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A B S T R A C T   

Coastal ecosystems provide important ecosystem services (ESs) and have been subject to conservation and 
restoration efforts in China for decades. However, ecosystem responses to coastal exploitation activity and their 
spatial determinants have not been sufficiently evaluated, which limits the efficacy of ecosystem restoration 
efforts. To fill these gaps, this study assessed the dominant change trends in ESs in southeastern China since the 
1980s using an integrated biophysical model. Moreover, we explored the determinants of ESs, their spatial 
heterogeneity, and spillover effects via spatial econometrics and geospatial analysis approaches. The results 
indicate that coastal exploitation, particularly rapid urbanization and land reclamation, profoundly altered 
landscape composition and further affected ESs. In urbanization hotspots, rapid land use/cover conversion (i.e., 
wetland, woodland, and grassland losses) and increasingly intensive human activities have substantially lowered 
carbon stock, soil retention, and habitat quality services while increasing water yield and nitrogen export. 
Environmental, socioeconomic, and landscape variables were identified as important determinants of ES changes 
and exhibit significant spatial heterogeneity and spillover effects. Our findings indicate that such indicators are 
highly useful for ecosystem assessments, modeling, and forecasting for ES management and conservation efforts. 
The identified spatial determinants and their spillover effects demonstrate that regional landscape planning and 
ecosystem management must consider environmental, socioeconomic, and landscape indicators from a region-
ally integrated perspective and coordinate cross-border collaborations from neighboring areas to improve the 
efficacy of ecological projects. Our findings provide important references for scheme optimization and strategy 
adjustment for ES management, both in the study region and globally.   

1. Introduction 

Ecosystem services (ESs) refer to the goods and benefits derived from 
natural ecosystems (Nelson et al., 2009), which are now among the most 
important indicators for assessing global and regional ecosystem health, 
quality, and sustainability since the Millennium Ecosystem Assessment 

(2005). Because more than 60% of the world’s natural ecosystem and 
subsequent ESs are threatened by land degradation (UNCCD, 2016, 
2017), understanding ecosystem responses and ES dynamics as well as 
their determinants has become increasingly emphasized by academic 
organizations, international communities, government agents, and 
other stakeholders in policy making and strategy formulations (Inter-
governmental Platform on Biodiversity and Ecosystem Services (IPBES), 
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2015; UNCCD, 2016). Several studies have made great achievements in 
terms of ES evaluation methods, such as material assessment (Costanza 
et al., 2017; Schirpke et al., 2019), valuation accounting (Burkhard 
et al., 2014; Congreve and Cross, 2019), spatiotemporal change analysis 
(Castillo-Eguskitza et al., 2018), assessment of (non–)linear interactions 
(synergies and trade-offs) between ESs (Jiang et al., 2018; Aryal et al., 
2019), identification of the dominant determinants of ES variations 
(Baró et al., 2017), and further practical applications of ES theory 
(Intergovernmental Platform on Biodiversity and Ecosystem Services 
(IPBES), 2015). In addition, several sophisticated independent and in-
tegrated biophysical models have been developed for ES assessment, 
such as Integrated Valuation of Ecosystem Services and Trade-offs 
(InVEST; Sharp et al., 2018), the land utilization and capability indica-
tor (Jackson et al., 2013), and artificial intelligence for environment and 
sustainability (Villa et al., 2014). 

Previous studies in China have focused on quantifying, mapping, and 
monitoring ESs and their supply–demand dynamics as well as their 
driving mechanisms (Mao et al., 2019; Hou et al., 2020; Peng et al., 
2020; Zhang et al., 2021). However, contributing factors that have been 
considered mainly include direct biophysical and anthropogenic factors 
such as temperature, rainfall, vegetation cover, and land use/cover 
(LUC), while other indirect factors that profoundly determine ES avail-
ability (e.g., landscape structure and socioeconomic change) have not 
received sufficient attention (Chen et al., 2019b, 2020b; Li et al., 2019; 
Jiang et al., 2021). Intensive human activities such as agricultural 
reclamation, urbanization, and industrial exploitation directly alter LUC 
and landscape composition, resulting in heterogeneous, discontinuous, 
and fragmented landscapes (Mitchell et al., 2015; Zhu et al., 2020; Meng 
et al., 2021). Moreover, landscape fragmentation substantially in-
fluences ES supply and demand capacity (Peng et al., 2020; Hou et al., 
2020; Zhang et al., 2021). In addition, economic development and 
population growth brought about by urbanization and industrial 
exploitation also indirectly accelerate LUC transformations (Chen et al., 
2019b). 

To optimize landscape allocation and promote ecosystem sustain-
ability, it is essential to reveal the driving mechanisms and spatial de-
terminants of ESs (Chen et al., 2019b, 2020b; Jiang et al., 2021). The 
circulation and transportation of material and energy in ecosystems 
within a given unit (e.g., community, catchment, or region) generate 
spillover effects that impact surrounding areas because landscape 

composition and biophysical processes within and among each unit are 
interconnected (Chi and Ho, 2018; Meng et al., 2021). For instance, 
neighboring districts are more likely to be physically, socially, and 
economically connected than distant and non-adjacent districts (Chi and 
Ho, 2018). Similarly, ESs within an individual unit are not only influ-
enced by local (internal) variables but also by external factors in 
neighboring units. Ecosystem degradation in an individual unit is likely 
to result in the deterioration of neighboring units (Chen et al., 2019b, 
2020b). Thus, spatial information and spillover effects should be thor-
oughly investigated and considered in landscape planning and envi-
ronmental conservation (Liu et al., 2021; Meng et al., 2021). Existing 
studies have not sufficiently identified geographic variations and de-
terminants of ES spatial dependence and spillover effects (Chi and Ho, 
2018; Jiang et al., 2021). Extant studies have typically concentrated on 
specific areas or local scales and ignored the spatial heterogeneity of 
critical determinants from a regional perspective, and the spillover ef-
fects of determinants and their consequences on strategy formulation 
and decisions regarding practical landscape planning have not been 
thoroughly examined (Chen et al., 2019b, 2020b; Wang et al., 2021). 
Considering the spatial autocorrelation and spillover effects in ESs and 
their drivers, which are necessary for understanding the driving mech-
anisms of ESs, the commonly applied statistical approaches in previous 
studies, such as gray correlation degree analysis (Yang et al., 2021), 
logistic regression (Cao et al., 2020), the partial least squares method (Li 
et al., 2019), the random forest approach (Xie et al., 2021), and multiple 
regression models (Xie et al., 2021), are not sufficient. The limitations of 
statistical approaches constrain the identification of spatial de-
terminants of ESs and their practical applications (Jiang et al., 2021; 
Meng et al., 2021). 

