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A B S T R A C T   

The SDG Target 11.6 was committed to "reduce the adverse per capita environmental impact of cities", one of its 
indicators 11.6.2 mainly focusing on air quality and used to measure the health impacts of fine particulate 
pollution on urban populations. However, given that this indicator was designed for the assessment and moni-
toring at national, regional, and global levels, and few studies to quantitively evaluate it at the city-level 
currently, whether it can be directly applied to the city-level and fully reflects the intensity of the exposure 
risk of fine particulate pollution is still unknown. In light of this problem, taking Beijing as an example, we use 
methods such as population-weighted PM2.5 concentrations, trend analysis, and geographic spatial distribution 
measurement to analyze the PM2.5 exposure risk in Beijing from the perspective of multiscale spatiotemporal 
characteristics of PM2.5 concentrations and exposure risk intensity, finally realized a localized assessment 
framework towards SDG 11.6.2 to quantitatively evaluate the progress of Beijing. The results not only clarified 
the sustainable development status of air quality in Beijing but also provided experience and demonstration for 
the similar city-level monitoring and assessment towards SDG 11.6.2 in the future.   

1. Introduction 

To promote the coordinated development of economic growth, social 
inclusion, and environment friendly, the UN approved and adopted the 
2030 Agenda for Sustainable Development in 2015, which covers 17 
Sustainable Development Goals (SDGs) with 169 targets (Chen, Shu, 
Chen, Zhao, Ge, & Li, 2020). To ensure successful implementation of this 
global agenda, the United Nations has established an Inter-Agency and 
Expert Group on the SDG indicators (IAEG-SDGs) and researched the 
indicator design, metadata compilation, indicator classification, etc. 
(Liu, Bai, & Chen, 2019). In 2017, the SDGs Global Indicator Framework 
(SGIF), which included 232 indicators, was proposed, providing a 
globally unified indicator system for quantitative assessment, periodic 
monitoring, and reporting of the national or regional SDGs (Cheng, 
et al., 2020). 

Owing to the significance of cities and urban settlements in the di-
versity of aspects that affect sustainable development, SDG 11, which 

aims at making cities and human settlements inclusive, safe, resilient, 
and sustainable by 2030, was developed to track performance and 
encourage deliberate actions to promote sustainability in cities. This 
goal contains ten targets, of which target 11.6 focuses on reducing the 
adverse per capita environmental impact of cities, including by paying 
special attention to air quality and municipal and other waste man-
agement. One of its indicators 11.6.2 is “Annual mean levels of fine 
particulate matter (e.g. PM2.5 and PM10) in cities (population 
weighted)”, which aims to evaluate the impact of fine particulate 
pollution on the health of urban populations. 

With the characteristics of small particle size, wide sources, complex 
physical properties, and chemical components, particulate matter, 
especially fine particulate matter with a diameter less than 2.5 µm 
(PM2.5), is recognized as a kind of the most representative air pollutant 
that is extremely harmful to human health (Fann, Lamson, Ananberg, 
Wesson, Risley, & Hubbell, 2012; Hoek, Krishnan, Beelen, Peters, Ostro, 
& Brunekreef, et al., 2013; Li, Dong, Zhu, Li, & Yang, 2019). Air 
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Pollution Exposure refers to the state or process by which individual 
residents are exposed to air pollution in direct contact with air pollut-
ants, essentially due to the overlapping of air pollutants and population 
distribution in time and space (Ott, 1982). According to the State of the 
World’s Air 2020 released by the American Institute for Health Effects, 
the number of people dying from various diseases due to long-term 
exposure to air pollution reached 6.17 million in 2019, and about 500, 
000 babies died from air pollution in the first month of life. Cities are 
particularly vulnerable to the atmospheric environment, as they 
accommodate more than half of the world’s population and consume 
most of the global energy (Wang, Niu, Fan, & Long, 2022). In the context 
of the implementation of the 2030 Agenda for Sustainable Development, 
it is of great practical significance and practical value to carry out a 
city-level PM2.5 pollution population exposure risk assessment based on 
SDG 11.6.2. 

Considering the harm and urgency of air pollution, many scholars 
have conducted qualitative and quantitative analyses on the risk 
assessment of PM2.5 pollution exposure. Traditional PM2.5 pollution 
exposure risk studies focused primarily on epidemiology and environ-
mental chemistry, and went through a research journey from single 
pollutants to mixed pollutants, from individual studies to population 
studies, and from statistical methods to model improvement (Hystad, 
Setton, Cervantes, Poplawski, Deschenes, & Brauer, et al., 2011; Jing, 
Liu, Wang, Song, Lee, & Xu, et al., 2020; Kousa, Kukkonen, Karppinen, 
Aarnio, & Koskentalo, 2002). But these studies are mostly conducted in 
administrative regions or specific population groups, which is difficult to 
deeply analyze the spatial heterogeneity of pollution population expo-
sure and quantitatively evaluate the intensity of population exposure 
risk in the study area (Wang, Guo, & Lang, 2016). Some scholars have 
carried out experimental exploration studies on the PM2.5 exposure risk, 
and Kousa, Kukkonen, Karppinen, Aarnio, & Koskentalo (2002) have 
proposed a model for evaluating the population exposure to PM2.5 
pollution by considering the spatial distribution of PM2.5 concentration 
and the spatial distribution of population. The model can quantify the 
intensity of PM2.5 exposure risk at the pixel scale, thereby obtaining 
high-precision exposure assessment results in the study area. Further-
more, to better reflect the influence of PM2.5 pollution on public health 
and the exposed public, Wang, Guo, & Lang (2016) proposed 
population-weighted PM2.5 concentrations considering the exposed 
population to PM2.5pollution, and analyzed the PM2.5 exposure risk in 
31 provinces in China. In general, few risk assessment studies are 
focusing on PM2.5 pollution in recent years, and the evaluation in-
dicators of PM2.5 exposure risk used by different researchers and their 
applicable evaluation scales vary (Hoek, Brunekreef, Goldbohm, 
Fischer, & Brandt, 2002; Zhang & Hu, 2018). Beside, most of these 
existing studies are analyses of the pollution status and characters of 
PM2.5 population exposure risk and lack specific quantifiable evaluation 
targets to apply to the evaluation and monitoring practice of SDG 11.6.2. 

