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Abstract
Quantitatively, analyzing the driving mechanism of vegetation coverage change is of important significance for regional eco-
logical environment evaluation and protection. Based on time series NDVI data and meteorological data of the Yellow River 
Basin (Inner Mongolia Section), the trend and significance of climate factors and vegetation coverage in the YRB (IMS) and 
four sub-regions (the Hetao Irrigation district, the Ten Tributaries region, the Hunhe river basin, and the Dahei river basin) 
from 2000 to 2018 were ascertained. We used geographic detectors to quantitatively analyze the effects of detection factors 
on vegetation coverage change. The results indicated that the spatial pattern of vegetation variation and climate change had 
obvious spatial heterogeneity. During 2000–2018, the regions with vegetation improvement (72.87%) were much greater 
than that with degradation (26.55%) in the YRB (IMS). Annual precipitation change (4.55%) was a key driving factor to the 
vegetation coverage change in the YRB (IMS). Among the four sub-regions, the land use conversion type demonstrated the 
largest explanatory power, but the q values of the four sub-regions were different from each other. The results of the interac-
tion showed that land use change and annual precipitation change were the major driving factors that influenced regional 
vegetation coverage change. This study has an important reference value for improving the basin’s ecological environment.
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Introduction

Vegetation, covering about 20% of the Earth’s surface, 
is an important component of the terrestrial ecosystem 
(Li et al. 2017; Daham et al. 2018). Vegetation coverage 
change has a great influence on natural ecosystem services 
and brings many impacts on human survival and life (Law-
ley et al. 2016). Meanwhile, vegetation dynamics are sensi-
tive to human disturbance and climate change (Vereecken 
et al. 2010; Wang et al. 2015; Zhang and Huang 2019). Tem-
perature and precipitation are major meteorological factors 
affecting regional vegetation conditions (Wen et al. 2017; 
Zhang and Huang 2019). Precipitation is an important sup-
ply source of soil moisture, which affects vegetation growth 
(Yuan et al. 2019). Temperature could affect plant growth 
by influencing photosynthesis, respiration, and transpiration 
(Peng et al. 2013). Human activities also greatly changed 
the vegetation coverage. For example, a series of ecological 
restoration programs, including the Three-North Shelterbelt 
Project (TNSP), the Nature Forest Conservation Program 
(NFCP), the Beijing-Tianjin Sand Source Control Program 
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(BSSCP), and the Grain for Green Project (GTGP) were 
implemented to improve ecological environment in China. 
These programs have improved vegetation coverage by pro-
tecting natural forests and planting trees protecting natural 
forests (Zhou et al. 2009; Wu et al. 2013; Zhang et al. 2016). 
Other human activities, such as the expansion of farmland, 
mining, urbanization, and overgrazing, could reduce the veg-
etation coverage in some regions (Hilker et al. 2014; Wang 
et al. 2015; Du et al. 2019; Yan et al. 2020).

The driving mechanism of vegetation dynamics has 
become a research hotspot. Some mathematical methods 
have been introduced, including statistical methods and 
models (like regression analysis and correlation analysis) 
(Ma et al. 2007; Wang et al. 2015; Chen et al. 2017; Feng 
et al. 2019; Yan et al. 2020) have been widely applied to 
ascertain the contributions of driving factors to vegetation 
variation. However, these methods are applicable when 
there is a linear relationship between driving factors and 
vegetation variation (Zhu et al. 2020). Nonlinear responses 
of vegetation variations to climate change such as abrupt 
change may also exist (Liu and Lei 2015). As a new statisti-
cal method, geographic detectors could detect spatial het-
erogeneity. Its q statistics could quantify the contribution of 
a single detection factor and interaction intensity between 
two detection factors (Wang and Xu 2017). In recent years, 
geological detectors were commonly used for attribution 
analysis of vegetation change. For example, Peng et al. 
(2019) analyze the impact of natural factors on vegetation 
change by geographic detectors and reveal soil types, eleva-
tion, and annual mean temperature which are the key natu-
ral factors affecting vegetation change in Sichuan province. 
Zhu et al. (2020) illustrate natural and anthropogenic factors 
on vegetation change and reveal land use conversion type 
could explain 23.9% and interaction between precipitation 
and land use conversion type could explain 36.0% of NDVI 
changes in the Heihe River Basin.

The relationship between driving factors and vegetation 
conditions is characterized by geographical heterogeneity 
(Qu et al. 2018). For example, rainfall has a positive function 
on vegetation growth in most water-deficient areas. How-
ever, heavy rainfall poses an inhibition effect on the vegeta-
tion growth in humid regions (Xu et al. 2014; Liu and Lei 
2015). In the ecologically fragile area, human disturbance 
and climate change have been considered as major causes 
of land degradation (Tian et al. 2015; Shen et al. 2018; Han 
et al. 2021). The Yellow River Basin, with a fragile ecologi-
cal environment, is an important economic zone and ecolog-
ical functional zone in China (Jiang et al. 2021). In the last 
few decades, with the disturbance of different driving fac-
tors, the vegetation coverage has changed dramatically (Jiang 
et al. 2015). Some relevant conclusions have been drawn 
from previous research: The vegetation coverage in the west 
and southeast is better than that in the northwest, and the 