Southeastern China has experienced rapid coastal exploitation (such 
as industrial development, land reclamation, and mangrove deforesta-
tion for aquaculture) and urban expansion since the 1980s, accelerating 
the transformation of LUC from wetland, cropland, woodland, and 
grassland to built-up areas (Jia et al., 2018; Ren et al., 2019). These 
changes have subsequently caused or exacerbated agricultural pond loss 
(pond abandonment), landscape fragmentation, ecosystem degradation, 
environmental pollution, and other negative ecological consequences 
(Mao et al., 2018; Chen, et al., 2019c; Peng et al., 2020). For instance, 
frequent agricultural cultivation on steep croplands accelerates soil loss, 
which is the main source of river sediment (Chen et al., 2019a, 2020a, 

Nomenclature 

Abbreviations Full names 

Ecosystem service assessment 
ESs Ecosystem services 
CS Carbon stock 
WY Water yield 
AP Aquatic purification 
SR Soil retention 
HQ Habitat quality 
NE Nitrogen export 
InVEST Integrated Valuation of Ecosystem Services and Trade-offs 
RUSLE Revised universal soil loss equation 

Landscape, environmental, and socioeconomic variables 
LUC Land use/cover 
COHESION Patch cohesion index 
DIVISION Landscape division index 
ENN Mean Euclidian nearest-neighbor distance 
IJI Interspersion and Juxtaposition index 
LSI Landscape shape index 

NP Number of patches 
PD Patch density 
PLADJ Proportion of like adjacency 
SHAPE Mean shape index 
SHDI Shannon’s diversity index 
SPLIT Splitting index 
GDP Gross domestic productivity 
POPD Population density 
NDVI Normalized Difference Vegetation Index 
RF Rainfall 
TEM Temperature 

Others 
SPMs Spatial panel models 
SLM Spatial lag model 
SEM Spatial error model 
SDM Spatial Durbin model 
GWR Geographically weighted regression 
SWCPs Soil and water conservation projects 
ERPs Ecosystem restoration projects  
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2021). To alleviate soil loss and enhance ecosystem functions, several 
large-scale ecosystem restoration projects (ERPs), soil and water con-
servation projects (SWCPs), and catchment management projects have 
been initiated since the 1980s, particularly after 1990 (Ouyang et al., 
2016; Li et al., 2020; Wang et al., 2020). Previous studies have reported 
that these projects achieved great progress in land degradation 
neutrality and ecosystem restoration, but the efficacy of these ap-
proaches should be further improved by coordinating ecosystem con-
servation and residents’ livelihoods and reconciling trade-offs between 
dimensions (Cao et al., 2017, 2021; Chen et al., 2019a, 2020a; Li et al., 
2020; Wang et al., 2020; Cai et al., 2021). 

This study was designed to explore the responses of ESs to climate 

variation and landscape change via biophysical models and identify the 
spatial associations between ESs and determinants using spatial econo-
metric approaches (LeSage et al., 2009). The main objectives were to (i) 
quantify the spatiotemporal changes of dominant ESs in the context of 
climate variability and human disturbances; (ii) explore spatial associ-
ations between multiple ESs and environmental, socioeconomic, and 
landscape variables, including their spatial variability and spillover ef-
fects; and (iii) discuss the practical implications of ES responses and 
their spatial determinants on ecosystem and land use management. Our 
findings are expected to contribute to policy formulations for designing 
and optimizing landscape planning and ecosystem conservation efforts, 
which will eventually facilitate win–win outcomes of sustainable 

Fig. 1. (a) Geographic location of study area; spatial patterns of (b) rainfall for annual mean level, (c) elevation, LUC maps in (d) 1980 and (e) 2017, and (f) 
vegetation cover for annual mean level. 
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socioeconomic development and ecosystem management. 

2. Materials and methods 

2.1. Research area 

The coastal regions in southeastern China (106◦13′ − 121◦15′E, 
21◦11′− 29◦17′N), including the Guangdong, Guangxi, and Fujian 
provinces, cover a total area of 54.13 km2, approximately 5.6% of the 
total area of China (Fig. 1). This region has a humid subtropical 
monsoon climate, with an annual mean rainfall of approximately 1800 
mm and strong spatial and temporal variability. The overall pattern of 
rainfall declines from northeast to southwest (from coast to inland), and 
more than 70% of the rainfall is concentrated between April and 
September. The annual mean temperature ranges from 14 ◦C to 25 ◦C. 
Because of the relatively high heat conditions and abundant water re-
sources, the vegetation cover for this area is much higher than the na-
tional average; in particular, the forest coverage rate of subtropical 
evergreen broad-leaved forests and coniferous forests exceeds 50% 
(Chen et al., 2019a, 2020a). The regional landform is dominated by low 
mountains and hills. The main soil types are red soil and paddy soil, but 
the soil layer is shallow and soil nutrient content was relatively low 
(Chen et al., 2019a; Chen et al., 2020a). The population in the three 
provinces is approximately 200 million, accounting for one-seventh of 
the total population of China. To meet the demands of food and eco-
nomic development, this area underwent extensive agricultural recla-
mation and rapid socioeconomic development, specifically in the coastal 
zone, since the implementation of “Reform and Opening Up” policy in 
the late 1970s. The study area has developed into one of the most 
important production areas for grain, industrial crops, and marketable 
fruits globally (Wang et al., 2020). In addition, rapid urbanization and 
economic development have attracted international talent, capital, and 
trade to this area, and the regional total GDP accounted for approxi-
mately 17.4% of China’s total GDP in 2019. However, extensive agri-
cultural reclamation, rapid urbanization, and other unsustainable 
activities have accelerated soil erosion (Wang et al., 2020), ecosystem 
degradation (Ouyang et al., 2016), and environmental deterioration 
(Peng et al., 2020) and caused other ecological consequences, such as 
water and soil pollution, carbon loss, and biodiversity degradation (Cai 
et al., 2021; Zhang et al., 2021). To mitigate and reverse land degra-
dation and promote ecosystem restoration, massive ERPs and SWCPs 
were implemented including the SWCPs in the Pearl River and Min 
River, converting cropland to woodland and grassland projects in the 
red soil hilly region, and multiple urban landscape projects in the Pearl 
River Delta (Li et al., 2020). The dominant measures are afforestation, 
reforestation, and forest restoration via artificial and natural ap-
proaches, which are implemented to improve vegetation cover and 
mitigate soil loss (Chen et al., 2019a; Chen et al., 2020a). 