In addition, while SDG 11.6.2 is a conceptually clear and quantifiable 
indicator in the Tier Classification for Global SDG Indicators, it was 
designed for global and national monitoring and assessment like other 
indicators in SGIF, and in practice still faces the issue of how to monitor 
and evaluate at the local level (Burford, Tamás, & Harder, 2016; Chen, 
Ren, Geng, Peng, & Ye, 2018). Therefore, studies mainly conduct sum-
mary analysis of SDG 11.6.2 on a global or national scale (Lozano, 
Fullman, Abate, Abay, Abbafati, & Abbasi, 2018); to our knowledge, 
there are few studies and reports on comprehensive evaluation and 
monitoring of it at a city level. Obviously, for SDG 11.6.2, an indicator 
for evaluating the adverse environmental impact on a city, it is difficult 
to accurately reflect the specific progress of the city by only considering 
the evaluation results at the national level. For example, Akuraju, 
Pradhan, Haase, Kropp, & Rybski (2020) demonstrate that high levels of 
pollution tend to be related to high pollution levels in large cities after 
analyzing how urban indicator values scale with city size within a 
country. In summary, to avoid concealing local heterogeneities, the 
perspective of SDG 11.6.2 assessment should be turned from the 

national and sub-national levels to the city-levels (Utazi, Thorley, Ale-
gana, Ferrari, Nilsen, & Takahashi, 2019), and form a localization index 
evaluation system adapted to local conditions. 

To minimize air pollution impacts effectively, process assessments of 
air pollution goals must be implemented in all global cities. As the 
capital of China, Beijing’s urban population, energy consumption, and 
the number of motor vehicles have grown rapidly over the past few 
decades, and the consequent problem of air particulate pollution has 
become more prominent. In response to poor air quality, the Beijing 
Municipal Government issued the Beijing Clean Air Action Plan 
2013–2017, which provides a clear and feasible strategy for air pollution 
control. Immediately afterward, the "Beijing Blue Sky Defense War 2018 
Action Plan" was launched, which further expanded and deepened the 
air pollution control work (Cheng, Zhang, Li, Xie, Chen, & Meng, et al., 
2017). Therefore, to the formulation of more scientific air pollution 
prevention and control policies, a scientific assessment of the results of 
air pollution control in Beijing is also necessary. 

Based on this, this article is oriented towards SDG 11.6.2, in com-
bination with the PM2.5 monitoring site data and population grid data of 
Beijing in the past 7 years, adopting quantitative of SDG 11.6.2 at the 
city level from the perspective of multiscale spatial-temporal variations 
analysis of PM2.5 exposure risk, which provides technical support and 
practical policy suggestions for the control of air pollution in Beijing, 
and provides research ideas and scientific references for further 
improving the SDG index system. 

2. Materials and methods 

2.1. Study area 

Beijing is located in the center of Beijing-Tianjin-Hebei and the 
surrounding area, one of the four major smog areas in China, adjacent to 
Tianjin to the east and surrounded by six cities in Hebei (Wang, Ning, & 
Sun, 2012; Wu, 2012). The terrain slopes from northwest to southeast, 
with plains in the center and east, and hills in the west, north, and 
northeast surround the small plain where Beijing City is located. The 
cross-regional transmission of pollutants caused by the southeastern 
monsoon, coupled with the meteorological conditions that are not 
conducive to the diffusion of pollutants caused by topography, has 
caused severe air pollution in Beijing (Liu, Gautam, Yang, Tao, Wang, & 
Zhao, 2021). 

2.2. Data and data processing 

2.2.1. Urban population data 
Due to the uneven spatial distribution of the population, it is obvious 

that areas with higher population density have greater exposure risks 
under the same PM2.5 concentration. Therefore, in the assessment of the 
overall PM2.5 exposure risk in Beijing, the WorldPop dataset was used to 
reflect the geospatial distribution of population data at a fine scale. The 
spatial resolution of this data set is 1 km, which has been adjusted to 
match the country’s total population from the official United Nations 
population estimates and is widely used in the fine study of medium and 
higher population density areas (Lin, Tan, Lin, Liu, & Zhu, 2020; Qiu, 
Zhao, Fan, & Li, 2019). To verify the accuracy of the WorldPop dataset 
in Beijing, this paper collects the permanent population data of various 
districts of Beijing for 2014–2020, of which the data from 2014 to 2019 
are derived from the Beijing Statistical Yearbook, and the data in 2020 
are from the bulletin of the 7th National Census of Beijing. After that, the 
zonal statistic method was used to count the total population of each 
district in each year of Beijing based on the WorldPop dataset, and then 
calculate the Pearson correlation coefficient with the permanent popu-
lation statistics of each district in the same year. The results show that 
the WorldPop dataset has high precision and applicability in reflecting 
the spatial distribution of population in Beijing, and the lowest corre-
lation coefficient is 0.95 at the level of P value less than 0.001, which can 
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meet the needs of this study. 

2.2.2. PM2.5 data 
To analyze the changing law of PM2.5 exposure risk in Beijing on a 

long-term scale and better reflect the current pollution situation, this 
paper collected hourly PM2.5 mass concentration data from 35 province- 
level air monitoring stations in Beijing from January 2014 to December 
2020 released by the Beijing Environmental Protection Monitoring 
centre, and the spatial distribution of each site as shown in Fig. 1. 