regions with improved vegetation coverage are larger than 
that with degraded vegetation coverage (Jiang et al. 2015; Li 
et al. 2019). Meanwhile, the response of vegetation growth 
to climate change has significant spatial differences (Miao 
et al. 2012; Li et al. 2019). The YRB (IMS) is an important 
ecological protection zone and environmental governance 
zone. Such as, the Hetao Irrigation district is distributed in 
the north of reach, which is an important agricultural area. 
To a certain extent, the development of irrigated agriculture 
could improve the regional ecological environment. The 
Hobq Desert, with a dry climate and severe sandstorm, is in 
the south of reach. The ecological environment in the YRB 
(IMS) is greatly different, revealing the driving mechanism 
of its vegetation change, which could provide a scientific 
basis for improving the basin ecosystem. However, previous 
research in this area is focused on runoff, water resource, and 
eco-environmental aspects (Huang et al. 2016a), and ascer-
taining the influence of human activities and climate factors 
on vegetation variation in the YRB (IMS) is still insufficient.

The normalized difference vegetation index (NDVI) could 
reflect the terrestrial vegetation productivity and growth 
status and is commonly applied in the research of vegeta-
tion coverage change and its driving mechanism (Potter and 
Brooks 1998; Zhao et al. 2018; Hu and Xia 2019; Yang 
et al. 2021). In this paper, long time series NDVI datasets 
were used to monitor vegetation coverage change of the 
YRB (IMS). Then, geographic detectors were used to reveal 
the effects of detection factors on vegetation variation in 
the YRB (IMS) and four sub-regions. The objectives are to 
(1) detect the vegetation coverage dynamics from 2000 to 
2018 and (2) quantify the contributions of detection factors 
to vegetation coverage change and identify major driving 
factors over different sub-regions.

Materials and methods

Study area

The YRB (IMS) (39–42° N, 106–113° E) is located in south-
west Inner Mongolia in China (Fig. 1), with an area of about 
9.6 ×  104  km2. Annual precipitation was gradually increas-
ing from the west to the east, ranging from 130 to 450 mm. 
Annual mean temperature was gradually increasing from the 
northeast to the southwest, ranging from 5 to 9 ℃. Grass-
land and cropland are the primary land cover types. Major 
topography types include Hetao Plain, Yin Mountains, and 
Ordos Plateau.

The YRB (IMS) is divided into four sub-regions based 
on the typical water system: the Hetao Irrigation district 
(HTID), located in Hetao Plain, with flat terrain, fertile soil, 
and irrigation diverting from the Yellow River, is an impor-
tant grain yielding area; the Ten Tributaries region (TTR) 
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is the main sediment yielding area in the YRB (IMS) as 
a result of abominable natural conditions and serious soil 
erosion; the Hunhe river basin (HHRB), located in Hilly 
and Gully Area with Loess, suffer frequent drought and seri-
ous soil erosion; the Dahei river basin (DHRB) consists of 
plains and mountains regions, which is affected by drought, 
flood hazards, and salt-alkaline. The water system of DHRB 
has a fixed flow path in mountains and is intertwined with 
irrigation channels in the plains owing to serious human 
disturbances. Therefore, we excluded the mountains area in 
our research.

Data

The 16-day MODIS NDVI datasets (250 m × 250 m) were 
downloaded from the MOD13Q1 series products (http:// 
modis. gsfc. nasa. gov). Pre-processing steps include format 
converting, reprojecting, and extracting. To minimize the 
influence of clouds, solar elevation angle, and atmosphere, 
the maximum value compositing (MVC) method (Holben 
1986; Stow et al. 2007) was applied to obtain yearly NDVI 
data.

The monthly meteorological data from 2000 to 2018 
at twenty-four meteorological stations in and around the 
YRB (IMS), including precipitation, temperature, relative 
humidity, and sunshine duration, were provided by the China 
Meteorological Data Service Center (http:// data. cma. cn). 
Finally, monthly data was processed into yearly data, the 
annual precipitation (annual sunshine duration) was the sum 
of the monthly precipitation (monthly sunshine duration) 
from January to December, and the annual mean temperature 
(annual mean relative humidity) was calculated as the mean 
temperature (relative humidity) from January to December. 
In this paper, we used the Kriging interpolation method to 
obtain the spatial distribution of meteorological data with 
the same resolution of NDVI (Liu et al. 2019).

The land use cover data (30 m × 30 m) in 2000 and 2018 
were available from the Data Center for Resources and 
Environmental Sciences, Chinese Academy of Sciences 
(RESDC) (http:// www. resdc. cn). The land use types were 
classified into 6 first-grade types (cropland, woodland, grass-
land, water bodies, built-up land, and unused land) according 
to the China land use/cover remote sensing classification 
system. And we used the digital elevation model (DEM) 
data with a 30 m spatial resolution was derived from the 

Fig. 1  The location (a), sub-regions (b), elevation (c), and land use types (d) of the study area (HTID, Hetao Irrigation district; TTR , Ten Tribu-
taries region; HHRB, Hunhe river basin; DHRB, Dahei river basin)
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Geospatial Data Cloud (http:// www. gsclo ud. cn). The data 
of the effective irrigation, the total sown of crops, and the 
afforestation area was from the Statistical Yearbook of Inner 
Mongolia.