2.2. Conceptual framework and workflow 

Five ESs, including soil, water, carbon, and biodiversity sectors, 
which are important for environmental sustainability and human well-
being, were selected for analysis (Ma et al., 2015; Ouyang et al., 2016). 
In general, ESs are closely interconnected and exhibit complex interac-
tion and feedback mechanisms (such as trade-offs and synergism); they 
are often concurrently driven by landscape composition and structure, 
environmental conditions (such as vegetation cover, temperature, and 
rainfall), and socioeconomic indicators such as GDP and population 
density. Specifically, climate conditions are mostly controlled by the 
monsoon system (IPCC, 2019), while other factors are substantially 
influenced by human disturbances and interventions, such as urbani-
zation, coastal exploitation, agricultural reclamation, and ecosystem 
conservation projects (Mao et al., 2018). For instance, urban construc-
tion and industrial exploitation convert (semi-)natural ecosystems (i.e., 
woodlands, grasslands, wetlands, and croplands) to built-up areas, 

which alter LUC, landscape structure, and vegetation cover and further 
result in profound ES changes. Therefore, landscape patterns, ecological 
processes, and functions, which are key aspects of ESs, are inter-
connected, and land use managers and stakeholders should maintain 
and improve ecosystem stability and functions by optimizing landscape 
composition and appropriately reconciling and balancing contradic-
tions, conflicts, and trade-offs among cross-sectoral interests in strategy 
formulations for land use planning and governance. 

As shown in the workflow of this study (refer to Fig. 2), three study 
phases were carried out: data preparation and pre-processing, ES 
quantification, and spatial association analysis. Multiple datasets were 
re-projected and resampled before inputting into biophysical models, 
and then, the ESs were quantified and analyzed in terms of spatiotem-
poral dimensions. The spatial associations between ESs and related 
environmental, socioeconomic, and landscape variables were identified 
via spatial econometrics and geographically weighted regression, which 
revealed the global regression relationship and its spatial variability, 
respectively. Determining these associations and their variability is ex-
pected to support strategy formulations for landscape planning and 
ecosystem conservation. 

2.3. Data collection and processing 

Summaries of the research data, including data source, spatial res-
olution, timespan, and usages, are shown in Table S1. LUC maps were 
interpreted from middle-resolution remote sensing images, derived by 
Landsat instruments based on manual visual interpretation with the 
assistance of machine learning techniques (Liu et al., 2005a,b, 2014). 
The overall accuracy of interpretation results reached more than 90% 
after field validation and further correction, and they met the re-
quirements for middle-scale spatial analysis and ES assessment (Liu 
et al., 2014). As LUC maps are used as important input parameters for 
InVEST models and other ES assessment tools, we further verified the 
dataset accuracy using the Google Earth Engine. Cross-validations be-
tween samples (n = 400) from Google Earth maps (i.e., considered as 
observed results) and interpreted LUC maps demonstrated that consis-
tency for LUC categories was higher than 93%. More details about 
dataset generation, accuracy verification, and potential applications are 
provided in Liu et al. (2005a,b, 2014). In this study, the fine-resolution 
LUC maps were used to calculate landscape metrics, and the associated 
definitions, abbreviations, and calculation processes are provided in 
McGarigal et al. (2012). To maintain scale consistency for ES assess-
ments, the LUC maps were resampled to a 1 km × 1 km grid with the aim 
of matching the resolution of other input parameters. In addition to the 
LUC maps, vegetation, soil properties, and road/railway maps and the 
digital elevation model were also collected to estimate vegetation, soil, 
and topography factors in the SR assessment and support CS and HQ 
assessments (Table S1). Meteorological records, including those of 
temperature, rainfall, radiation, and wind speed, were collected from 
more than 100 stations in the research area and surrounding areas to 
assess WY and AP functions. The missing data only accounted for<5% of 
the total data, thus indicating that the data used in this study were of 
good quality and could be used as inputs for interpolation modeling. In 
the WY assessment, the estimated WY was compared with the observed 
runoff to verify the accuracy of the results. Thus, annual runoff records 
at eight gauging stations were collected from the catchment governance 
departments. 

Since this study assessed the long-term ES over the period 
1980–2017, which did not match the time period of even a single 
Normalized Difference Vegetation Index (NDVI) dataset, this study 
applied two NDVI datasets, i.e., the long-term data record (LTDR) 
AVH13C1 product (Pedelty et al., 2007) and the Moderate-resolution 
Imaging Spectroradiometer (MODIS) MOD13Q1 dataset (Huete et al., 
2011), to reflect vegetation cover conditions and quantify vegetation 
factors for SR assessment over multiple periods. The goal of the LTDR 
AVH13C1 dataset was to produce a consistent dataset from the 
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Advanced Very High Resolution Radiometer (AVHRR) and MODIS in-
struments to aid long-term ecological studies (Pedelty et al., 2007; Beck 
and Goetz, 2011). Although all datasets were subjected to radiometric 
calibration and geometric and atmospheric corrections, further consis-
tency testing was conducted by cross-comparing three datasets. The 
cloud effects were removed according to the approach given by Sun et al. 
(2015). To identify the socioeconomic drivers of the spatial variability of 
ESs, this study adopted population density and GDP as indicators. The 
night light intensity dataset (Elvidge et al., 2013) was used to indicate 
the intensity of human activities and further estimate grid-scale GDP and 
population density based on spatial regression between image lightness 
and the measured statistical records (Jiang et al., 2002; Liu et al., 2005a, 
b; Huang et al., 2014). All datasets, except for NDVI datasets, were first 
re-projected to unify the projection systems and then resampled to a 
resolution of 1 km × 1 km before further analysis to reduce uncertainties 
arising from different datasets. 

2.4. ES selection and quantification 

According to the Common International Classification for ESs 
scheme (Czúcz et al., 2018) and the Millennium Ecosystem Assessment 
(Ma et al., 2015), ESs are normally divided into four catego-
ries—provision, regulation, support, and cultural services. Among them, 
provisioning and regulating services play fundamental roles in main-
taining and enhancing human well-being (Ma et al., 2015). However, 
only a few ESs can be assessed by widely recognized biophysical models 
under the condition of limited data availability, with reliable results 
previously reported (Ouyang et al., 2016). Previous studies conducting 

ES assessments at the national and regional scales in China (e.g., Ouyang 
et al., 2016; Peng et al., 2020; Hou et al., 2020; Zhang et al., 2021), 
particularly in the coastal areas in southern China, have mostly chosen 
dominant ESs that are closely associated with landscape dynamics as 
indicators in the assessment framework (Chen et al., 2019b, 2020b; 
Wang et al., 2021). Therefore, considering the regional natural envi-
ronment, data availability, assessment feasibility, and existing cases, we 
selected five dominant ESs—carbon stock (CS), water yield (WY), 
aquatic purification (AP), soil retention (SR), and habitat quality (HQ)— 
as indicators to assess ecosystems’ response to land dynamics caused by 
ecosystem conservation and restoration measures as well as by coastal 
exploitation, including urbanization and reclamation. Specifically, the 
AP service was indicated by nitrogen export (NE) in this study. Due to 
the water-related ESs including WY, AP, and SR are normally affected by 
rainfall variability, which further alters ES evaluation conclusion 
(Ouyang et al., 2016), this study separately quantifies WY, AP, and SR in 
real rainfall and annual mean rainfall scenarios. The former scenario 
refers to the assessment result using real rainfalls in eight time nodes as 
input parameters, while the latter one reflects the ESs under period 
average level of rainfall from 1980 to 2017. The specific assessment 
methods and fundamental equations for each ES are provided in the 
Appendix. 

