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A Physics-Based Algorithm to Couple CYGNSS
Surface Reflectivity and SMAP Brightness

Temperature Estimates for Accurate
Soil Moisture Retrieval

Ting Yang , Wei Wan , Jundong Wang, Baojian Liu , and Zhigang Sun

Abstract— Remotely sensed soil moisture (SM) with high
accuracy and high spatial–temporal resolution is crucial to mete-
orological, agricultural, hydrological, and environmental applica-
tions. The Cyclone Global Navigation Satellite System (CYGNSS)
is the first constellation that uses the L-band signal transmitted
by the GNSS satellites to develop daily SM data products. In this
study, a physics-based algorithm is proposed to couple CYGNSS
surface reflectivity (SR) and Soil Moisture Active Passive (SMAP)
brightness temperature estimates for accurate SM retrieval. The
algorithm is based on the radiative transfer model and the SMAP
data to derive a combined parameter of the vegetation optical
depth (τ) and the surface roughness parameter (h). The CYGNSS
L1 Version 2.1 data of the years 2017–2018 and 2019–2020
are used for calibration and validation, respectively. The SM
estimates agree and correlate well with the SMAP SM and in situ
SM data on a global scale (R = 0.679, RMSE = 0.051 m3m−3, and
MAE = 0.045 m3m−3 against SMAP SM; R = 0.729 against in
situ SM). The proposed algorithm makes contributions from two
aspects. First, the proposed algorithm provides a physics-based
algorithm using SMAP brightness temperature to calibrate the
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attenuation due to vegetation and surface roughness on the
CYGNSS-derived SR. Unlike attenuation models that have been
explored previously in the context of CYGNSS, this algorithm
executes the calibration without relying on observations of h or
vegetation biophysical parameters as inputs but with the SMAP
brightness temperature as the only observations. Second, the
proposed algorithm provides a new way for the combined usage
of CYGNSS and SMAP to improve the temporal and spatial
coverages of global SM with temporal coverage increased by
38.2% and spatial coverage increased by 31.6%.

Index Terms— Cyclone Global Navigation Satellite System
(CYGNSS), soil moisture (SM), Soil Moisture Active Passive
(SMAP), surface roughness, vegetation.

I. INTRODUCTION

SOIL moisture (SM) is a critical component in the
hydrological processes, land surface evapotranspiration,

water migration, the carbon cycle, and so on [1], [2].
Remotely sensed SM products with high accuracy and high
spatial–temporal resolution are essential inputs for such appli-
cations. Global SM retrieval has been the research subject of
both optical remote sensing and microwave remote sensing
fields. The optical remote sensing data have a high spatial
resolution (i.e., MODIS with a spatial resolution of hundreds
of meters) but are restricted greatly by cloud and mist.
In addition, optical remote sensing only develops models for
estimating SM and does not have official SM products [3], [4].
On the contrary, active/passive microwave sensors provide the
all-sky capability for SM remote sensing. In recent years,
numerous satellite missions have been developed, e.g., the
Advanced Microwave Scanning Radiometer-Earth Observing
System (AMSR-E), the Advanced Scatterometer (ASCAT),
the Soil Moisture and Ocean Salinity (SMOS), and the Soil
Moisture Active Passive (SMAP) [5]–[7]. However, due to
the design of satellite orbits, gaps exist in daily SM products
provided by microwave sensors.

Global Navigation Satellite System Reflectometry
(GNSS-R) is a technique that exploits the capability of
GNSS satellites to act as a bistatic radar [8]. The satellites
transmit L-band microwave signals, the same as the SM
missions, such as SMAP and SMOS [9]. Despite drawbacks
such as being vulnerable to radio frequency interference
(RFI) [10], the L-band protected spectrum (1400–1427 MHz)
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is optimal for near-surface (0–5 cm) SM remote sensing due
to the increased ability to penetrate vegetation relative to
shorter wavelengths, such as X- and C-bands. The Cyclone
Global Navigation Satellite System (CYGNSS) mission,
launched into space in December 2016, includes eight
microsatellites with the global positioning system (GPS)-R
payload, which can offer high spatial resolutions with low
revisit times in measuring global ocean/land geophysical
parameters. Oceanography-related CYGNSS studies mainly
concentrate on characterizing wind speed, ocean altimetry, and
sea surface salinity [11]–[14]. Despite the fact that CYGNSS
is not dedicated for land sensing, the science community has
further explored its sensitivity to land surface properties, e.g.,
SM, soil freeze–thaw, flood inundation, wetland, waterbody,
and biomass [15]–[28]. The University Corporation for
Atmospheric Research (UCAR) first developed and published
the CYGNSS SM data product using surface reflectivity (SR)
and its correlation with SMAP SM [26]. The UCAR SM
product, hereafter named the UCAR-SM, is treated as a
benchmark for the SM data developed in this study.