Methods

Vegetation coverage calculation

Vegetation coverage could be inversed by the dimidiate pixel 
model, which is commonly used in dynamic monitoring of 
vegetation (Gutman and Ignatov 1998; Hao et al. 2020):

where, VC represents vegetation coverage, NDVIsoil repre-
sents the NDVI value of vegetation free area or bare soil, 
and NDVIveg represents the NDVI value of the area covered 
completely by vegetation. To minimize the influence of the 
atmosphere and different surface conditions, considering 
the real situation of vegetation in the YRB (IMS) and the 
NDVI cumulative frequencies table, we extracted a cumu-
lative probability of about 0.5% and 99.5% to represent 
NDVIsoil and the NDVIveg, respectively. VC is divided into 
five levels: VC ≤ 10% (bare soil), 10% < VC ≤ 30% (low), 
30% < VC ≤ 45% (medium–low), 45% < VC ≤ 60% (medium), 
VC > 60% (high).

Landscape pattern indices

Landscape index, a quantitative index, can express and 
reflect the information the structure and spatial form of land-
scape pattern (Hao et al. 2017; Zhang et al. 2020b). In this 
paper, we used four landscape pattern indices to reveal the 
changes of vegetation landscape fragmentation and agglom-
eration in the landscape level: (1) number of patches (NP) 
reflecting the degree of fragmentation of the landscape, (2) 
landscape division index (DIVISION) indicating the degree 
of patch dispersion of the same landscape type, (3) conta-
gion index (CONTAG) describing the degree of agglomera-
tion and elongation of different patch types (units:%), and 
(4) Shannon’s diversity index (SHDI) representing the pro-
portion abundance of each patch type and the heterogeneity 
of the landscape. The four indexes could be calculated by 
Fragstats 4.2 software.

Trend analysis

Sen’s slope (Sen 1968), which could effectively decrease the 
influence of outliers, was used to estimate the slope of the 
trend. Mann–Kendall (Mann 1945; Kendal 1975) statistical 
test is a nonparametric test method, which could objectively 

(1)VC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
× 100%

reveal the time series change trend. The Sen + Mann–Ken-
dall was widely being used to analyze long-term sequences 
of vegetation coverage change (Feng et al. 2019; Zhang 
et al. 2020a).

where, slope is the vegetation change trend, a slope > 0 rep-
resents vegetation improvement, and a slope < 0 represents 
vegetation degradation. n represents the length of the data-
set. xi and xj represent the VC values of the pixel in the year 
i and j, respectively. Additionally, ti represents the width of 
the knot (number of data with identical VC values in group 
i). We used a two-sided test and given significance level 
a = 0.05, if |Z|> 1.96, then reject the original hypothesis, the 
time series shows a significant change.

Geographic detectors

In this study, geographic detectors were applied to ascertain 
the contributions of detection factors to spatial heterogene-
ity to vegetation coverage change in the YRB (IMS) and 
four sub-regions (the HTID, the TTR, the HHRB, and the 
DHRB). The vegetation coverage change trend from 2000 
to 2018 was regarded as the dependent variable Y. Potential 
driving factors, including land use conversion type from 
2000 to 2018, annual precipitation change trend, annual 
mean relative humidity change trend, annual mean tem-
perature change trend, and annual sunshine duration change 
trend from 2000 to 2018, were selected as the detection fac-
tors X. The discrete variables were required as input data 
of geographic detectors, thus, the direct bisection method 
was used to discretize the independent variables (Table 1). 
The spatial distribution of detection factors X and vegetation 
coverage change trend Y is shown in Fig. 2.

(2)slope = Median

(
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)
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Geographic detectors include four sub-detectors:
(1) Factor detector:

Factor detector could ascertain the influence of detec-
tion factors on the spatial heterogeneity of vegetation 
variation. The contribution of X to the spatial heterogene-
ity of Y could be expressed as q × 100%, and the stronger 
the influence of detection factors of vegetation coverage 
change. q value could be simply transformed to satisfy 
the non-central F distribution and determine the level of 
significance (Wang et al. 2016):

where, h is the stratification of the vegetation change or the 
detection factors; Nh and N represent the units in class h and 
the whole region, respectively; σh

2 and σ2 represent the vari-
ance of Y value in class h and the whole region, respectively.