2.5. Statistical approaches 

2.5.1. Identifying spatial autocorrelations within spatial units 
Global spatial autocorrelation indicated by Moran’s I coefficient 

(Dall’erba, 2009) was applied to reveal the overall spatial correlation of 

Fig. 2. Workflow of this study.  
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ESs within the study unit (i.e., county and other districts). Moran’s I 
ranges between − 1 and 1, which reflects the positive and negative 
spatial correlations (i.e., spatial agglomeration) via positive and nega-
tive values, respectively (Dall’erba, 2009). However, a value of zero 
indicates that no spatial correlation was observed between the study 
units. The calculation equations are as follows: 

Moran′ s I =
n
∑n

i=1
∑n

j∕=1wij(xi− x)
(
xj− x

)

(∑n
i=1

∑n
j=1wij

)∑n
i=1(xi− x)2

(1) 

where n denotes the number of spatial units; xi and xj represent the 
zonal average values of ESs in units i and j, respectively; and wij rep-
resents the spatial matrix. 

2.5.2. Investigating global associations via spatial econometric models 
This study adopted three spatial econometric models to explore the 

associations and spillover effects of ESs. In contrast to traditional 
econometric models (e.g., logistic regression and multiple regression 
models), which are built on the unrealistic assumption that all explan-
atory variables are independent, stationary, or structurally stable (LeS-
age et al., 2009), spatial econometric models allow for spatial 
associations between specific and other variables because many socio-
economic and environmental indicators are spatially related and highly 
interconnected (Chaurasia et al. 2020; Cai et al., 2021). Previous 
traditional econometric models did not sufficiently consider the spatial 

correlations of regression variables, thereby leading to inaccurate results 
(Chen et al., 2019b, 2020b; Meng et al., 2021). As demonstrated in Fig. 3 
and Tables S2–S6, the Moran’s I scatterplots for the ESs presented close 
correlations with spatial aggregations of high and low values, and most 
of the points fell within the first and third quadrants, indicating that ESs 
tended to be adjacent and spatially autocorrelated. Thus, traditional 
econometric models are not applicable in this case. Accordingly, three 
spatial panel models (SPMs), namely, the spatial lag model (SLM), 
spatial error model (SEM), and spatial Durbin model (SDM) (LeSage 
et al., 2009), were adopted to reveal the spatial spillover effects of 
landscape, environmental, and socioeconomic variables on ESs. The 
fundamental equations of SLM, SEM, and the general form of the two 
models, SDM, are expressed by Eqs. (2), (3), and (4), respectively: 

LnYit = ρwLnYit + αiLnX + α0 + δit, δit N
(
0, μ2

it

)
(2)  

LnYit = α0 +αiLnX + δit, δit = τwδ+φit,φit N
(
0, μ2

it

)
(3)  

LnYit = ρwLnYit + α0 + αiLnX + γiwLnX + δit (4) 

where ρ reflects the significance of the spatial autocorrelation of ESs 
between specific and neighboring counties. LnX denotes the socioeco-
nomic, environmental, and landscape determinants that influence ESs, 
and wLnYit and wLnX reflect the spatial lag term of the dependent and 
independent variables, respectively (i.e., the spatial spillover effect from 
surrounding counties). τ, φit, and δit represent the spatial 

Fig. 3. Moran’s I scatterplots of ecosystem services (ESs): (a) carbon stock (CS), (b) water yield (WY), (c) aquatic purification (AP), (d) soil retention (SR), and (e) 
habitat quality (HQ). 
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autocorrelation, random error, and disturbance terms, respectively. γi is 
the coefficient of the parameter wLnX that must be determined, and w is 
the spatial weight matrix. 

Considering the spatial spillover effect, the partial differential 
approach (Elhorst, 2014) was applied to estimate the direct and indirect 
effects of the environmental, socioeconomic, and landscape variables on 
ESs by decomposing the coefficients of the spatial model (LeSage et al., 
2009). 

2.5.3. Revealing the spatial variability of associations between variables 
To quantify the effects of landscape metrics and environmental and 

socioeconomic variables on ESs, the GWR approach was applied to 
investigate the spatial heterogeneity of associations between two or 
more variables. GWR is widely applied in geospatial analysis because it 
allows for the non-stationarity of spatial variables, which potentially 
influences the spatial variability of associations between related vari-
ables (Zhu et al., 2020; Jiang et al., 2021). The principle equations of 
GWR are expressed as follows: 

y = η0 +
∑M

m=1
ηmxm +∊ (5)  

ya = η0(oa, pa)+
∑N

b=1
ηb(oa, pa)xba + σa (6) 

where ya represents the value of a specific ES, xba denotes the iden-
tified landscape metrics and environmental and socioeconomic 

variables that influence ESs, and N is the number of spatial units 
involved in spatial analysis. (oa, pa) represents the location of sample a, 
η0(oa, pa)is the intercept at location a, and ηb(oa, pa) represents the local 
estimated coefficient of the independent variable xba. σa is the random 
error term in the analysis. This study applied the Gaussian function to 
determine the weight and Akaike information criterion method to 
determine the optimal bandwidth (Zhu et al., 2020). 

