
portation networks and a lower level of public transportation avail-
ability. As a result, almost all urban sprawl at the early stage happens 
along a few main roads. Vientiane has been growing radially during the 
past two decades along main roads to the south, north, and west (Figs. 9, 
10). Among those, major roads contributed most to the rapid urban area 
expansion over the past two decades. At this rate of growth, the urban 
area near the intersection of the ‘450 Year Road’ and Route 13 may 
become the sub-center of Vientiane (point B in Fig. 10). This kind of 
development alters the traditional monocentric urban form. Meanwhile, 
the hierarchy of trunk roads (with respect to functionality), to a large 
extent, determines the intensity and extent of urban growth in the re-
gion. The ‘450 Year Road’ has encouraged urban expansion in a circular 
pattern around the city core and has resulted in greater urban spread at 
the edge of the city. 

4.4. Sustainable development challenges in the urbanization process of 
SMCs in SEA 

The worldwide urbanization process has brought positive impacts 
such as economic growth and improved human welfare. During the past 
few decades, Laos has witnessed major shifts from predominantly sub-
sistence agrarian economies to an increasingly commercialized agri-
cultural society (Hall et al., 2011), with a boom in the urban population 
and rapid urban expansion. However, during the urbanization process in 
Vientiane and other SMCs in SEA countries, economic development was 
often given more attention by the government when making decisions. 
Rapid urban expansion with a loose control strategy inevitably damages 
urban ecosystem services (Wang et al., 2018) and increases land man-
agement challenges (Niroula and Thapa, 2005). Studies have shown that 
uncontrolled urban expansion has led to unsustainable land develop-
ment, often in the form of encroachment on surrounding rural areas and 
conversion of non-urban land, especially agricultural land, forests, and 
wetlands, to urban land use (Amoateng et al., 2013). In addition, urban 
sprawl often occurs in a leapfrogging manner, with adverse impacts far 
beyond urban boundaries (Cobbinah et al., 2015), posing a range of 
development threats both to socio-economic and environmental 
benefits. 

Many SMCs in tropical SEA are characterized by a high percentage of 
natural forest and wetland cover in urban and surrounding areas. 
However, due to the loose planning strategy, some ecologically 

important areas such as marshes or natural rainforests around the urban 
area in Vientiane have been gradually encroached upon. For example, 
the wetland in Fig. 9D was planned as a nature reserve, but was then 
replaced by paddy fields. Later, a part of this area was developed as a 
special economic zone with residential, entertainment, and service fa-
cilities in the past decade (Fig. 12) (Sharifi et al., 2014). The replace-
ment of some ecologically important natural landscapes with urban land 
has inevitably led to negative consequences for the urban ecosystem, 
damaging the sustainable development capacity (Cobbinah et al., 2015; 
Nagendra et al., 2018). The encroachment of agricultural land by the 
urbanization process has caused suburban farmers to lose their farmland 
and disrupt their rural livelihoods, turning them into urban poor and 
bringing more social problems. Loss of original wetlands and natural 
forests can cause not only the destruction of habitats for a variety of 
species, but in turn reduce the ability of cities to regulate climate and 
hydrological conditions. How to effectively reconcile ecological con-
servation with socioeconomic development is a challenge in the ur-
banization process of SMCs. For Vientiane, Laos, which is experiencing a 
fast urbanization process, it is especially urgent to take in the experi-
ences and lessons learned from other cities worldwide (Coenen et al., 
2019). This can guide the orderly development of Vientiane itself and 
provide success stories for reference in the sustainable development of 
other SMCs in SEA. 

5. Conclusion 

The urban growth in Vientiane, Laos, represents the rapid urbani-
zation process of small to medium-sized cities in Southeast Asia. This 
study proposed an effective method for accurate urban land mapping 
using a set of statistical indicators of time series optical and SAR images 
at finer resolution. The complementary optical and SAR time series 
statistical metrics showed great potential to improving the urban 
expansion monitoring for SMCs. The validation results show that the 
resultant urban land maps have high accuracy in terms of Kappa, 
overall, producer and user accuracy, and have higher accuracy than 
other products. However, the transferability of our method to other 
SMCs needs further exploration. The rapid urbanization process of 
Vientiane was characterized and analyzed based on resultant high- 
accuracy urban land datasets. Spatially, urban land densities in 
concentric rings decreased from the city center to the fringe, dropping 
quickly and then decreasing slowly. The pattern of the distance decay of 
urban land densities in Vientiane falls between the inverse S-shape and 
the two stages of linear decay. From 2000 to 2019, urban expansion in 
Vientiane was dominated by leapfrogging and edge-expansion growth. 

Fig. 12. Land cover change in and around the That Luang Marsh.  
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Roadside development is another feature of Vientiane’s urban expan-
sion. Rapid urban sprawl poses a significant threat to the urban envi-
ronment and sustainable development. Reconciling ecological 
conservation with urban development remains challenging in the ur-
banization process of Vientiane and other SMCs in SEA. 
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