(2) Interaction detector:
Interaction detector is appropriate to detect the effect of 

the joint action of detection factors Xa and Xb on the spatial 

(7)q = 1 −

∑L

h=1
Nhσ

2

h

Nσ2

Table 1  Discretization of continuous numerical independent variables

Discretization Detection factors

X1
Annual precipitation change 
trend (mm  year−1)

X2
Annual mean temperature 
change trend (℃  year−1)

X3
Annual mean relative humidity 
change trend  (year−1)

X4
Annual sunshine dura-
tion change trend (h 
 year−1)

1  − 2–0  − 0.066 to − 0.044  − 0.4 to − 0.3  − 14.8 to − 7.4
2 0–2  − 0.044 to − 0.022  − 0.3 to − 0.2  − 7.4–0.0
3 2–4  − 0.022–0.000  − 0.2 to − 0.1 0.0–7.4
4 4–6 0.000–0.022  − 0.1–0.0 7.4–14.8
5 6–8 0.022–0.044 0.0–0.1 14.8–22.2
6 8–10 0.044–0.066 0.1–0.2 22.2–29.6

Fig. 2  The spatial distribution of  (X1) annual precipitation change 
trend,  (X2) annual mean temperature change trend,  (X3) annual mean 
relative humidity change trend,  (X4) annual sunshine duration change 
trend,  (X5) land use conversion type and (Y) vegetation coverage 

change trend (1, cropland; 2, woodland; 3, grassland; 4, water bodies; 
5, built-up land; 6, unused land; HTID, Hetao Irrigation district; TTR 
, Ten Tributaries region; HHRB, Hunhe river basin; DHRB, Dahei 
river basin)
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heterogeneity of vegetation variation. Five results of interac-
tion are as follows:

1) non-linear weakness: q (Xa ∩ Xb) < min [q (Xa), q (Xb)];
2) single-factor non-linear weakness: min [q (Xa), q 

(Xb)] < q (Xa ∩ Xb) < max [q (Xa), q (Xb)];
3) independent: q (Xa ∩ Xb) = q (Xa) + q (Xb);
4) two-factor enhancement: q (Xa ∩ Xb) > max [q (Xa), q 

(Xb)];
5) non-linear enhancement: q (Xa ∩ Xb) > q (Xa) + q(Xb).

(3) Ecological detector:
Ecological detector could use F statistics to measure the 

influence of two detection factors on the spatial pattern of 
vegetation coverage change is significant difference (Y) or 
no significant difference (N):

where, NX1 and NX2 are the number of samples for detection 
factors X1 and X2, respectively. L1 and L2 are the numbers of 
stratifications for detection factors X1 and X2, respectively. 
SSWX1 and SSWX2 represent the total intra-layer variances of 
the stratification formed by X1 and X2, respectively.

(4) Risk detector:
Risk detector could use t statistic to test whether there is a 

significant difference in the attribute average value between 
two sub-regions. It could be used to judge the suitable range/
type of each detection factor:

where, nh represents the number of samples of the detection 
factor at layer h; Yh represents the mean value of vegetation 
coverage change trend of the detection factor at layer h; Var 
is variance.

Results

Landscape pattern analysis

In terms of the landscape level, NP decreased from 2000 
to 2011 with a slope of − 616.4300 and increased from 

(8)F =
NX1(NX2 − 1)SSWX1

NX2(NX1 − 1)SSWX2

(9)SSWX1 =
∑L1

h=1
Nhσ

2

h

(10)SSWX2 =
∑L2

h=1
Nhσ

2

h

(11)
tyh=1−yh=2 =

Yh=1 − Yh=2[
Var

(
Yh=1

)

nh=1
+

Var
(
Yh=2

)

nh=2

] 1

2

2011 to 2018 with a slope of 1068.2000. The minimum NP 
was found in 2011 (42,340), showing that the fragmenta-
tion degree of vegetation landscape gradually decreased 
before 2011, and the small patches gradually shifted to 
large patches. In contrast, the fragmentation degree of 
vegetation landscape gradually increased since 2011, with 
small patches gradually increasing and the degree of spatial 
heterogeneity increasing (Fig. 3a); DIVISION increased 
from 2000 to 2009 (0.0016) and decreased from 2009 to 
2018 (− 0.0015). During the past 19 years, the maximum 
value was found in 2009 (0.96), showing that the separation 
degree of vegetation landscape in the YRB (IMS) gradu-
ally increased from 2000 to 2009. In contrast, the separation 
degree of vegetation landscape gradually decreased from 
2009 to 2018. The overall landscape type was composed of 
multiple small patches, with a relatively high degree of frag-
mentation (Fig. 3b); CONTAG increased from 2000 to 2018 
with a slope of 0.0675, indicating that patches connectivity 
features an increasing trend (Fig. 3c); SHDI decreased from 
2000 to 2018 with a slope of − 0.0011, indicating that veg-
etation landscape diversity characterizes a decreasing trend 
(Fig. 3d). The result suggested that the vegetation landscape 
was composed of small patches with a high degree of frag-
mentation, but the patch connectivity has increased in recent 
years.

Temporal‑spatial variation of vegetation coverage, climate, 
and LUCC 

As shown in Fig. 4 from 2000 to 2018, the vegetation cover-
age in the YRB (IMS) ranged from 0.32 to 0.46, with the 
minimum and maximum vegetation coverage occurring in 
2001 (0.32) and 2018 (0.46), respectively. The vegetation 
coverage showed a slight fluctuating upward trend at an aver-
aged increasing rate of 0.0034  year−1. The HTID showed the 
highest vegetation coverage, followed by the DHRB, HHRB, 
and TTR. The DHRB and HHRB showed similar temporal 
variation trends.