Due to the difference in the spatial distribution of PM2.5 concentra-
tion, it is not reasonable to only use the PM2.5 concentration obtained 
from the site monitoring to represent the PM2.5 concentration in Beijing. 
Therefore, the kriging method was applied to interpolate the PM2.5 
concentration site data to generate PM2.5 concentration raster surface 
with spatial resolution and range consistent with the WorldPop dataset, 
and then calculated the average PM2.5 concentration of all pixels in the 
corresponding PM2.5 concentration grid surface in each region as the 
PM2.5 concentration in the region. 

2.3. Methods 

The SDG indicator is designed for global and national monitoring 
and assessment, a localization reform must be undertaken when 
applying it at a city level (such as in Beijing) due to the lack of localized 
indicators, basic data, and quantitative assessment and analysis models 
(Liu, Bai, & Chen, 2019). The core philosophy of localization reform is to 
improve, extend and adjust the original indicator system based on 
maintaining the connotations of sustainable development indicators 
(Chen, Peng, Zhao, Ge, & Li, 2019). Since SDG 11.6.2 was designed to 
reflect air quality and its impact on the health of urban populations, the 
connotations of this indicator can be extended from the perspective of 

spatiotemporal change analysis. To tailor it to local circumstances, three 
criteria of purposefulness, adaptability and measurability were pro-
posed for selecting a localization indicator set combined with SGIF and 
local geographical characteristics. Among them, purposefulness analysis 
refers to whether the evaluation index can reflect the connotation of its 
corresponding target; adaptability analysis means whether the evalua-
tion index has practical significance or value for the research area; 
measurable analysis is used for determining whether the evaluation 
index can be quantified and whether it has available authoritative data. 

This is followed by spatiotemporal data processing and data-driven 
indicator calculation based on the full use of statistical, geospatial, 
and other types of data. Finally, the SDG Dashboard and local action 
targets are combined to evaluate the progress of SDG 11.6.2 in terms of 
local sustainable development status, the distance from achieving the 
SDGs, and the actions taken to achieve the SDGs. The localized frame-
work for the assessment of progress towards SDG 11.6.2 is summarized 
and illustrated in Fig. 2. 

2.3.1. Population-weighted PM2.5 concentrations 
Before the selection of the indicators, we needed to examine the 

connotation of the goal in detail and clarify what the goal intends to 
achieve. In the SDGs Global Indicator Framework (SGIF), SDG 11.6 is 
“By 2030, reduce the adverse per capita environmental impact of cities, 
including by paying special attention to air quality and municipal and 
other waste management”, one of its indicators 11.6.2 is “Annual mean 
levels of fine particulate matter (e.g. PM2.5 and PM10) in cities (popu-
lation weighted)”, and the connotation of the indicator is to evaluate the 
impact of fine particulate pollution on the health of urban populations. 

PM2.5 mass concentration is a commonly used PM2.5 exposure risk 
assessment index (Ban, Ma, Zhang, & Li, 2021; Qiu, Xu, Song, Luo, Zhao, 
& Xiang, et al., 2017), but it ignores the unevenness of population spatial 

Fig. 1. Study area and the locations of the 35 air-quality monitoring stations.  
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distribution and is difficult to reflect the difference in PM2.5 exposure 
risk in areas with different population densities under the same PM2.5 
concentration. Theoretically, compared with the exposure assessment 
that only considers mass concentrations, population-weighted PM2.5 
concentrations weigh the population at different exposure concentra-
tions, which not only comprehensively reflect the mass concentration of 
particulate matter and the spatial distribution of population density but 
also quantify the intensity of the air pollution exposure risk in a certain 
spatial unit (Lin, Li, Lau, Deng, Tsa, & Fung, et al., 2016; Zhong, Louie, 
Zheng, Yuan, Yue, & Ho, et al., 2013). Therefore, population-weighted 
PM2.5 concentrations can better reflect the actual impact of PM2.5 
pollution on population health, the expression as follows: 

PPMt
2.5 =

∑n

j=1

(
PMi, t

2.5 ×Pi,t)
/

∑n

j=1
Pi,t (1)  

where, PPMt
2.5 (unit: ug/m3) represents the population-weighted mean 

PM2.5 concentrations for a given time t; PMi, t
2.5 (unit: ug/m3) denotes the 

mean PM2.5 concentrations of grid point i; Pi,t (unit: person) stands for 
the population count at grid point i. 

The calculation of the difference between PPM2.5 and PM2.5 are 
presented as follow: 

Di,t =
(
PPMi, t

2.5 − PMi, t
2.5
)/

PMi, t
2.5 × 100% (2)  

where, Di,t is the difference between PPM2.5 and PM2.5. 

2.3.2. Trend analysis 
The seasonal Kendall test (Hirsch, Slack, & Smith, 1982), which is a 

generalized form of nonparametric Mann–Kendall (MK) test (Kendall, 
1948; Mann, 1945), does not require the sample to follow any distri-
bution and is less affected by outliers, and hence more applicable for 
trend test to data sets with seasonality (Ahmad, Fatima, Awan, & Anwar, 
2014). The seasonal Kendall slope estimator (Hirsch, Slack, & Smith, 
1982) is an unbiased estimator of linear trend magnitude, reflecting the 
long-term trends of data with complicated seasonality and has consid-
erably higher precision than a regression estimator (Tsirkunov, Nika-
norov, Laznik, & Zhu, 1992). In this study, the seasonal Kendall test and 
seasonal Kendall slope tests were used to identify trends in the PM2.5 
time series from January 2014 to December 2020. Firstly, we performed 

the seasonal Kendall test to detect whether the PM2.5 time series has a 
significant trend. If the p-value is less than 0.05, the corresponding trend 
is considered significant. Then, the slope values of the PM2.5 data were 
calculated by performing seasonal Kendall slope estimator in order to 
indicate the direction and the magnitude of the temporal changes in 
PM2.5 concentration. 