3. Results 

3.1. Spatiotemporal changes in ESs 

The spatial patterns of ESs presented significant spatial similarity 
and homogeneity for adjacent units, as indicated by the high Moran’s 
indexes shown in Fig. 3 and Tables S2–S6. High and low values of ESs 
tend to be adjacent, and the scatter diagrams of ESs are mainly 
distributed in the first and third quadrants, which illustrates that ES 
patterns are characterized by high–high and low–low aggregations. As 
shown in Figs. 4 and 5, the spatial patterns of CS and HQ services have 
declined from inland to the coast, and they have maintained a stable 
pattern over the past four decades. Similarly, the SR services remained 
stable, but the high and low values were located in the inland and 
coastal areas, respectively. However, the LUC changes at the local scale 
caused by urbanization (Fig. 2(d–e)) resulted in significant declines in 
CS and HQ, particularly in the southeastern Guangdong Province (i.e., 
the Pearl River Delta). In terms of the WY and AP services, both pre-
sented a large fluctuation in accordance with rainfall variability, and 

Fig. 4. Spatial patterns of ESs in 1980, 2000, 2010, and 2017: (a) CS, (b) WY, (c) AP, (d) SR, and (e) HQ.  
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Fig. 5. Temporal changes in ESs from 1980 to 2017: (a) and (b) WYs under real rainfall and annual mean rainfall scenarios, respectively. (c) and (d) NEs under real 
rainfall and annual mean rainfall scenarios, respectively. (e) SR under real rainfall scenario. (f) CS (g) HQ. 
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their spatial patterns were not stable from 1980 to 2017. In the scenario 
of removing the effect of rainfall variability (i.e., annual mean rainfall 
scenario), the spatial patterns of WY and NE exhibited relatively stable 
patterns. 

3.2. Spatial determinants of ESs 

The correlation analyses between multiple ESs demonstrated that 
five categories of ESs were closely correlated, with some reaching sig-
nificance (p < 0.01; Fig. 6). In Fujian Province, the correlations among 
CS, HQ, SR, and WY were found to be significant (p = 0.001), while 
those for NE and WY were not. Regarding the Guangdong and Guangxi 
provinces, the correlations among multiple ESs were not as significant as 
those in Fujian Province, although significant relationships (p < 0.0001) 
were also identified in NE versus WY. No significant trade-offs were 
identified between several ESs because the negative correlations did not 
pass the significance test. In contrast, the synergies were presented 
among CS, HQ, SR, and WY in Fujian Province as well as WY versus NE 
in Guangdong and Guangxi. 

Correlation analyses (Fig. 7) and SPMs (Tables 1 and 2) showed that 
GDP and population density were negatively correlated with CS, HQ, 
and SR, while positively associated with NE and WY. This demonstrated 
that intensive human activities weakened CS, HQ, and SR services and 
increased WY and NE, which could be attributed to the increase in the 
area of the impermeable layer and the discharge of anthropogenic pol-
lutants (Peng et al., 2020; Zhang et al., 2021). Rapid urbanization pro-
cesses negatively impact natural vegetation (e.g., wetlands, woodlands, 
and grasslands) and weaken their services, such as CS, HQ, and SR. In 
contrast, increases in built-up and construction areas reduce rainfall 
infiltration and increase land surface runoff. Additionally, the increase 
in chemical substance usage and pollutant discharges inevitably in-
creases NE. SPMs (i.e., LPM, EPM, and DPM) (Tables 1 and 2) also show 
that ESs are associated with other environmental and landscape vari-
ables, such as temperature, rainfall, vegetation cover, and multiple 
landscape metrics. In addition, the spatial determinants of ESs exhibited 
significant direct and indirect effects (Table 3). Changes in determinants 
in local areas not only influence ESs in local units but also profoundly 
alter ESs in the surrounding areas. For instance, GDP and population 
density not only negatively contribute to the CS and SR of local units but 

also exhibit negative effects on CS and SR in surrounding areas. How-
ever, these negative effects are not significant. In contrast, GDP and 
population density exhibit significantly positive effects on WY and AP in 
local units. In terms of spatial variability in the determinants of multiple 
ESs (Fig. S1), the spatial patterns of the weighted regression coefficients 
of socioeconomic variables (as an example) show strong spatial het-
erogeneity at the county scale. 

4. Discussion 

4.1. Spatial associations between ESs and determinants and their causes 

This study demonstrated that environmental and socioeconomic 
variables and landscape metrics were significantly correlated with 
multiple ESs (Tables 1 & 2 and Fig. 7), which could be applied as 
important indicators to monitor ecosystem states and reflect ecosystem 
functions, thus further directing landscape planning and optimization. 
These findings are essentially consistent with existing studies that also 
identified the close spatial associations between landscape structure and 
ESs (e.g., Mitchell et al., 2015; Chen et al., 2019b, 2020b; Jiang et al., 
2020, 2021). Normally, material and energy transport within ecosystem 
sub-units are closely connected to landscape composition and structure 
(Mitchell et al., 2015). For example, the afforestation efforts in ERPs and 
SWCPs profoundly alter landscape patterns such as patch shape and 
composition, which further mitigate runoff generation and soil loss 
formation and transportation (Jiang et al., 2020; Li et al., 2020). 
Landscape elements such as corridors, nodes, and patches directly in-
fluence ecological processes and functions, such as species migration 
and biodiversity maintenance, and further alter the ecosystem state 
(Mitchell et al., 2015). As one of the environmental variables, NDVI 
positively correlates with SR and HQ (Table 2); this is because vegetative 
cover plays an important role in SR services via the root systems of 
vegetation (Jiang et al., 2020; Li et al., 2020) and facilitates the for-
mation of suitable habitats for animal species (Zhu et al., 2020). In 
contrast, high vegetation cover, as reflected by NDVI (i.e., woodland 
landscape) exhibits negative effects on WY (Table 1); this is because 
canopy evaporation and soil transpiration processes consume water re-
sources, which leads to WY decline, particularly in arid areas confronted 
with water scarcity (Jiang et al., 2018, 2021). Similarly, rainfall and 

Fig. 6. Correlations between multiple ESs for three districts: (a) Fujian, (b) Guangdong, and (c) Guangxi.  
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temperature present positive and negative associations, respectively, for 
both WY and AP (Table 1). This is because rainfall is an important water 
source, which increases runoff yield, while temperature induces the 
opposite effect on runoff yield by promoting evapotranspiration in the 
water cycle (Jiang et al., 2018). 