The physical basis of using CYGNSS for SM monitoring
is that the L-band is highly sensitive to the changes in soil
complex dielectric constant, which is mainly with respect to
the presence of SM [17]. Meanwhile, the confounding factors
of vegetation [i.e., vegetation optical depth (VOD)] and surface
roughness would reduce the sensitivity of the L-band to SM.
Therefore, it is a common key issue to eliminate the effects of
these factors during the SM estimation process. Some recent
studies have proposed different solutions to solve this problem.
Eroglu et al. [24] built an artificial neural network (ANN)
model to retrieve CYGNSS daily SM. The input features of the
model included CYGNSS data and other ancillary data, such
as vegetation water content (VWC), terrain elevation, and sur-
face roughness [24]. Clarizia et al. [25] proposed a reflectivity–
vegetation–roughness algorithm to obtain daily SM derived
from CYGNSS reflectivity along with SMAP VOD and rough-
ness coefficient. Based on the study of Clarizia et al. [25],
Pan et al. [28] proposed a three-layer model of air, vegetation
cover, and soil to estimate SM with the only ancillary data of
VOD. However, it should be noted that these methods rely on
either the direct knowledge of VOD (i.e., τ in this study) or the
roughness coefficient (i.e., h in this study) derived from SMAP
data to estimate the effect of vegetation and surface roughness,
which makes them have limitations such as: 1) the SMAP-τ is
estimated from MODIS NDVI-derived VWC, while, in fact, τ
depends on not only the VWC but also the vegetation volume
density [29] and 2) the SMAP-h is based on a lookup table
close to the land cover classes, which makes it a fixed value
lacking in temporal variability [30].

Unlike those attenuation models that have been explored
in the aforementioned studies in the context of CYGNSS,
this study proposes a physics-based algorithm to calibrate
the CYGNSS-derived SR using a zeroth-order approximation
of the radiative transfer model [30]. The algorithm executes
the calibration without relying on observations of surface
roughness parameters or vegetation biophysical parameters
as inputs but with the SMAP brightness temperature as the
only observations. Here, we assume that the reflected signal

is always coherent. Four-year on-orbit CYGNSS data are
used for calibration and validation (2017–2018 for calibration
and 2019–2020 for validation). The resulting SM is validated
by the SMAP SM products and the in situ measurements
from the International Soil Moisture Network (ISMN). The
improvement of the temporal and spatial coverages of global
SM after involving CYGNSS into SMAP is also shown.
Several issues related to the algorithm are also discussed,
including the contributions of the surface roughness scale, the
land type on the modeling accuracy, and the advantages and
limitations of the algorithm.

II. DATA

A. CYGNSS Data

The CYGNSS constellation observes the land characteri-
zations between 38◦ N and 38◦ S. The delay-Doppler map
(DDM) instruments of CYGNSS are designed to map the
signal scattered from the ocean and land surfaces. A DDM
is defined as the power of the correlator output as a function
of the applied delay and Doppler offsets [17]. The signal-
to-noise ratio (SNR) is an observable derived from DDM,
which is used to estimate the SR and the resulting SM at
the specular point based on the bistatic radar equation [24],
[27]. The spatial resolution of CYGNSS over land is an open
question at present, which depends on the roughness of the
surface at and near the reflection point. For the retrievals
dominated by coherent reflections, the spatial footprint can be
defined by the along-track first Fresnel zone, which is ∼6 ×
0.5 km before July 2019 and ∼3 × 0.5 km after July 2019,
depending on the integration time of the signal of either 1 or
0.5 s, respectively [31].

Nearly four years (January 2017–November 2020) of the
CYGNSS L1 Version 2.1 data are used in this study, down-
loaded via https://podaac.jpl.nasa.gov/. The data from 2017 to
2018 and 2019 to 2020 are used for calibration and validation,
respectively. Two criteria are used to filter the CYGNSS data:
1) the antenna gain greater than 0 dB (corresponding to
uncertainties reported in the measured antenna gain patterns)
and 2) the quality flags [i.e., S-band transmitter powered up,
spacecraft attitude error, blackbody DDM, which is a test
pattern, direct signal in DDM, and low confidence in the GPS
equivalent isotopically radiated power (EIRP)] in the CYGNSS
L1b data are used to select the good data acquisition. All data
from eight different acquisition times in one day are used for
each pixel. The median value of the revisit times is 2.8 h, and
the mean revisit time is 7.2 h. For each grid, the CYGNSS
observations are completely sampled to 36-km Equal-Area
Scalable Earth (EASE) Grid 2.0 cell used by SMAP; then,
a simple averaging is used to resample CYGNSS observations
to match with the SMAP retrieval.