2.3.3. Measuring geographic distributions methods 
In this paper, the kriging method was used to map the PM2.5 con-

centrations distribution from 35 air monitoring stations with PM2.5 
concentrations, and the standard deviation ellipse (SDE) and median 
center (MEC) are employed to trace the spatial pattern changes of PM2.5 
concentrations distribution across a time series. Kriging is a geo-
statistical method widely used in air pollution research that generates an 
estimated surface from a scattered set of points with z-values (Li, Song, 
Zhai, Lu, Kong, & Xia, et al., 2019; Shao, Ma, Wang, & Bi, 2020). SDE 
was firstly proposed by Lefever (1926) in 1926, including three basic 
parameters: mean center, azimuth, and long-short half axis length, 
which are typically used to summarize the geospatial distribution 
characteristics of discrete point data (He, Zhang, Song, & Huang, 2021). 
Among the parameters of SDE, the mean center is the center of spatial 
data, which indicates the gravity of the distribution; the azimuth reflects 
the main trend directions; and the long and short half axis represents the 
direction and range of geospatial elements distribution, respectively. 
Accordingly, the size of long-short axis ratio can reflect the tendency of 
the directional about the distribution of geospatial elements (Cheng, 
Zhang, Chen, Li, Wang, & Hu, et al., 2020). The median center is a 
measure of the central tendency and feature distribution, identifying the 
location that minimized travel from it to all other features in a dataset 
(Li, Li, Chen, Zhou, Cui, & Liu, et al., 2019). Compared with the average 
center, the median center is less influenced by data outliers, which can 
better reflect the spatiotemporal trend of the dataset (Cao, Gao, Li, Wu, 
Guan, & Ho, 2021). 

3. Results 

3.1. Spatial pattern of PM2.5 concentrations in Beijing 

The spatial distribution of annual average PM2.5 concentrations from 
2014 to 2020 in Beijing is presented in Fig. 3. Overall, the average 
annual PM2.5 concentration in Beijing shows a spatial distribution 
characteristic that decreases from south to north, reflecting the influence 
of industrial layout and cross-regional transmission of pollutants on air 
quality. The northern part of Beijing is backed by the Taihang Mountains 
and Yanshan Mountains, with low population density and low emis-
sions, coupled with the location of the northwest monsoon entry channel 
that helpful to the diffusion of pollutants, so the overall concentration of 
particulate matter is low (Ji, Wang, & Zhuang, 2019); the southern re-
gion has the worst air quality due to its proximity to several heavy in-
dustrial cities in Hebei and Shandong, and the cross-regional 
transmission of pollutants under the action of the southeast monsoon in 
summer (Xu & Zhang, 2020); the population and vehicles in the central 
urban area are dense, and the emission of air pollutants is large, so the 
air pollution situation is also more serious. 

Beside, the annual average concentration of PM2.5 in Beijing showed 
a significant downward trend in time changes from 2014 to 2020, 
reflecting the achievements of air pollution control in Beijing. In 2014, 
the annual average concentration of PM2.5 in Beijing was 41~128 ug/ 
m3, the annual average PM2.5 concentrations in all areas of Beijing 
exceeded the CAAQS Grade II (35 µg/m3). With the implementation of 
the Beijing 2013–2017 Clean Air Action Plan, the annual average con-
centration of PM2.5 in Beijing was 33–80 ug/m3 in 2017, a decrease of 
about 31% compared with the average annual concentration in 2014. 
Based on the five-year PM2.5 pollution action plan, the capital city 
implemented the Beijing Blue Sky Defense War 2018 Action Plan, which 
continued to focus on PM2.5 pollution control. By 2020, the annual 

Fig. 2. The localized framework for the assessment of progress towards 
SDG 11.6.2. 
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average concentration of PM2.5 in Beijing will be 23–54 ug/m3 with a 
decrease of about 28% compared with 2017, and the PM2.5 concentra-
tions in Huairou, Miyun, Yanqing, and north Changping districts was 
lower than 35 ug/m3. 

The overall spatial pattern changes of annual PM2.5 concentrations in 
Beijing from 2014 to 2020 were evaluated by standard deviation ellipse 
and median center analysis (Fig. 4). The distribution pattern of the 
median center found in southeastern Changping with an obvious north- 
south change and the small east-west change, which reflects the char-
acteristics of PM2.5 distribution in Beijing mainly changed in the north- 
south direction. This is primarily because the west, east, and north of 
Beijing are surrounded by mountains, making it difficult for pollutants 

that spread from the south to diffuse in east-west directions (He, Liu, 
Zhao, He, Liu, & Mu, 2022). The azimuth of SDE reflects the PM2.5 
concentration in Beijing showed a significant distribution pattern in the 
"northeast-southwest" direction, which is also parallel to the mountains 
in the southwest, reflecting the effect of terrain on the spatial distribu-
tion of PM2.5 concentration. Furthermore, the long-short axis ratios 
changed from 1.51 to 1.62 in 2014–2017, which means that air pollution 
has spread in the main direction during this period; then gradually 
dropped to 1.54 in 2020, reflecting that the directionality of the PM2.5 
pollution was weakened. 

Fig. 3. Spatial distribution of PPM2.5 annual average concentrations in Beijing from 2014 to 2020.  