Over the past 19 years, vegetation coverage change in 
the YRB (IMS) showed remarkable spatial heterogeneity 
(Figs. 2Y and 5). The vegetation coverage in most areas 
(72.87%) showed an increasing trend, in which 27.19% area 
pass the 95% significant level. Especially in the HTID, TTR, 
and HHRB, the vegetation coverage has been significantly 
improved. The area with decreasing trend occupied over 
26.55% of the study area, the significant degradation areas 
(3.32%) mainly distributed in the built-up land and along 
the Yellow River. Among the four sub-regions, the area with 
the vegetation improvement was far greater than the degra-
dation. The most obvious decrease area was found in the 
DHRB, with the decreasing area occupying over 39.20%.

From 2000 to 2018, the annual precipitation and annual 
mean temperature exhibited a slight fluctuating upward 
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trend with an average increasing rate of 2.5894 mm  year−1 
and 0.0100 ℃  year−1, respectively (Fig. 6a and b). Mean 
annual temperature in the DHRB showed a slight fluctu-
ating downward trend (− 0.0120 ℃  year−1). Spatially, the 
area with precipitation increased occupying approximately 
96.78% of our study area. Decreasing precipitation mostly 
happened in the western part of the YRB (IMS) (Fig. 2 
(X1)); Areas with temperature increasing accounting for 
approximately 75.64% of the study area (Fig. 2 (X2)). The 
result suggested that the weather condition in the YRB 
(IMS) were getting warmer and wetter. Annual mean 

relative humidity and annual sunshine duration showed 
a slight fluctuating downward trend with an average 
decreasing rate of − 0.0970  year−1 and − 1.7075 h  year−1, 
respectively (Fig. 6c and d). Annual sunshine duration 
in the HTID exhibited a slight fluctuating upward trend 
(6.0833 h  year−1). The change trend of relative humid-
ity was gradually increasing from northeast to southwest 
(Fig. 2 (X3)). About 66.88% of the area in the YRB (IMS) 
showed a decreasing trend in sunshine duration, whereas 
the increasing trend mainly happened in the western YRB 
(IMS) (Fig. 2 (X4)).
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Fig. 4  The interannual variation 
of vegetation coverage from 
2000 to 2018 (HTID, Hetao 
Irrigation district; TTR , Ten 
Tributaries region; HHRB, 
Hunhe river basin; DHRB, 
Dahei river basin)
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During the past 19  years, there were approximately 
7610.66  km2 of land whose land types have changed. The 
noticeable change is that the overall grassland area decreased 
by 1573.48  km2 and the built-up land area increased by 
1383.28  km2 (Fig. 7a). The increase in built-up land ben-
efited from the conversion of grassland (787.97  km2) and 
cropland (521.93  km2). The decrease in grassland was attrib-
uted to the transfer into cropland (1286.45  km2), built-up 
land (787.97  km2), and unused land (711.61  km2) (Fig. 2 
(X5)). The area of cropland only increased by 105.47  km2, 
but the conversion between cropland and grassland was 

intense. Cropland was mainly transferred into grassland 
(682.21  km2) and built-up land (521.93  km2). At the same 
time, grassland (1286.45  km2) was transferred into cropland, 
which compensated for the loss of cropland.

Among the four sub-regions (Figs. 7b and 2 (X5)), the 
noticeable change is that the built-up land area increased by 
326.79  km2 in the TTR, which was mainly converted from 
grassland (212.85  km2). Grassland area decreased by 333.16 
 km2, which was mainly transferred into built-up land (212.85 
 km2), cropland (197.35  km2), and unused land (111.49 
 km2). In the HHRB, cropland was mainly transferred into 

Fig. 5  Frequencies of the sig-
nificance of vegetation coverage 
change trends from 2000 to 
2018 (HTID, Hetao Irrigation 
district; TTR , Ten Tributaries 
region; HHRB, Hunhe river 
basin; DHRB, Dahei river basin)
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Fig. 6  Temporal variations of a annual precipitation, b mean annual temperature, c mean annual relative humidity, and d annual sunshine dura-
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grassland (101.37  km2), which resulted in a decrease in 
cropland (71.86  km2). In the HTID, the increase in cropland 
benefited from the conversion of grassland (235.68  km2). 
In the DHRB, built-up lands area increased by 314.89  km2, 
which was mainly converted from cropland (162.45  km2) 
and grassland (139.71  km2).

Attribution of vegetation coverage change

Impact of different detection factors of vegetation 
variation

As shown in Table 2, the annual precipitation change trend 
showed the largest explanatory power of 4.55% in the YRB 
(IMS). In addition, the corresponding explanatory power 
of other detection factors from high to low were land use 
conversion type (4.01%) > annual sunshine duration change 
trend (1.71%) > annual mean relative humidity change trend 
(0.60%) > annual mean temperature change trend (0.24%). In 

the four sub-regions, the land use conversion type demon-
strated the largest explanatory power, but the q values of the 
four sub-regions were different from each other. Among the 
four sub-regions, land use conversion type showed the most 
significant influence in DHRB (10.12%), followed by that 
in the TTR (8.08%), HTID (7.01%), and HHRB (4.92%). 
This result implied that the impact of land use change on 
vegetation coverage in the DHRB was greater than that in 
the TTR, HTID, and HHRB.