B. SMAP Data

SMAP incorporated a radar and a radiometer, both operating
at the L-band at the incidence (observation) angle θ = 40◦.
The revisit time of SMAP is two to three days. After the failure
of the SMAP radar in July 2015, a procedure was developed
to replace the radar-based data from the SMAP radiometer
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Fig. 1. Ten IGBP classes provided by MODIS in the year 2019 at a 5-km spatial resolution.

Fig. 2. Distribution of the 97 sites derived from the ISMN in 2019.

data [28], [29]. In this study, the 2017–2020 Level 3 36-km
SMAP gridded data produced from the radiometer are used.
Several parameters, i.e., the SM, and H and V polarization
brightness temperatures, are used to build the model and to
validate the CYGNSS SM results.

In this study, the “retrieval_qual_flag” variable in the SMAP
product is used to identify retrievals to be of recommended
quality. A “retrieval_qual_flag” value of either 0 or 8 indicates
high-quality retrievals, with “0” indicating that “SM retrieval
has recommended quality” and “8” indicating that “SM
retrieval has recommended quality but with an unsuccessful
freeze/thaw state retrieval” [30]. Subsequently, an averaging
over three consecutive days is implemented to produce seam-
less globally covered brightness temperature data as inputs for
the proposed model.

C. Land Cover Data
The International Geosphere-Biosphere Programme (IGBP)

land classifications supplied by the MODIS MCD12Q3 prod-
uct in 2019 with a 5-km spatial resolution are used in this
study. As shown in Fig. 1, ten IGBP classes representing
different vegetation distributions are selected to show the
capability of the algorithm for SM retrieval on various land
classifications.

D. ISMN Data In situ
SM measurements at the depths of 5 and 10 cm

from 97 sites of the ISMN are used to validate the final
CYGNSS-derived SM results (see Fig. 2). Sites with data
point less than 50 for each year are not used. The hourly
in situ SM data are averaged to derive daily values. Detailed

TABLE I

CHARACTERISTICS OF THE SELECTED SIX IN SITU SITES

information on the sites is summarized in the Appen-
dix. All the data are downloaded from the ISMN website
(http://ismn.geo.tuwien.ac.at/).

Six sites representing three examples of S-km grids collo-
cated with different numbers of sites (i.e., one grid contains
one, two, and three sites, respectively) are chosen to further
analyze the temporal variations of the estimated SM (see
Fig. 2). These sites also represent different climate conditions,
roughness, and vegetation densities. The characteristics of
the six in situ sites are listed in Table I. These sites are
distributed across the contiguous United States (CONUS) from
three different ground networks (i.e., the SCAN, SNOTEL,
and USCRN), and they have different levels of vegetation
cover as represented by VWC values of 0.72, 0.94, 0.94,
4.49, 3.98, and 3.98 kg · m−2, respectively. The surface
roughness (h) parameter varies from 0.11 to 0.15. The VWC
and surface roughness of each site are determined as the
mean SMAP value during the observed period of 2019. For
validation of the CYGNSS-derived gridded SM, using in situ
measurements from more than one site in the same grid can
balance the difference of spatial scales between the two. The
Stillwater-2-W and Stillwater-5-WNW are located in the same
36-km EASE-2 SMAP grid. The AAMU-jtg, BraggFarm, and
WTARS are located in the same 36-km EASE-2 SMAP grid.

III. METHODS

The flowchart of the method in this study is shown in Fig. 3.
The method consists of three steps.
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Fig. 3. Flowchart of the proposed algorithm.

1) Using the Friis transmission equation [see (1)] to esti-
mate the CYGNSS SR and presenting the combined
parameter (i.e., exp(−2τ secθ − hcos2θ) [30] in (2),
where τ is the VOD, h is the surface roughness parame-
ter, and θ is the incident angle), which is used to derive
the calibrated CYGNSS SR (SRcali).

2) Employing the radiative transfer model (i.e., the τ–ω
model) and SMAP auxiliary data to derive the combined
parameter presented in (2) [see (3)–(11)]. The SMAP
data are collocated with CYGNSS data to derive a point-
by-point calibration.

3) Calculating the resulting SM from CYGNSS SRcali

[see (12)].