Fig. 4. Standard deviational ellipses and median center of PM2.5 concentrations in Beijing from 2014 to 2020.  
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3.2. Overall PM2.5 exposure risk assessment in Beijing 

3.2.1. Yearly variations of PM2.5 exposure risk 
The concentrations of PPM2.5 and PM2.5 in Beijing from 2014 to 2020 

are shown in Fig. 5, the concentrations of PPM2.5 and PM2.5 in Beijing in 
2014 were 92.6 and 83.7 ug/m3, respectively, and then dropped to 38.9 
and 35.4 ug/m3. Overall, the concentrations of PPM2.5 and PM2.5 in 
Beijing from 2014 to 2020 showed a downward trend year by year. 
PM2.5 concentration value was higher than PPM2.5 every year, which 
means that the PM2.5 mass concentration underestimated the actual 
impact of PM2.5 pollution on the health of the population in Beijing. 
From the perspective of the difference between PM2.5 and PPM2.5, the 
overall trend from 2014 to 2018 showed a significant downward trend, 
which was mainly due to a series of air pollution control measures in 
Beijing that led to a decrease in the difference between PM2.5 concen-
tration in high population density areas and low population density 
areas; the difference from 2018 to 2020 has increased slightly, which is 
mainly due to the further reduction of the difference in the spatial dis-
tribution of PM2.5 concentrations that leads to the transfer of high 
pollution areas to the central and southern high population density 
areas. 

According to the traffic light method of the SDGs Index and Dash-
board in the Sustainable Development Report 2020, released by the 
Bertelsmann Foundation and the United Nations Sustainable Develop-
ment Solutions Network (SDSN). Most of the SDGs indicators were 
quantitatively graded, the scores were divided into four grades, i.e., the 
green (basically fulfilling the requirements of the indicator), the yellow 
(to be upgraded), the orange (challenging), and the red (far from 
achieving the 2030 requirements). It enables SDGs indicators to be 
compared across regions, helping countries or regions assess the relative 
progress of SDGs. Among it, SDG 11.6.2 is divided into four grades ac-
cording to the average annual population-weighted PM2.5 concentration 
(ug/m3), of which the average annual PPM2.5 concentration represented 
by green, yellow, orange, and red is PPM2.5 ≤ 10, 10< PPM2.5 ≤ 17.5, 
17.5< PPM2.5 ≤ 25 and 25 < PPM2.5, respectively. Although the con-
centration of PPM2.5 in Beijing has continued to decrease in recent years, 
the average annual concentration of PPM2.5 (38.9 ug/m3) in 2020 still 
far exceeds the 25 ug/m3 required by the red grade of the SDG 11.6.2 
Dashboard. 

Fig. 6 presents the cumulative distribution plot of population 
numbers at different PM2.5 concentrations in Beijing from 2014 to 2020. 
The results show that the proportion of people exposed to areas with 
excessive PM2.5 concentration in Beijing from 2014 to 2020 shows a 
significant downward trend year by year, indicating that the PM2.5 
exposure risk in Beijing is decreasing. However, before 2019, the pro-
portion of the population in the areas exceeding the CAAQS Grade II (35 

µg/m3) was 100%, indicating that there was a high PM2.5 exposure risk 
among residents in Beijing; by 2020, this proportion dropped to 90%, 
but the downward trend was significantly slower than in previous years. 

3.2.2. Monthly variations of PM2.5 exposure risk 
On the assumption that the spatial distribution of monthly popula-

tion density in Beijing remains unchanged and consistent with the 
annual, we calculate the monthly average PPM2.5 concentration in 
Beijing from 2014 to 2020 to analyze the variation characteristics of 
PM2.5 exposure risk on a monthly scale. Subsequently, the seasonal 
Kendall test method is used to test the significance of the changing trend 
of PM2.5 and PPM2.5, and the slope value of the long-term trend of the 
two is calculated using the seasonal Kendall slope estimator method, 
then the trend line is plotted as shown in Fig. 7. The Z values obtained by 
the trend test were − 7.3 and − 7.5, respectively, and both passed the 
significance test of 0.01, indicating that the average monthly PM2.5 and 
PPM2.5 concentrations in Beijing from 2014 to 2020 showed a signifi-
cant downward trend. What’s more, the monthly average concentration 
of PPM2.5 in each month from 2014 to 2020 was higher than the PM2.5, 
but the gap between the two decreased year by year. From the trend 
lines of PPM2.5 and PM2.5, it can be seen that the downward trend of 
PPM2.5 is more obvious, and the trend lines of the two in 2020 are almost 
overlapping, reflecting the decline of the PM2.5 exposure risk in Beijing 

Fig. 5. Comparison of annual average concentrations of PPM2.5 and PM2.5 in 
Beijing from 2014 to 2020 (the red line in the figure indicates the red grade of 
SDG 11.6.2). 

Fig. 6. Cumulative distribution plot of population numbers at different PM2.5 
concentrations in Beijing from 2014 to 2020. 

Fig. 7. Trends of monthly average concentrations of PPM2.5 and PM2.5 in 
Beijing from 2014 to 2020. 
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and a high degree of consistency in the changing trend of PPM2.5 and 
PM2.5. 

In addition, the average monthly PPM2.5 concentrations in individual 
months (August 2019 and September 2020) in Beijing reached the target 
of less than 25 ug/m3 required for the orange grade of the SDG 11.6.2 
Dashboard, and the concentration of PPM2.5 in September 2020 was 
lower than that in August 2019. The shift from red (far from achieving 
the 2030 requirements) to orange (challenging) reflects not only the 
determination and effectiveness of Beijing’s air pollution control but 
also the gradual narrowing of the gap between Beijing and the realiza-
tion of SDG 11.6. 

3.3. PM2.5 exposure risk assessment in various districts of Beijing 

3.3.1. Yearly variations of PM2.5 exposure risk 
The annual average concentration of PPM2.5 in all districts of Beijing 

from 2014 to 2020 is shown in Fig. 8. On the whole, the annual average 
PPM2.5 concentration in all districts of Beijing showed obvious spatial 
distribution characteristics of high in the south and low in the north with 
a significant downward trend year by year, which was roughly the same 
as the distribution characteristics of PM2.5. And the PPM2.5 concentra-
tions in all districts of Beijing in 2014 were 72~106 ug/m3, 50~71 ug/ 
m3 in 2017, and 30~44 ug/m3 in 2020. In 2020, there were four districts 
in Beijing (Huairou, Miyun, Yanqing, and Mentougou) with an average 
annual concentration of PPM2.5 below 35 ug/m3, but is still in the red 
grade (> 25 ug/m3) of the SDGs Dashboard, indicating that the PM2.5 
exposure risk in Beijing remains at a high level. 