Significant differences between driving factors

As shown in Fig. 8, in the YRB (IMS), there is a significant 
impact between annual precipitation change trend (land use 
conversion type) and other detection factors except for land 
use conversion type (annual precipitation change trend) on 
the spatial heterogeneity of vegetation coverage change. 
The result suggested that annual precipitation change and 
land use change have a greater effect on vegetation change. 
Among the four sub-regions, we found that there was a sig-
nificant difference between land use conversion and other 
detection factors of vegetation variation. The result verified 
that land use conversion type was a key driving factor that 
influenced vegetation change in the sub-regions.

Interaction between driving factors

In the YRB (IMS), the spatial heterogeneity of vegetation 
change was the result of the joint action of various driv-
ing factors, and most types of driving factor interactions 
were non-linear enhancement except for the bilinear mutual 
enhancement between annual precipitation change trend 
and annual sunshine duration change trend. As shown in 
Fig. 9, the interaction between annual precipitation change 
trend and land use conversion type revealed the largest 
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Fig. 7  Change of land use types from 2000 to 2018 (HTID, Hetao Irrigation district; TTR , Ten Tributaries region; HHRB, Hunhe river basin; 
DHRB, Dahei river basin)

Table 2  The q value of each detection factor derived from geographic 
detectors

Note:  X1, annual precipitation change trend;  X2, annual mean temper-
ature change trend;  X3, annual mean relative humidity change trend; 
 X4, annual sunshine duration change trend;  X5, land use conversion 
type; HTID, Hetao Irrigation district; TTR , Ten Tributaries region; 
HHRB, Hunhe river basin; DHRB, Dahei river basin

Detection 
factors

HTID TTR HHRB DHRB YRB (IMS)

X1 0.0071 0.0430 0.0054 0.0153 0.0455
X2 0.0280 0.0014 0.0188 0.0073 0.0024
X3 0.0203 0.0526 0.0063 0.0293 0.0060
X4 0.0340 0.0146 0.0184 0.0230 0.0171
X5 0.0701 0.0808 0.0492 0.1012 0.0401
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explanatory power of 13.15% in the YRB (IMS). The result 
suggested that the coupling between annual precipitation 
change trend and land use conversion type was the main 
driving factor to vegetation coverage change trend.

Adaptation range or type suitable of driving factors 
to vegetation coverage change

The risk detector results could reflect the differences in the 
vegetation coverage change of each sub-region (Fig. 10, 
Table 3). In the YRB (IMS), the vegetation coverage change 
trend increased with the increasing annual precipitation 
change trend, indicating that rainfall has an active effect on 
vegetation growth. The vegetation coverage change trend 
reached the maximum in the annual precipitation change 
trend range 8–10 mm   year−1. Compared to annual pre-
cipitation change, other climate factors had less impact on 

vegetation coverage change. The result further proved that 
precipitation was a key driving factor of vegetation growth.

In the HTID, when annual precipitation change trend in 
the range of − 1.2 to − 0.6 mm  year−1, the vegetation cov-
erage change trend reached the maximum, indicating that 
vegetation growth was better when precipitation reduces 
to a certain extent. In the TTR, the vegetation coverage 
change trend increased with the increasing annual precipi-
tation change trend, indicating the increase of precipitation 
was more suitable for vegetation growth. In the HHRB, 
the vegetation coverage change trend decreased with the 
increasing annual sunshine duration change trend, even in 
the range − 3.2 to − 2.4 h  year−1, which could cause the inhi-
bition of vegetation growth. In the DHRB, the vegetation 
coverage change trend increased with the increasing annual 
sunshine duration change trend. Annual sunshine duration 
change trend and annual mean relative humidity change 
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trend had a restrictive influence on vegetation coverage 
change trend in the range − 9.9 to − 7.7 h  year−1 and − 0.15 
to − 0.10  year−1, respectively, meaning this range was not 
conducive to vegetation growth.

Based on previous research (Zhu et al. 2020) and consider-
ing the actual situation of the YRB (IMS), we did not consider 
the land use conversion types whose area proportion is less 
than 0.02%. In the YRB (IMS), there were 6 land use conver-
sion types that showed a negative impact on vegetation cover-
age change, including cropland transferred into built-up land 
and water bodies, woodland transferred into unused land, water 
bodies transferred into built-up land, grassland transferred into 
built-up land, and unused land transferred into water bodies, 

indicating that these types were adverse to vegetation growth 
(Fig. 11). In the HTID and DHRB, when cropland was trans-
ferred into built-up land, there was a relatively high vegetation 
degradation rate. In the TTR, unused land was transferred into 
grassland with a relatively high vegetation improvement rate. 
In the HHRB, nearly all land use conversion types showed a 
positive influence on vegetation coverage change.