A. Combined Parameter Used to Calibrate the CYGNSS SR

Suppose that the land reflections are dominated by the
coherent component from the surface, as proposed in previous
studies [17], and the CYGNSS observable used to estimate the
SM is the SR. Based on the Friis transmission equation, the SR
can be solved by converting all terms to dB as follows [27]:

SR(dB) = 10logPr − 10logPt − 10logGt − 10logGr

+ 20 log(Rts + Rsr) − 20logλ + 20log4π (1)

where Pr (dB, ddm_snr) is the peak value of the DDM minus
the noise N , Pt (dB, gps_tx_power) is the transmitted RHCP
power, Rts (m, rx_to_sp_range) is the range from the transmit-
ter to the specular reflection point, Rsr (m, tx_to_sp_range) is
the range from the specular reflection point to the receiver,
λ (m) is the wavelength of the GPS L1 band (19 cm), and Gt

(dB, gps_ant_gain) and Gr (dB, sp_rx_gain) are the gain of
the transmitter antenna and the gain of the receiver antenna,
respectively. To produce SR values in the range that intuitively
makes sense, we subtract 140 from the raw SR value derived
in (1).

In most real situations, the original SR is a combined
value of reflections from the rough surface of soil and

vegetation [25], [26]. The original SR can be calibrated using
the following expression:

SR = SRcali ∗ exp
(−2τp sec θ

)
exp

(−h cos2 θ
)

= SRcali ∗ exp
(−2τp sec θ − h cos2 θ

)
(2)

where exp(−2τpsecθ) is the correction of vegetation and
exp(−hcos2θ) is the correction of surface roughness. τp is the
VOD, h is the surface roughness parameter, and θ is the inci-
dence angle. Thus, the combined parameter exp(−2τpsecθ −
hcos2θ) can be used to calibrate the SR considering the
effect of both surface roughness and vegetation at the same
time. It should be noted that, in the practical application
of (2), S R and SRcali are in dB unit, and the combined
parameter exp(−2τpsecθ − hcos2θ) should also be converted
to dB.

B. Derivation of the Combined Parameter Using the
Radiative Transfer Model

The zeroth-order radiative transfer model, known as the
τ–ω model, is shown in (3). In this model, the brightness
temperature TBp is described as the sum of three terms: 1) soil
upward emission; 2) vegetation upward emission; and 3) the
vegetation downward emission

TBp = Tsepγp + Ts
(
1 − ωp

)(
1 − γp

)

+ Tv

(
1 − ωp

)(
1 − γp

)
Rp_roughγp (3)

where the subscript p represents the vertical or horizontal
polarization, Ts and Tv are the soil effective temperature
and the vegetation temperature, respectively, γp is the one-
way vegetation transmissivity that can be expressed as γp =
exp(−τ psecθ), τp is the vegetation opacity depth, θ is the
incidence angle, ωp is the vegetation single scattering albedo,
and Rp_rough is the rough soil reflectivity. Rp_rough is related to
the emissivity (ep) by ep = (1 − Rp_rough) [30], [32]–[34].

Since the value of ωp is relatively small at the L-band,
in this study, ωp is assumed to be zero for simplicity [30].
In addition, the soil and vegetation temperatures are assumed
to be equal and represented as T . TBp in (3) can be simplified
as

TBp = T
[
1 − Rp_rough exp

(−2τ psecθ
)]

. (4)

The soil reflectivity Rp_rough is modeled as

Rp_rough = Rp_smooth ∗ exp
(−h cos2 θ

)
(5)

where p refers to polarization (for SMAP, V or H ) and h
parameterizes the intensity of the roughness effects.

By combining (4) and (5), the parameters τp and h can be
combined as a single parameter as

TBp = T
[
1 − Rp_smooth ∗ exp

(−2τp sec θ − hcos2θ
)]

. (6)

For SMAP data, at a given frequency with H and V
polarizations, (6) can be expressed as [28]

TBH = T
[
1 − RH _smooth ∗ exp

(−2τp sec θ − h cos2 θ
)]

TBV = T
[
1 − RV _smooth ∗ exp

(−2τp sec θ − h cos2 θ
)]

. (7)
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The combined parameter can be derived using (7) as

exp
(−2τp sec θ−h cos2 θ

)= TBV − TBH

TBV RH _smooth−TBH RV _smooth
.

(8)

According to the Fresnel equations, Rp_smooth describes the
performance of an electromagnetic wave at a smooth dielectric
boundary, and it is only related to the soil complex dielectric
constants at a specific incidence angle. RH _smooth and RV _smooth

can be expressed as

RH _smooth =
∣
∣∣
∣
∣
cos θ −

√
ε − sin2 θ

cos θ +
√

ε − sin2 θ

∣
∣∣
∣
∣

2

RV _smooth =
∣∣
∣
∣
∣
εcosθ −

√
ε − sin2 θ

ε cos θ +
√

ε − sin2 θ

∣∣
∣
∣
∣

2

(9)

where ε is the soil complex dielectric constant. The Level 3
36-km gridded SMAP SM data are used to calculate ε using
the Topp model [35] as

SM = −0.053 + 0.0292ε − 0.00055ε2 + 0.0000043ε3. (10)

Thus, by substituting (9) into (8), exp(−2τpsecθ −
hcos2θ) [30] can be obtained. Finally, SRcali can be calculated
using (2). It should be noted that θ in (8) is the incidence angle
of SMAP (i.e., 40◦), which is not the same one as in (2) (i.e.,
the incidence angle of CYGNSS).