The socioeconomic variables (i.e., GDP and population density) 
negatively correlate with CS, SR, and HQ, while showing positive as-
sociations with WY and AP (Tables 1 & 2 and Fig. 7) due to built-up areas 
and rural settlements and their ecological and hydrological impacts 
(Hansen et al., 2018; Leibowitz et al., 2018). Natural ecosystems such as 
wetlands, woodlands, and grasslands exhibit strong hydrological regu-
lation capacity, including water quantity and quality, which reduces the 
risk of flooding and water pollution (Leibowitz et al., 2018; Chen et al., 

2019c). However, an increase in the impervious layer in the urbaniza-
tion process directly leads to an increase in WY and subsequent urban 
waterlogging (i.e., urban flood disasters) under extreme climate condi-
tions (Leibowitz et al., 2018; Zhang et al., 2021). The increasing usage of 
chemical substances also exacerbates pollutant discharge through do-
mestic and industrial sewage (Lassaletta et al., 2010; Wang et al., 2021). 
Urbanization and associated socioeconomic development lead to rapid 
losses of mangroves and coastal wetlands, aggravation of landscape 
fragmentation, and further weakening of ESs (i.e., SR, CS, and HQ), 
which result in serious ecological consequences, including ES degrada-
tion by carbon loss, water pollution, soil loss, and natural habitat 
degradation (as shown in Figs. 4–5). For instance, pesticides, chemical 
additives, and antibiotics for aquaculture are discharged into rivers, 

Fig. 7. Correlations between multiple ESs and GDP and population density for three studied districts.  
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resulting in water quality deterioration (UN-Water, 2018). It is esti-
mated that the total amounts of nitrogen and phosphorus discharged 
annually from mariculture ponds into the ocean reach 47,700 tons and 
3750 tons, respectively (Yang et al., 2017). Similarly, excessive nitrogen 
and phosphorus additions and the unrestricted use of antibiotics and 
chemicals lead to coastal seawater pollution in various developing 
countries (Ottinger et al., 2016). In addition to the negative conse-
quences examined in this study, the loss and degradation of natural 
habitats further aggravates biodiversity degradation, and wetland loss 
weakens the natural ecosystem’s capacity to regulate the urban heat 
island effect and haze (Wang et al., 2021; Zhang et al., 2021). 

The spatial spillover effects between ESs and their determinants 
(Table 3) occur because landscape compositions and biophysical pro-
cesses are interconnected (Chi and Ho, 2018; Meng et al., 2021). ES 
changes in an individual unit are determined by both local (internal) 
variables and external factors from neighboring units (Chi and Ho, 
2018). Therefore, ES decline caused by landscape fragmentation and 
other factors within an individual unit is likely to result in the deterio-
ration of neighboring units (Chen et al., 2019b, 2020b; Jiang et al., 
2021). Therefore, spatial determinants and spillover effects should be 
well understood and considered in landscape planning and environ-
mental conservation (Liu et al., 2021; Meng et al., 2021). Accordingly, 
prevention of ecosystem degradation and enhancement of ESs should 
not only be undertaken by local communities, organizations, or local 
agencies but also cross-sectoral collaborations from neighboring dis-
tricts (units). Moreover, these collaborative efforts should be coordi-
nated by local and regional governments from a holistic regional 
perspective. 

4.2. Maintaining and enhancing ESs via coastal natural landscape 
conservation 

Almost all coastal regions in China have experienced rapid coastal 
reclamation driven by socioeconomic development (Jia et al., 2018; Ren 
et al., 2019). The LUC transfer matrices in Tables S7 and S8and their 
spatial patterns (shown in Fig. S2) indicate that large areas of wetland, 
water bodies, woodlands, and croplands were converted into built-up 
areas in 1980–2000 and 2000–2017, particularly in Guangdong Prov-
ince. The areas of conversion between cropland and urban area from 
2000 to 2017 reached 1158.2, 2256.3, and 636.8 km2 in Fujian, 
Guangdong, and Guangxi, respectively. Moreover, the areas of conver-
sion between woodland and urban areas from 2000 to 2017 reached 
595.3, 1073.2, and 298.1 km2 in three districts, respectively. These 
results are consistent with those of previous studies, such as those by 
Mao et al. (2018) and Chen et al. (2019c). Mao et al. (2018) revealed the 
amount and pattern of wetland loss in eastern China due to urbanization 
and concluded that more than 2394 km2 of wetlands were converted 
into urban areas in the past two decades. The expansion of aquaculture 
ponds was expected to contribute most to land reclamation from wet-
lands and mangroves between 1990 and 2014 (Ma et al., 2015). 
Mangrove deforestation for aquaculture ponds is mainly driven by the 
development of the aquaculture industry in coastal provinces (Tian 
et al., 2016). In particular, Fujian Province adopted a strategy for 
developing mudflat aquaculture in the shallow sea in 1985, which 
contributed to the development of aquaculture into the region’s pillar 
industry (Ren et al., 2019). The foundation of the aquaculture industry 
has become increasingly consolidated since 2000, which has further 

Table 1 
Spatial associations between ESs (i.e., CS, WY, and AP) and related environmental, socioeconomic, and landscape variables using SPMs (i.e., SLM, SEM, and SDM).  

Independent 
variables 

CS WY AP 

SLM SEM SDM SLM SEM SDM SLM SEM SDM 

NP 0.393** 0.414** 0.432**  0.009  0.005  0.005  − 0.00005  − 0.00004  − 0.0001 
SHAPE 3359*** 3887.4*** 3424.5***  − 104.47**  − 175.1***  − 179.04***  − 0.437***  − 0.415**  − 0.472** 
ENN − 2.157** − 1.131 − 1.959**  − 0.005  0.009  0.043  − 0.0007***  − 0.0008***  − 0.0005** 
PLADJ 105.8** 85.698 119.81**  − 3.754  − 3.374  − 4.182  − 0.011  − 0.002  − 0.010 
IJI 42.033*** 39.913*** 37.141***  1.055**  0.05  0.392  0.002  0.0002  0.0003 
COHESION − 508.57** − 529.79* − 685.52**  − 6.629  4.411  − 1.041  0.051  0.0538  0.092 
DIVISION − 1075.9 − 295.47 − 181.01  − 17.559  − 28.351  − 34.507  0.453**  0.368**  0.323* 
SPLIT − 44.12 − 26.929 − 47.809  2.031  1.792  2.615  0.003  0.003  0.007 
SHDI − 3099.4*** − 4436.3*** − 3807.8***  − 80.682*  19.294  − 15.29  − 0.299*  − 0.012  − 0.041 
GDP − 0.235*** − 0.303*** − 0.267***  0.001  0.005**  0.005***  0.00002**  0.00003***  0.00003*** 
POPD − 0.228*** − 0.320*** − 0.288***  0.006***  0.006***  0.006**  0.00005***  0.00006***  0.0001*** 
TEM − 20.75*** − 35.293*** − 66.232***  − 0.126  − 1.075  − 1.273*  0.003***  0.005***  0.006** 
RF 0.107*** 0.061 − 0.214  0.027***  0.055***  0.031***  0.00003***  0.00005***  0.00004 
NDVI 10736*** 10882*** 11280***  − 15.338  − 131.47*  − 83.767  − 0.338  − 0.450  − 0.468 
w*NP   − 0.111    0.017    − 0.00002 
w*SHAPE   − 1679    48.449    − 0.190 
w*ENN   − 2.545    0.024    0.001** 
w*PLADJ   74.25    − 3.492    − 0.059*** 
w*IJI   − 6.334    1.219    0.008** 
w*COHESION   748.39    − 24.704    − 0.099 
w*DIVISION   − 1991.2    − 54.349    − 0.006 
w*SPLIT   − 31.163    3.442    0.009 
w*SHDI   5265.2***    − 161.520*    − 1.244*** 
w*GDP   0.233***    − 0.009**    − 0.00004*** 
w*POPD   0.198**    0.005    − 0.00001 
w*TEM   62.925***    1.165    − 0.005* 
w*RF   0.296**    − 0.008    − 0.00002 
w*NDVI   731.94    86.045    − 0.793 
w*CS/WY/AP 0.356***  0.579***  0.784***   0.822***  0.482***   0.545*** 
w*μ  0.692***    0.941***    0.603***  
R2 0.898 0.913 0.921  0.95  0.956  0.956  0.735  0.746  0.764 
Adjusted R2 0.893 0.909 0.917  0.948  0.954  0.953  0.723  0.734  0.753 
σ2 1,783,600 1,546,200 1,385,000  4960.3  4719.2  4420.9  0.075  0.073  0.067 
Log − likelihood − 2666.742 − 2660.458 − 2636.298  − 1781.269  − 1796.923  − 1767.587  − 46.870  − 47.936  − 31.837 