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 2 3 4 5 6

V
C

 c
ha

ng
e 

tr
en

d

Annual precipitation change trend zones

YRB(IMS) HTID

TTR HHRB

DHRB

(a)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

1 2 3 4 5 6

V
C

 c
ha

ng
e 

tr
en

d

Annual mean temperature change trend zones

YRB(IMS) HTID

TTR HHRB

DHRB

(b)

-0.004

-0.001

0.002

0.005

0.008

0.011

0.014

1 2 3 4 5 6

V
C

 c
ha

ng
e 

tr
en

d 

Annual mean relative humidity change trend zones

YRB(IMS) HTID

TTR HHRB

DHRB

(c)

-0.004

-0.001

0.002

0.005

0.008

0.011

0.014

1 2 3 4 5 6
V

C
 c

ha
ng

e 
tr

en
d

Annual  sunshine duration change trend zones

YRB(IMS) HTID

TTR HHRB

DHRB

(d)

Fig. 10  Vegetation coverage change trend in different zones of a 
annual precipitation change trend, b annual mean temperature change 
trend, c annual mean relative humidity change trend, and d andannual 

mean sunshine duration change trend (HTID, Hetao Irrigation dis-
trict; TTR , Ten Tributaries region; HHRB, Hunhe river basin; DHRB, 
Dahei river basin)

Table 3  The suitable range/type 
of detection factors

Note:  X1, annual precipitation change trend;  X2, annual mean temperature change trend;  X3, annual mean 
relative humidity change trend;  X4, annual sunshine duration change trend; HTID, Hetao Irrigation district; 
TTR , Ten Tributaries region; HHRB, Hunhe river basin; DHRB, Dahei river basin

Regions X1 X2 X3 X4

YRB (IMS) 8–10  − 0.066 to − 0.044  − 0.3 to − 0.2 22.2–29.6
HTID  − 1.2 to − 0.6 0.024–0.036 0–0.06 18–24
TTR 7.5–9  − 0.0155–0  − 0.18 to − 0.12  − 6 to − 4.5
HHRB 7.2–8 0.011–0.022  − 0.21 to − 0.175  − 7.2 to − 6.4
DHRB 2.1–2.8  − 0.03 to − 0.02  − 0.25 to − 0.2  − 4.4 to − 3.3
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Discussion

Impact of climate change on vegetation coverage 
change

The ecological environment was greatly improved in the 
Yellow River Basin, which is confirmed in previous stud-
ies (Jiang et al. 2015; Zhang et al. 2020a; Tian et al. 2021). 
Meteorological factors, especially the annual precipitation 
change trend (4.55%), had the largest explanatory power to 
vegetation coverage change trend. According to previous 
studies, precipitation was a key climate factor to promote 
vegetation coverage in arid and semi-arid regions (Huang 
et al. 2016b; Xie et al. 2016; Hua et al. 2017). However, 
the effects of climate change on vegetation coverage 
change were spatially heterogeneous. Zhang et al. (2020a) 
suggested that the amount of precipitation in the flood 
season has the most significant impact on surface vegeta-
tion of grassland and had relatively less impact on surface 
vegetation cover of woodland and irrigated farming areas. 
In the YRB (IMS), grassland was the main land use type, 

occupying about 46.98% of the study area (Fig. 12). In 
particular, most of these areas are located in regions with 
inadequate water resources. Thus, precipitation was a pri-
mary driving factor that controls vegetation change (Hua 
et al. 2017).

Among the four sub-regions, the geographical location 
and main surface cover types were different, thus the main 
climate driving factor was different. In the HTID, the effect 
of the precipitation change (0.71%) on vegetation coverage 
change was lower than that of the other detection factors. 
The vegetation coverage change trend decreased with the 
increasing annual precipitation change trend, which could 
be attributed to the development of irrigation agriculture. 
Cropland (63.37%) was the main land use type in the HTID. 
The main crop types were corn, wheat, and sunflower, and 
agricultural cultivation mainly dependent on irrigation 
(the average annual water diversion from the Yellow River 
reached 4.49 ×  108  m3) (Wang et al. 2021; Gao et al. 2021). 
However, in the TTR, annual mean temperature change trend 
(0.14%) showed the least explanatory power. Because the 
area of grassland occupying over 51.67% of the total area in 
TTR, the vegetation coverage change trend increased with 
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Fig. 12  Area proportion of 
different land use types in 2018 
(HTID, Hetao Irrigation district; 
TTR , Ten Tributaries region; 
HHRB, Hunhe river basin; 
DHRB, Dahei river basin)
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the increasing annual precipitation change trend, indicating 
that the growth of vegetation in this area was more depend-
ent on precipitation than temperature. The main vegetation 
types include desert, sandy land, desert steppe, and typi-
cal grassland, and rainfall was the basic condition for veg-
etation growth (Sun et al. 2001, Li and Yang 2004; Chuai 
et al. 2013). Moreover, with evaporation in this region being 
about five to ten times precipitation, the weather condition 
was relatively dry (Bai et al. 2019). The increase in tem-
perature will exacerbate the leaf transpiration of vegeta-
tion and limit the photosynthesis and growth of vegetation 
(Li et al. 2019; Ma et al. 2019; Zhang et al. 2020a). In the 
HHBR, annual mean temperature change trend (1.88%) and 
annual precipitation change trend (0.54%) showed the largest 
and least explanatory power, respectively. The result could 
be attributed to the relatively abundant precipitation and 
sufficient water resources in the HHRB. Therefore, under 
the condition of sufficient rainfall, increasing temperature 
could enhance photosynthesis, respiration, and transpiration 
in plants.