The SMAP provides a constant incidence angle of 40◦,
while the relevant incidence angle of CYGNSS varies from 5◦
to 35◦. This, thus, leads to errors when substituting (8) into (2).
To obtain the expected VOD and surface roughness calibration,
the uncertainty of the incidence angle must be propagated.
Here, a first-order Taylor expansion [36] for reducing the
uncertainty from the incidence angle is used. The modified
equation is

f (θC) = f (θS) + [
tanθS · ln

(
f (θS)

) + tanθS · 3h · cos2θS
]

· (θC − θS) · f (θS) (11)

where θS is the incidence angle of SMAP (40◦), θC

is the incidence angle of CYGNSS, and f (θS) =
exp(−2τpsec40◦−hcos240◦). Here, the h value is set to 1.28
according to mode statistical. This method can eliminate the
influence of the angle and minimize the impact of h changes.

C. SM Estimation From the Calibrated CYGNSS SR
SRcali is converted to SM using the concept proposed

in [27]. The algorithm is based on the linear regression
between SRcali and SMAP SM. The CYGNSS data points
are spatially and temporally matched with the S-km grid. The
descending SMAP data (6:00 A.M.)from one specific day are
matched up with the CYGNSS data ranging from 6:00 P.M.
of the previous day to 6:00 A.M. of the current day. The mean
values of both SRcali and SMAP for each grid over the two
years are first calculated. For each grid, the maximum number
of match-ups of CYGNSS SRcali and SMAP SM is 254, and
the average value is 128. Grids with less than ten observations
are not used for calibration. In each SMAP grid over the two-
year (2017–2018) period, the CYGNSS SRcali and SMAP SM

are correlated after having subtracted the mean values of both
SRcali and SMAP SM in that grid, and a linear regression is
established between 	SRcali and 	SM for each grid calculated
from the number of points in the calibrate period. The final
calibrated SM (SMcali) can be expressed as

	SRcali = SRcali − SRaverage (12)

SMcali = β ∗ 	SRcali + α (13)

where β is the slope of the linear regression for a particular
grid and α is the mean SMAP SM during the entire time
period. Note that α and β vary in each grid.

IV. RESULTS

A. Improvement of the CYGNSS SR
Similar to the UCAR-SM (SMUCAR) product, the CYGNSS

observations are upscaled to the 36-km SMAP EASE-2 grid
resolution through averaging. Fig. 4(a) and (b) shows the SR
and SRcali against SMAP SM for each grid over the years
2019 and 2020, respectively. Fig. 4(c) illustrates the numer-
ical distributions of R for SR and SRcali corresponding to
Fig. 4(a) and (b). Overall, it is obvious that, compared with
R of SR against SMAP, R of SRcali against SMAP SM is
significantly improved to a higher level.

It is worth noting that the consistency varies over dif-
ferent regions. The R-value is low in the arid region [box
in Fig. 4(b)]. This is due to the limited variability in SM
throughout the observation period.

B. Evaluation of Daily SM Estimates
Fig. 5 shows the slope of the best fit linear regression

between 	SRcali and 	SM of SMAP in 2019–2020. Overall,
the spatial distribution of the slope varies significantly. The
low slope values mainly occur in the regions with relatively
low vegetation (blue box in Fig. 5, i.e., the Sahara Desert). The
high slope values occur in the regions where the VWC values
are relatively high, e.g., savannas and grasslands. Compared
with Fig. 4(b), the slope can represent the sensitivity of SRcali

to SM with a lower slope occurring in with a lower R in
Fig. 4(b) (blue box in Fig. 5), indicating lower sensitivity of
SRcali to SM and vice versa (black box in Fig. 5) [13].

The spatial distributions of the SMUCAR, SMcali, and SMAP
SM on January 1, 2019, are shown in Fig. 6(a)–(c), respec-
tively. The results of SMUCAR minus SMAP SM and SMcali

minus SMAP SM are shown in Fig. 6(d) and (e), respectively.
Both the SMUCAR and SMcali show good consistency of fluc-
tuations with the SMAP SM. The absolute delta values tend to
be lower in many arid regions (e.g., North Africa and Western
Australia), with values generally varied less than 0.05 m3m−3,
corresponding to the areas with the lowest SM. The delta value
varies obviously in tropical rain forests (i.e., South Africa);
insufficient open water masking or incoherent scattering due to
vegetation may lead to this phenomenon [15]. In other places,
such as the eastern USA and southern South America, the
delta values vary relatively obvious with −0.39∼0.05 m3m−3.