The comparative results of the annual average concentrations of 
PPM2.5 and PM2.5 in various districts of Beijing were shown in Table 1. It 
can be seen that the difference between PPM2.5 and PM2.5 in Dongcheng 
and Xicheng is the smallest, which is mainly due to the small change in 
population density and PM2.5 concentration because of the small area, 
and part of the reason is that the 1 km resolution WorldPop dataset is 
difficult to reflect the change of population distribution on a smaller 
scale. In addition, the PPM2.5 concentrations in Huairou and Changping 
are significantly greater than PM2.5, which is mainly due to the gentle 
terrain and high population density in the south of Huairou and 
Changping, coupled with the overall trend of PM2.5 concentration 
decreasing from north to south. It is worth noting that the PPM2.5 con-
centrations in the most polluted Daxing distinct are much smaller than 
the PM2.5 concentrations, and its difference shows a gradually increasing 
trend. This is mainly due to the increase in the spatial distribution dif-
ference of PM2.5 concentration in Daxing District caused by the reduc-
tion of pollutant transmission from the south, coupled with the 
distribution of population that is high in the north and low in the south. 

3.3.2. Monthly variations of PM2.5 exposure risk 
On the assumption that the spatial distribution of monthly 

population density in Beijing remains unchanged and consistent with 
the annual, we calculate the monthly average PPM2.5 concentration in 
various districts of Beijing from 2014 to 2020, and the months with 
PPM2.5 concentration in the red grade were extracted as shown in 
Table 2. The result shows that more and more months have reached the 
orange grade of SDG 11.6.2 Dashboard in various districts of Beijing 
from 2018 to 2020, which is closer to international standards and also 
reflects the effectiveness of air pollution control in Beijing. 

4. Discussion 

4.1. Progress assessment methodology towards SDG 11.6.2 at city-level 

The progress assessment of the SDGs should include the following 
three aspects, one is to indicate the gap from achieving the sustainable 
development goal, the other is to be able to take into account the 
different geographical and technological levels between regions, and the 
third is to reflect whether the evaluation body has made efforts to 
achieve the sustainable development goal. The SDGs Dashboard, which 
is designed based on the degree of achievement of the observation 
target, has a strong contrast function and a clear and intuitive advantage 
in reflecting the progress of SDGs (Janoušková, Hák, & Moldan, 2018; 
Flückiger & Seth, 2016; Simon, Arfvidsson, Anand, Bazaz, Fenna, & 
Foster, et al., 2015). However, it does not take into account the differ-
ences in geographical and technical levels between regions, making it 
difficult for the SGIF to “translate” for specific application areas (Koch & 
Krellenberg, 2018). Therefore, to clarify the sustainable development 
status of air quality in Beijing, a localized assessment framework for 
Beijing towards SDG 11.6.2 was designed, rather than any rigid 
global-level indicator with unclear local value. 

The SDGs adhere to the core principle of “Leave no one behind”, so 
the indicators of each target are often combined with production and 
life. SDG 11.6 focuses on reducing the adverse per capita environmental 
impact of cities, one of its indicators SDG 11.6.2 aims to evaluate the 
harm of air pollution to public health. Due to the uneven spatial dis-
tribution of the population, it is obvious that areas with higher popu-
lation density have greater exposure risks under the same PM2.5 
concentration. Based on the concept, population-weighted PM2.5 con-
centrations weigh the population at different exposure concentrations, 
so the result can better reflect the harm of air pollution on public health. 
In addition, the calculation method of PPM2.5 can be used to construct 
exposure risk assessment indicators for other atmospheric pollutants 
such as O3. However, plenty of air pollution control measures in Beijing 
are based on PM2.5 concentrations, so it is unreasonable to use PPM2.5 as 
an assessment index to analyze the effectiveness of Beijing’s air pollu-
tion control measures and reflect the efforts made by Beijing to promote 
the realization of SDG 11.6. 

Based on this, to more reasonably assess the progress of Beijing to 

Fig. 8. Spatial distribution of PPM2.5 annual average concentrations in all districts of Beijing from 2014 to 2020.  
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promote the realization of SDG 11.6.2, this study takes PM2.5 as the main 
evaluation index scientifically evaluates the air pollution control mea-
sures and effectiveness of Beijing from 2014 to 2020. The PPM2.5 con-
centration will be used as a supplementary indicator to reflect the 
impact of air pollution on the exposed population of Beijing and refer to 
SDGs Dashboard to reflect the gap between Beijing and the achievement 
of the Sustainable Development Goals. 

4.2. Progress towards SDG 11.6.2 in Beijing 

Beijing was surrounded by mountains on three sides, the unique 
topographical conditions make it susceptible to air pollution. At the turn 
of the last century, the sharp increase in the scale of construction, the 
surge in road motor vehicles, the continuous increase in the number of 
urban people, and the consequent increase in coal-burning have all 
contributed to the worsening trend of air pollution in Beijing. Beijing’s 
air pollution control actions on this basis are facing great difficulties and 
challenges in itself. 

Since 2013, Beijing has carried out a series of air pollution control 
actions with specific targets focusing on the prevention and control of 
PM2.5 pollution. In September 2013, the “Beijing 2013–2017 Clean Air 
Action Plan” was implemented, which put forward the overall goal of 
"after five years of efforts, the PM2.5 concentration in Beijing will be 
controlled at about 60 ug/m3 by 2017′′, and specific targets for each 
district based on the pollution status of each district. By 2017, the PM2.5 
and PPM2.5 concentrations in Beijing were 59.7 and 61.7 ug/m3, 

respectively, achieving the goal of controlling the PM2.5 concentration in 
Beijing at about 60 ug/m3. And the difference between PPM2.5 and PM2.5 
was also declining, reflecting the decreasing impact of air pollution on 
the health of urban residents. 