Impact of human activities on vegetation coverage 
change

Apart from meteorological factors, human activities were 
also a key driving factor affecting vegetation coverage. 
Human activities indicated by land use change, including 
expansion of farmland, urbanization, and afforestation, could 
effectively explain vegetation change (Zhu et al. 2020). 
Based on the geographical detectors, we found land use 
conversion that occurred between 2000 and 2018 was the 
strongest driving factor to explain the change of vegetation 
coverage in the four sub-regions, but the q values were dif-
ferent from each other. The q values of land use conversion 
to vegetation coverage change in the DHRB (10.12%), TTR 
(8.08%), and HTID (7.01%) were greater than that in the 

HHRB (4.92%). The result revealed that vegetation coverage 
in these areas was greatly affected by land use change. The 
growth of the population, the urban land expansion, and the 
rapid urbanization development resulted in gradually greater 
ecological and environmental problems (Ma et al. 2019; 
Yan et al. 2020). The original land types were disturbed 
by human activities, which made the vegetation coverage 
degenerate (Mu et al. 2013). Among the four sub-regions, 
the vegetation degradation that happened in the DHRB was 
the most noticeable. Cropland, woodland, and grassland 
were transferred into built-up land with a relatively high veg-
etation degradation rate, suggesting the built-up land in the 
DHRB has been greatly expanded. During the past 19 years, 
approximately 10% of land in DHRB and its land type has 
changed. The area of built-up land increased by 3.12%. The 
research results are in agreement with the study of Wu et al. 
(2018) that most of the newly added built-up land area was 
converted from grassland and cropland. At the same time, 
a lot of grasslands have been transferred into cropland to 
offset the loss of cropland transferred into built-up land. In 
the long run, urban expansion and the land use conversion 
type caused by the urban expansion will cause interference 
and damage to the regional ecological environment.

In addition, human activities have made contributions 
to ecosystem improvement, which has been confirmed by 
previous research (You et al. 2019; Chen et al. 2020; Tian 
et al., 2021). In the TTR, unused land was transferred into 
woodland and grassland with a relatively high vegetation 
improvement rate. Over the past 18 years, ordos had the 
largest cumulative afforestation area (Fig. 13). In particular, 
the vegetation coverage has been significantly improved in 
the Hobq Desert. Tian et al. (2015) showed that vegetation 
restoration was mainly caused by ecological restoration pro-
grams in the Hobq Desert, such as “Artificial Forestation” 
and “Closing Hillsides to Facilitate Afforestation,” as well as 
the forestry ecological engineering construction such as “the 

Fig. 13  Cumulative afforesta-
tion area from 2001 to 2018
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TNSP”, “the NFCP”, and “the GTGP”. These projects effec-
tively controlled the area of desertification and improved 
the regional vegetation coverage (Wang et al. 2010; Ma 
et al. 2019). In addition, in the HTID, the improvement 
of vegetation in the irrigation area may benefit from the 
implementation of the water-saving project of irrigation 
area since 1998 (Qu et al. 2015) The irrigation area saved 
water resources by 3 ×  108  m3 in 2012 compared with in 
1999 (Qu et al. 2015). At the same time, the implementa-
tion of drainage engineering has significantly reduced the 
groundwater level and mitigated soil salinization. Compared 
with in 2001, the effective irrigation area and the total sown 
area of crops in Banyan Nur in 2018 increased by 794.60 
 km2 and 3524.90  km2, respectively. The implementation of 
these projects greatly mitigated soil salinization, improved 
agricultural production, and increased surface vegetation 
coverage.

Conclusions

We used geographic detectors to ascertain the contributions 
of detection factors to vegetation coverage change in the 
YRB (IMS) and the four sub-regions. The vegetation land-
scape was composed of small patches with a high degree of 
fragmentation. However, patch connectivity has increased 
in recent years. In the YRB (IMS), the overall vegetation 
coverage displayed a slightly fluctuating upward trend from 
2000 to 2018. The weather condition was getting warmer 
and wetter gradually. And the relative humidity and sunshine 
duration were decreasing. The spatial pattern of vegetation 
coverage change and climate change showed obvious spa-
tial heterogeneity. The decreasing of grassland area and the 
increasing of built-up land area were noticeable changes of 
land use. Annual precipitation change was a key driving fac-
tor to vegetation coverage change in the whole area, and the 
interaction between land use change and annual precipitation 
change demonstrated the largest explanatory power to veg-
etation coverage change. The main human activities affect-
ing vegetation coverage in the sub-regions were different.

Agricultural development highly relies on water sources 
in arid areas. To some extent, the development of irrigated 
agriculture causes the waste of water resources, and unrea-
sonable irrigation leads to soil salinization. Therefore, the 
government should pay more attention to the drainage facili-
ties and irrigation projects in irrigation agriculture devel-
oping. In arid and semi-arid regions, vegetation restoration 
should pay attention to find scientific and reasonable meth-
ods and step by step. Effectively improve the ecological 
environment and avoid the waste of water resources. Urban 
expansion makes economic development. At the same time, 
urban expansion causes water pollution and leads to a lot 

of ecological problems. Therefore, urban expansion should 
fully consider the ecological environment carrying capacity.
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