Fig. 7 shows the density plots of the SMUCAR and SMcali

versus SMAP SM on the first day of each month in 2019.
The color represents point density. Both SMUCAR and SMcali
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Fig. 4. Comparison of R values between SR (SRcali) and SMAP. (a) R between SR and SMAP. (b) R between SRcali and SMAP. (c) Boxplot of the R values
in (a) and (b).

Fig. 5. Slope of the best fit linear regression between 	SRcali and 	SM.

are close to the 1:1 line against SMAP SM. Specifically,
the R-value varies from 0.732 to 0.909, respectively. The
SMcali also shows better root mean square error (RMSE)
values than that of the SMUCAR (RMSE varies from 0.051
to 0.078 m3 m−3 versus 0.045 to 0.057 m3 m−3).

The average values of the three statistical indices [i.e.,
R, RMSE, and the mean absolute error (MAE)] per month
in 2019 are shown in Table II. The SMcali performs better
than SMUCAR with mean R = 0.875 versus 0.834, mean
RMSE = 0.050 m3m−3 versus 0.060 m3m−3, and mean
MAE = 0.041 m3m−3 versus 0.053 m3m−3. For SMcali, the
R-value is higher than 0.082, and RMSE and MAE values are
less than 0.056 and 0.047 m3m−3 over the entire time period,
respectively.

C. Evaluation of SM Estimates Over the Entire Year

For the SM estimates over January 2019 and
November 2020, the spatial patterns of the three metrics
(R, RMSE, and MAE) are shown in Fig. 8. The spatial
coverages of Fig. 8(b1) and (c1) are different from that of

TABLE II

R, RMSE, AND MAE VALUES FOR EACH MONTH IN 2019

Fig. 8(a1). It is because Fig. 8(a1) is derived using (1),
the same algorithm to produce the SMUCAR. In contrast,
Fig. 8(b1) and (c1) are directly from the official SMUCAR.
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Fig. 6. Comparison of SM values on January 1, 2019. (a) SMUCAR. (b) SMcali. (c) SMAP SM (an averaging over January 1–3, 2019). (d) SMUCAR minus
SMAP SM. (e) SMcali minus SMAP SM.

The difference is that the official SMUCAR product filtered the
raw CYGNSS data using some additional empirical quality
controls besides the quality flags used in this study.

Generally, SMcali performs better spatial patterns for all
three indices than those of SMUCAR (R = 0.679, RMSE =
0.051 m3m−3, and MAE = 0.045 m3m−3 for SMcali; R =
0.565, RMSE = 0.067 m3m−3, and MAE = 0.051 m3m−3 for
SMUCAR). As shown in Fig. 8(a1) and (a2), lower R values
occur in forests and desert regions. For SMcali, over 70% of
the R values are higher than 0.6, and the RMSE values are
smaller than 0.07 m3m−3 over most areas. The MAE values
of SMcali are smaller than 0.05 m3m−3 over most areas of the
globe.

Fig. 8(d) illustrates the numerical distributions of the three
statistics for SMUCAR and SMcali at a daily scale in 2019 and
2020 [i.e., in Fig. 8(a1)–(c1) and (a2)–(c2)]. Generally, the
R values of SMUCAR are smaller than those of SMcali [see
Fig. 8(a)], and RMSE and MAE values of SMcali are overall
larger than those of SMUCAR [see Fig. 8(b) and (c)], which
results in better performances of the SMcali. In addition, the
RMSE and MAE of both SMUCAR and SMcali are smaller than
0.2 m3m−3.

D. Validation Using the in Situ Measurements
For each in situ site shown in Fig. 2 during the entire

observation period, the CYGNSS observations being located
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Fig. 7. Comparison of CYGNSS SM with SMAP SM on the first day of each month in 2019. (a1)–(i1) SMUCAR. (a2)–(i2) SMcali.

Fig. 8. Statistical indices for the SM derived from SMUCAR (SMcali) against the SMAP SM. (a1) and (a2) R. (b1) and (b2) RMSE. (c1) and (c2) MAE.
(d) Boxplot of R, RMSE, and MAE.

less than 0.5 km from this site with VWC less than 5 kg · m−2

are selected. The SRcali of these data points is correlated
with the in situ SMs at the corresponding date. When

more than one in situ point matches up with one SRcali,
a final value is calculated using the inverse distance weight-
ing method considering the distances between the in situ
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Fig. 9. Density plots of collocated SRcali versus in situ SM from 97 ISMN
sites.

measurements and the SRcali point, rather than a simple
average.