Notes: ***p ≤ 0.01, **p ≤ 0.05, *p ≤ 0.1. NP: number of patches, SHAPE: mean shape index, ENN: mean Euclidian nearest-neighbor distance, PLADJ: proportion of like 
adjacency, IJI: Interspersion and Juxtaposition index, COHESION: patch cohesion index, DIVISION: landscape division index, SPLIT: splitting index, SHDI: Shannon’s 
diversity index, GDP: gross domestic productivity, POPD: population density, TEM: temperature, RF: rainfall, NDVI: normalized difference vegetation index. 
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increased the aquaculture pond area (Jia et al., 2018). 
In contrast to aquaculture development, urbanization directly con-

verts wetlands and agricultural ponds into urban areas; this process is 
considered irreversible and has attracted the attention of governments, 
researchers, and international organizations (Mao et al., 2018, 2019). To 
mitigate wetland shrinkage and degradation, more than 577 natural 
reserves and 468 wetland parks have been constructed to conserve 
wetlands (Zheng et al., 2012; Mao et al., 2018). In addition, numerous 
ecosystem conservation projects, such as the National Wetland Conser-
vation Project, have been initiated since 2003 to promote wetland 
conservation and restoration (Mao et al., 2018). Since 2012, the central 
and regional governments have gradually regulated coastal land recla-
mation, and the development priority has shifted from the aquaculture 
industry to urban development, coastal economy, and manufacturing. 
Thus, the expansion speed of aquaculture ponds has slowed down (Ren 
et al., 2019). However, rapid population growth, increasing demand for 
seafood, and economic profits have jointly encouraged the slow 
expansion of the mariculture area (Jia et al., 2018). The coastal aqua-
culture industry has converted wetlands to ponds; thus, more than a 
third of mangroves have been deforested globally in the past few de-
cades, and this trend has been especially notable for the decline of 
mangroves in the mudflats of southern China (Ma et al., 2015; Tian 
et al., 2016). The shrinkage and degradation of mangroves in southern 
China reflect nearly identical trends to those reported in South and 
Southeast Asian countries such as India, Vietnam, Thailand, Malaysia, 
and Indonesia (UN-Water (United Nations World Water Assessment 
Programme), 2018). 

Considering the negative effects of wetland and mangrove loss 
caused by aquaculture ponds, the government has initiated a series of 
laws and regulations to protect and restore mangrove ecosystems, which 

are reflected by the establishment of nature reserves, national parks, and 
mangrove reforestation/afforestation (Jia et al., 2018). By 2002, more 
than 298, 783, and 369 ha of mangrove forests have been replanted in 
the Guangdong, Guangxi, and Fujian provinces, respectively, which 
mainly contributed to the increase in mangrove forests along the coastal 
regions of southeastern China (Jia et al., 2015). In contrast, the various 
mangrove restoration projects in South and Southeast Asian countries 
did not achieve significant progress, even though the expansion of 
aquaculture and paddy and oil palm plantations are still threatening 
mangrove ecosystems, which reduced mangrove area during 2000–2012 
(Upadhyay et al., 2015; Giri et al., 2015). 

4.3. Limitations, uncertainties, and future strategies 

Allowing for the negative consequences of excessive coastal exploi-
tations, including urbanization, land reclamation, aquaculture pond 
construction, and mangrove deforestation, governments and stake-
holders have realized the importance of ecosystem conservation and 
restoration in landscape planning and ES management. Great progress 
has been achieved in wetland and woodland restoration in coastal areas, 
in particular for mangrove conservation, by optimizing land use allo-
cation, ERPs, and SWCPs (Ouyang et al., 2016; Mao et al., 2018, 2019; 
Ren et al., 2019). However, there are still some limitations and de-
ficiencies in current intervention measures in terms of mangrove 
restoration efforts. Existing mangrove restoration projects simply select 
mangrove species from a few native mangrove species, such as Rhizo-
phora stylosa, Kandelia obovata, and Sonneratia caseolaris (Jia et al., 
2015), which may deteriorate regional species biodiversity and weaken 
ES supply capacity (Upadhyay et al., 2015). Moreover, the selection of a 
fast-growing exotic mangrove species such as Sonneratia apetala might 

Table 2 
Spatial associations between ESs (i.e., SR and HQ) and related environmental, socioeconomic, and landscape variables using SPMs (i.e., SLM, SEM, and SDM).  