The annual average concentrations of PPM2.5 and PM2.5 in all dis-
tricts of Beijing in 2017 were shown in Fig. 9. It can be seen that the 
PM2.5 concentrations in Huairou, Miyun, and Yanqing in the northern 
region all dropped below the target line of 50 ug/m3, but PPM2.5 con-
centrations in these three districts were higher than 50 ug/m3, indi-
cating that the population of the three northern districts was mainly 
distributed in areas with higher PM2.5 concentrations. For the three 
districts of Shunyi, Changping, and Pinggu in the central region, the 
PM2.5 concentrations in the other two districts except for Changping is 
still far from the target line of 55 ug/m3, and the PPM2.5 concentrations 
in the other two districts except for Shunyi are higher than the PM2.5 
concentrations, but the average annual concentration of PPM2.5 in all 
the three districts is greater than 55 ug/m3. Among the six districts in the 
central area of Beijing, only the PM2.5 concentrations in Haidian was 
lower than the target line of 60 ug/m3, the difference between PPM2.5 
and PM2.5 in Dongcheng, Xicheng, and Chaoyang was not much 
different, and PPM2.5 concentrations in Haidian, Fengtai, and Shijing-
shan was significantly higher than the PM2.5. Furthermore, only the 
PM2.5 concentrations in Mentougou among the four districts in the south 

Table 1 
The annual average concentrations of PPM2.5 and PM2.5 in each district of Beijing in 2014, 2017 and 2020.  

Districts 2014 2017 2020 
PPM2.5 PM2.5 Difference (%) PPM2.5 PM2.5 Difference (%) PPM2.5 PM2.5 Difference 

Beijing 92.59 83.72 10.60 61.11 57.06 8.85 38.86 35.42 9.73% 
Dongcheng 90.96 91.48 − 0.57 61.87 62.12 − 0.39 39.96 39.92 0.09% 

Xicheng 92.51 92.90 − 0.43 62.42 62.63 − 0.34 40.32 40.25 0.16% 
Chaoyang 94.65 95.89 − 1.29 64.01 65.04 − 1.60 38.35 38.26 0.25% 
Haidian 89.62 85.93 4.29 58.73 57.77 1.66 40.08 38.78 3.35% 
Fengtai 98.51 96.89 1.67 65.98 64.53 2.25 40.11 38.57 4.01% 

Shijingshan 87.66 85.46 2.57 60.65 59.75 1.51 39.55 38.50 2.73% 
Mentougou 80.37 81.70 − 1.62 58.48 58.19 0.50 33.45 34.58 − 3.27% 
Fangshan 104.06 100.28 3.77 70.91 70.26 0.92 40.05 39.45 1.54% 
Tongzhou 105.78 106.29 − 0.48 70.78 70.93 − 0.22 43.62 44.66 − 2.31% 

Daxing 106.31 108.62 − 2.12 67.93 70.82 − 4.08 41.33 45.40 − 8.97% 
Shunyi 85.27 84.61 0.77 58.29 58.60 − 0.52 36.09 35.86 0.64% 

Changping 83.98 77.88 7.83 55.33 52.28 5.83 36.38 34.52 5.40% 
Pinggu 79.42 77.69 2.24 60.22 58.14 3.57 36.88 36.35 1.46% 
Huairou 76.88 72.37 6.24 50.44 47.15 6.98 31.78 30.40 4.51% 
Miyun 72.04 70.03 2.87 50.57 48.29 4.72 29.72 30.20 − 1.57% 

Yanqing 74.49 73.57 1.25 50.09 48.47 3.34 32.47 31.57 2.85%  

Table 2 
The months with average monthly PPM2.5 concentrations less than 25 ug/m3 in 
various districts of Beijing from January 2014 to December 2020.  

Districts Sep-2018 Aug-2019 Aug-2020 Sep-2020 Dec-2020 

Dongcheng 30.31 25.61 28.28 26.60 30.80 
Xicheng 31.07 25.04 29.29 26.84 30.83 

Chaoyang 30.23 24.54 27.60 25.49 30.41 
Fengtai 30.53 23.53 27.13 24.82 33.10 

Shijingshan 26.51 21.72 25.83 22.67 31.04 
Haidian 28.46 23.35 28.91 25.59 30.12 

Mentougou 24.60 18.29 23.91 20.77 27.58 
Fangshan 30.64 19.90 24.24 21.17 37.93 
Tongzhou 32.37 27.07 27.64 23.13 35.95 

Shunyi 27.15 21.73 26.59 22.25 25.29 
Changping 26.30 21.64 26.87 23.48 26.49 

Daxing 32.74 23.96 25.85 23.78 39.12 
Huairou 23.50 19.44 24.16 19.66 21.24 
Pinggu 25.34 21.80 25.64 20.69 29.08 
Miyun 22.57 19.53 22.91 18.88 20.95 

Yanqing 25.60 18.31 21.43 18.66 28.87  

Fig. 9. Comparison of PPM2.5 and PM2.5 concentrations in various districts of 
Beijing in 2017 (the red line in the figure indicates the annual average PM2.5 
concentration target proposed by the Beijing 2013–2017 Clean Air Action Plan 
for each district to be achieved in 2017). 
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was lower than the target line of 65 ug/m3, and the other three districts 
(Fangshan, Tongzhou, and Daxing) were the three districts with the 
highest PM2.5 concentration among the 16 districts in Beijing, of which 
the PPM2.5 concentrations in Daxing District was much lower than the 
average annual PM2.5 concentrations, indicating that most of the pop-
ulation in Daxing District was concentrated in the area with relatively 
low PM2.5 concentrations. 