Using in situ data and km-scale satellite data for absolute
error evaluation can be significantly biased [38], [39]. There-
fore, for the ISMN network location, only R values are
calculated here, rather than RMSE and MAE. The correlation
results of SRcali and the in situ SM are shown in Fig. 9. The
correlation of SRcali against the in situ SM is 0.729.

Because the CYGNSS SM is derived based on the 36-km
EASE-2 gridded SMAP data as a reference, a significant
mismatch of the spatial scale exists between the CYGNSS SM
and the in situ points. Therefore, the comparison between the
CYGNSS SM and the in situ SM of the 97 sites is not shown in
this study. To evaluate the accuracy of CYGNSS SM compared
to in situ measurements, Fig. 10 shows the comparisons of the
gridded 36-km SMcali and the in situ measurements for the six
sites in Table I during 2019–2020. When one grid includes
more than one site, different colored lines are used to indicate
SM values from different sites.

Overall, good agreement is achieved between the two data
even for the case of the relatively heavy vegetated site with R
varying from 0.605 to 0.759. It is clear that SMcali performs
well in capturing the temporal dynamics of in situ SM, even
for the case of the densely vegetated site. It is particularly
noteworthy that, for the sites of AAMU-jtg, Bragg Farm, and
WTARS, compared to the in situ SM, the SMcali overestimates
over half of the observed time. This is possibly due to the
humid climate condition in this region. Previous researches
show that SMAP usually overestimates SM in humid and cold
regions, and this leads to the overestimation of SMcali because
it relies on the SMAP SM as a reference [30].

E. Improvement of the Temporal and Spatial Coverages
Compared With SMAP

Although the SM estimation method of CYGNSS itself
relies on SMAP SM data as a reference, the significant benefit
of this topic is that it allows the combined usage of CYGNSS
and SMAP to improve the temporal and spatial coverages

of global SM. The improvement of the temporal and spatial
coverages is shown in Fig. 11. From the perspective of the
spatial distribution, the CYGNSS can increase the spatial
coverage of the SMAP at an average value of 38.2% [see
Fig. 11(a)].

The filled numbers of the daily CYGNSS observations
against the daily SMAP SM product for each grid cell over the
year 2019 are shown in Fig. 11(b). Except for the high-altitude
regions (e.g., the Tibet Plateau) where there is a lack of valid
data for CYGNSS, the daily CYGNSS can fill the gaps of
SMAP with an average value of 113.7 days per 36-km grid
with an increase by 31.6%.

V. DISCUSSION

A. Contributions of the Surface Roughness
The SMAP brightness temperature can convey useful infor-

mation about surface roughness. However, their monostatic
mode of operation makes those estimates primarily sensitive
to microwave-level roughness. In contrast, the CYGNSS’s
specular land measurements are excepted for macroroughness.
Here, the contributions of the surface roughness are discussed
based on two levels of comparisons:

First, the CYGNSS SR calibration results with and without
the roughness correction are compared. Fig. 12(a) shows the
results of SM with corrections of VOD and surface roughness,
and Fig. 12(b) shows the results of SM with correction of
VOD only. This experiment uses VOD and h parameters from
SMAP rather than the physics-based model proposed in this
study. The correlation coefficient has improved slightly when
considering the surface roughness (from R = 0.599 to R =
0.621). This convinces two points: 1) the effect of vegetation
on SM is much larger than that of surface roughness and
2) despite the limitation, the microroughness could calibrate
the SR to some extent.

Second, the CYGNSS SR calibration results of using
microwave level roughness and macroscale roughness are
compared. Taken the Mainland of China as an example,
the impacts of different scales of roughness are shown in
Fig. 13. The macroroughness here is calculated as Hmacro(i) =
(std.curv(i))a [41]. Here, “i” is per pixel; std.curv is the
second derivative of a surface; “a” determines the scale of
macroroughness contributing toward total surface roughness;
and the value of “a” is set to 2.

As shown in Fig. 13, the correlation coefficient between
CYGNSS SR and SMAP SM has similar values with slight
improvement when using macroroughness (R = 0.54 versus
R = 0.578). It should be noted that the ability in total
CYGNSS SR calibration is mainly determined by VOD, and
the calibration of surface roughness on SM accuracy may be
limited. In addition, compared to the surface roughness derived
from SMAP, the macrosurface roughness is more suitable for
CYGNSS SM calibration. Future research should consider the
impact of the surface roughness scale.

B. Influences of Land Types

The R-values estimated from SRcali against in situ according
to Fig. 9 are classified into ten different land types derived
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Fig. 10. Comparisons of the SMcali and the in situ SM for six sites in the years 2019 and 2020. (a) CochoraRanch. (b) Stillwater-2-W and Stillwater-5-WNW.
(c) AAMU-jtg, BraggFarm, and WTARS. The error bar is the absolute difference between the 5- and 10-cm SM values. DOY: day of year.

TABLE III

R-VALUE FOR DIFFERENT LAND TYPES

from IBGP, as listed in Table III. The R-values are higher
than 0.5 over the entire period time. L-bands have a common
issue of “poor quality” when used in monitoring SM in dense
vegetation and barren regions, and it appears to be very
sensitive to regions with low vegetation height. In this study,

SRcali shows a weaker correlation with in situ measurements
in densely forested regions than that in regions with less
vegetation (e.g., shrublands and grassland). When comparing
the similarity of Fig. 8 visually, the dependence of errors on
different land types is obvious.

C. Advantages and Limitations
This study uses SMAP EASE-2 grids (36 km) to aggregate

CYGNSS observations and exploit auxiliary data, such as SM,
H, and V polarization brightness temperature. This is a limiting
factor against the much higher potential of CYGNSS for
spatiotemporal resolution. Also, because the proposed method
uses a dielectric constant value, which was calculated from
the SMAP SM product, the quality of the SMAP SM data
will directly affect the quality of the current CYGNSS-based
SM retrieval. However, the proposed algorithm can improve
the SM estimation accuracy compared to the UCAR product,
and it can also provide a new way to allow the combined usage
of CYGNSS and SMAP to improve the temporal and spatial
coverages of global SM.

Moreover, since most signals are probably a combination
of incoherent and coherent scattering, here, we assume the
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Fig. 11. Improvement of spatial and temporal coverages of CYGNSS compared with SMAP in the year 2019. (a) Increased percentage of the spatial coverage.
(b) Filled numbers of the daily CYGNSS observations against the daily SMAP SM product for each grid cell.

Fig. 12. Correlations of calibrated CYGNSS SR and SMAP on January 1,
2019. (a) SR calculated with corrections of VOD and surface roughness
collected from SMAP. (b) SR calculated only with VOD collected from SMAP.

Fig. 13. Correlations of calibrated CYGNSS SR and SMAP on January 1,
2019, over Mainland China. (a) SR calculated with surface roughness collected
from SMAP. (b) SR calculated with the macrosurface roughness.

reflected signals are coherent, which may lead the errors
in final SM retrievals. Future work should consider the
impact of both incoherent and coherent signals on SM
estimation.

In addition, the Voronoi diagram is widely used in weighting
the in situ measurements and upscale them for validation of the
km-scale data [42]. However, sparse network measurements
present challenges that compromise the evaluation of the

performance in the absolute sense using the Voronoi diagram.
Future work will consider the Voronoi diagram with a denser
distribution of sites.

VI. CONCLUSION

To accurately estimate SM from CYGNSS data, this study
explores a physics-based algorithm coupling CYGNSS SR
and SMAP brightness temperature. This algorithm executes
the calibration without relying on observations of h or veg-
etation biophysical parameters as inputs but with the SMAP
brightness temperature as the only observations, which can
provide an effective and efficient way to calibrate CYGNSS
reflectivity from a new perspective. In addition, it provides a
new way for the combined usage of CYGNSS and SMAP to
improve the temporal and spatial coverages of global SM. The
accuracy of the resulting SM shows good agreement with the
SMAP SM (R = 0.679, RMSE = 0.051 m3m−3, and MAE =
0.045 m3m−3) and with the in situ measurements (R = 0.729).

The high-quality CYGNSS SM derived in this study is
expected to be used for a better understanding of the role of
SM in the water and energy cycles. This study demonstrates
that, as supplementary to SM-dedicated missions (e.g., SMAP
and SMOS), GNSS-R missions, such as CYGNSS and future
ones, could provide powerful data sources for producing
global SM products with high accuracy and high temporal
resolution. Furthermore, the current method of retrieving SM
data from CYGNSS shows great potential for improving the
quality of land surface models. It has long been thought that
satellite-based SM data, when appropriately assimilated into
land surface models, play a pivotal role in improving the
quality of SM data [43]. Recently, Kim et al. [44] showed
that CYGNSS-based SM data can significantly improve the
quality of land surface models’ SM outputs and can potentially
improve the quality of other hydrometeorological variables,
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TABLE IV

DETAILED INFORMATION FOR THE 97 ISMN SITES USED FOR VALIDATION
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TABLE IV

(Continued.) DETAILED INFORMATION FOR THE 97 ISMN SITES USED FOR VALIDATION

such as energy flux, water flux, and carbon flux. Considering
these findings, the superior quality of SM data from CYGNSS
has great potential for improving land surface models.

APPENDIX

See Table IV.
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