Through strict emission reduction measures, in just five years from 
2013 to 2017, the annual average concentration of PM2.5 in Beijing 
dropped by about 35%, and the peak PM2.5 concentrations in Beijing 
reduced by 20%, but the PM2.5 concentrations remained at a very high 
level. Therefore, Beijing municipality issued the "Three-year Action Plan 
for Beijing to Win the Blue Sky Defense War" in 2018, which put forward 
the overall goal of "by 2020, the city’s air quality improvement target 
will be further improved based on the ‘13th Five-Year Plan’, and the 
PM2.5 concentrations will be significantly reduced". At the same time, 
combined with the actual situation, the air quality improvement goals of 
each district were formulated. 

2020 is the final year of the "13th Five-Year Plan" and the "Beijing 
Blue Sky Defense War 2018 Action Plan", the PM2.5 concentrations in 
Beijing decreased by 52% compared with 2015 to 35.4 ug/m3, and the 
gap with the orange grade (<25 ug/m3) of the SDG 11.6.2 Dashboard 
has been further narrowed. At the same time, the "13th Five-Year Plan" 
proposed the overall goal of "by 2020, the average annual concentra-
tions of PM2.5 in Beijing will drop by about 30% compared with 2015, 
controlling it at about 56 ug/m3′′ has also completed. 

The annual average PPM2.5 and PM2.5 concentrations in all districts 
of Beijing in 2020 were shown in Fig. 10. The Daxing and Tongzhou 
district is still the most pollutant distinct in Beijing, largely due to their 
proximity to the Hebei Heavy Industrial Zone in the south, where the 
import of foreign pollutants has led to severe PM2.5 pollution. In addi-
tion, it’s functional positioning in Beijing is the New Urban Development 
Zone, an important area for the development of the manufacturing in-
dustry and the evacuation of industries and population in the urban 
center area of Beijing, and the emission of various pollutants is relatively 
large. On the other hand, the Daxing district with the highest annual 
average PM2.5 concentrations among all districts was only 45 ug/m3, 
which was lower than the specific target of 46 ug/m3 set for Huairou, 
Miyun, and Yanqing in the three northern districts with the best air 
quality in Beijing. All districts have exceeded the air quality improve-
ment targets set by the "Three-year Action Plan" for the pollution situ-
ation in the region, and the "Beijing Blue Sky Defense War 2018 Action 
Plan" has come to a perfect end. However, the PPM2.5 concentrations in 
all the 16 districts of Beijing exceeded 25ug/m3 which still in the red 
grade (> 25 ug/m3) in the SDG 11.6.2 Dashboard, and only 5 districts 
(Mentougou, Changping, Huairou, Miyun, Yanqing) had annual average 
PM2.5 concentrations of less than the CAAQS Grade II (35 µg/m3). 

5. Conclusions 

Based on the measured PM2.5 monitoring site data in Beijing and 
population grid data, using the population-weighted PM2.5 concentra-
tion algorithm, trend analysis, and measuring geographic distributions 
methods, etc., we analyze the multiscale exposure risk of PM2.5 con-
centrations in Beijing at the city-level. On this basis, We quantitatively 
evaluated the progress of Beijing by using a localized assessment 
framework towards SDG 11.6.2, which not only clarified the sustainable 
development status of air quality in Beijing but also provided experience 
and demonstration for similar city-level assessments in the future, and 
the main conclusions are as follows:  

(1) The spatial distribution of PM2.5 concentrations in Beijing 
showed a general trend of decreasing from north to south with 
significant spatial differences. In addition, due to factors such as 
terrain, meteorological conditions, and cross-regional trans-
mission of pollutants, PM2.5 pollution in Beijing generally shows 

a significant geospatial trend from northeast to southwest, and 
the pollution center is located in the southeast of Changping 
District.  

(2) The results of the PM2.5 exposure risk assessment show that the 
population in Beijing had a higher PM2.5 exposure risk from 2014 
to 2020, and a larger population was distributed in heavily 
polluted areas, but the PM2.5 exposure risk in Beijing showed a 
significant downward trend year by year. In addition, due to the 
spatial distribution characteristics difference between PM2.5 
concentrations and population density, the exposure risk assess-
ment based on population density can better reflect the actual 
impact of PM2.5 pollution on population health.  

(3) Finally, the assessment results of SDG 11.6.2 show that although 
Beijing has a low level of air quality compared to the SDG 11.6.2 
Dashboard and is far from the goal of the United Nations 2030 
Agenda for Sustainable Development, it is making rapid progress 
in promoting the implementation of SDG 11.6.2. Therefore, Bei-
jing should continue to promote air pollution control actions, 
fundamentally change the regional industrial structure, energy 
structure, transportation structure, and promote continuous 
improvement of air quality. 

Although this study achieved the goal that quantitatively evaluating 
the progress of SDG 11.6.2 at the city level, some limitations to the study 
should be clarified to assist future studies. Firstly, to ensure the accuracy 
of population data, we use the 1 km WorldPop dataset that has been 
adjusted to match the country’s total population, and the differences 
between it and higher spatial resolution population datasets (such as 
LandScan, GPW v4, etc.) in the PM2.5 exposure risk assessment have yet 
to be explored. Secondly, although the population-weighted PM2.5 
concentration can better contrast with the air pollution control targets of 
various districts in Beijing, it still has certain shortcomings for high- 
precision spatial change analysis. Finally, this paper only considers the 
most representative atmospheric pollutant PM2.5, but the PM2.5 expo-
sure risk evaluation system based on SDG 11.6.2 proposed in this paper 
can still provide a certain reference for the quantitative assessment of 
other atmospheric pollutants such as PM10, O3, CO, etc. 
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