Independent variables SR HQ 

SLM SEM SDM SLM SEM SDM 

NP 0.132 0.118 0.133  0.00002***  0.00002***  0.00002*** 
SHAPE 1267.8*** 1863.2*** 1627.3***  0.103***  0.150***  0.144*** 
ENN − 1.112* − 0.377 − 0.806  − 0.00003  0.000008  − 0.00004 
PLADJ 80.974** 90.664*** 104.33***  0.006***  0.006***  0.008*** 
IJI 14.785*** 15.744*** 15.368***  0.001***  0.001***  0.001*** 
COHESION − 225.58 − 76.847 − 157.11  − 0.023***  − 0.032***  − 0.038*** 
DIVISION − 12.803 181.31 209.99  − 0.105***  − 0.061**  − 0.071** 
SPLIT − 33.237* − 19.131 − 23.317  − 0.0002  − 0.0005  − 0.001 
SHDI − 1783.3*** − 1925.1*** − 1728.6***  − 0.064**  − 0.127***  − 0.103*** 
GDP − 0.041* − 0.028 − 0.012  − 0.000002  − 0.000002  − 0.000003** 
POPD − 0.022 − 0.049** − 0.044*  − 0.0000009  − 0.0000005  − 0.00000003 
TEM − 33.398*** − 64.052*** − 81.902***  − 0.001***  − 0.002***  − 0.002*** 
RF 0.119*** 0.177*** 0.09  0.000004***  0.000003  − 0.000007 
NDVI 3864.2*** 3962.3*** 3931.1***  0.328***  0.361***  0.381*** 
w*NP   − 0.048    − 0.00001 
w*SHAPE   − 1545.6*    − 0.071 
w*ENN   − 2.218**    − 0.0002*** 
w*PLADJ   − 4.799    0.005 
w*IJI   − 10.8    − 0.0008 
w*COHESION   − 35.074    0.035** 
w*DIVISION   − 525.51    − 0.081 
w*SPLIT   2.633    0.0003 
w*SHDI   1420.9    0.218*** 
w*GDP   − 0.024    − 0.000002 
w*POPD   0.08    0.000003 
w*TEM   72.221***    0.002*** 
w*RF   − 0.023    0.00001** 
w*NDVI   − 963.26    − 0.097 
w*SR/HQ 0.45***  0.677***  0.586***   0.668*** 
w*μ  0.761***    0.799***  
R2 0.843 0.875 0.884  0.812  0.836  0.844 
Adjusted R2 0.835 0.869 0.878  0.803  0.828  0.837 
σ2 650,720 519,810 483,470  0.002  0.002  0.002 
Log − likelihood − 2513.898 − 2497.744 − 2479.692  506.496  505.191  530.382 

Notes: ***p ≤ 0.01, **p ≤ 0.05, *p ≤ 0.1. 
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damage landscape integrity and threaten ecosystem biodiversity (Giri 
et al., 2015). Therefore, appropriate species with a stronger resistance 
capacity for natural disasters and severe conditions, such as extreme low 
temperature, biological invasion, and insect outbreaks, must be identi-
fied (Jia et al., 2018). Sufficient freshwater supply plays an important 
role in mangrove forest survival and in combating subsequent coastal 
erosion (Upadhyay et al., 2015). However, seawall construction destroys 
mangrove forests by obstructing the matter and energy exchanges be-
tween terrestrial and marine ecosystems, particularly for the freshwater 
cycle, which regulates and balances water–salinity relationship and 
sustains mangrove swamps (Ren et al., 2019). Therefore, seawalls and 
associated engineering measures should be removed or further opti-
mized to facilitate mass and energy exchange and guarantee biological 
information transmission and biodiversity. 

Although the importance of ecosystem conservation has been real-
ized and prioritized in formulations of regional development strategies, 
the delicate balance between socioeconomic development and 
ecosystem conservation still must be carefully maintained through 
timely policy interventions. Model-based simulations revealed ES deg-
radations in CS, SR, and HQ and resultant WY and NE increases in urban 
agglomeration and surrounding areas (Figs. 4 and 5). Population density 
and GDP were negatively correlated with ESs (Fig. 7), but it is not 
appropriate to simply constrain population growth, economic develop-
ment, and urban expansion because economic profits are important for 
residents’ livelihoods (Cai et al., 2021; Jiang et al., 2021). In the sce-
nario of constraining economic development for ecosystem conserva-
tion, residents’ economic profits cannot be safeguarded, which tends to 
fall into the “conservation trap” (Cao et al., 2017, 2021). In contrast, 
inappropriate urban expansion, population growth, and resource con-
sumption lead to ecosystem degradation and degradation traps and 
further aggravate regional poverty (Cao et al., 2017, 2021). Therefore, 
to achieve win–win outcomes and reconcile the contradictions between 
ecosystem conservation and socioeconomic development in coastal re-
gions, landscape and industrial structuring should be adjusted according 
to various environmental conditions, economic costs, and constraining 
factors (Ren et al., 2019). Specifically, the economic contribution of the 
coastal fishery industry and aquaculture should be controlled at a rela-
tively low level because aquaculture is likely to cause environmental 
pollution and subsequent negative impacts on mangrove forests 
(Ottinger et al., 2016; Hansen et al., 2018). 

The practices that deforested mangroves for aquaculture ponds and 
land reclamation should be strictly monitored and controlled by local 
authorities to avoid damaging mangroves and associated ESs (Jia et al., 
2015). Regarding agricultural ponds, according to the experience of 
water caltrop planting and Phragmites growing (Liu et al., 2009), special 
attention should be paid to aquatic vegetation as it provides a habitat for 
amphibians and benthic invertebrates and is easily consumed by farmed 
fishes (UN-Water (United Nations World Water Assessment Pro-
gramme), 2018; Chen et al., 2019c). Additionally, low-impact devel-
opment, including the construction of rain gardens and forested buffers 
in riparian areas, is recommended. Agricultural ponds can act as natu-
ralistic “sponges” that reduce nutrient loads downstream (Hansen et al., 
2018). In addition, regional environmental conservation planning and 
landscape design should effectively ensure ES supplies and economic 
benefits by appropriately allocating green infrastructure and other 
landscape elements, avoiding landscape fragmentation and reducing the 
dependence of economic growth on natural resources by adjusting in-
dustrial structure (Ren et al., 2019; Cai et al., 2021). As for the important 
ecological functions and agricultural production functions of wetland 
and agricultural pond landscapes, appropriate proportions of wetlands 
and agricultural ponds should be maintained during aggressive urban-
ization to guarantee ecological and food security, while their specific 
spatial allocation is determined according to landscape integrity, con-
nectivity, and multi-functionality supported by model simulations and 
scenario analyses (Peng et al., 2020; Jiang et al., 2021; Zhang et al., 
2021). Ta

bl
e 

3 
D

ir
ec

t a
nd

 in
di

re
ct

 e
ffe

ct
s 

(i
.e

., 
lo

ca
l a

nd
 s

pi
llo

ve
r 

ef
fe

ct
s)

 o
f i

nd
ep

en
de

nt
 v

ar
ia

bl
es

 o
n 

ES
s 

es
tim

at
ed

 b
y 

SD
M

.  

In
de

pe
nd

en
t v

ar
ia

bl
es

 
CS

 
W

Y 
A

P 
SR

 
H

Q
 

D
ir

ec
t e

ffe
ct

s 
In

di
re

ct
 e

ffe
ct

s 
D

ir
ec

t e
ffe

ct
s 

In
di

re
ct

 e
ffe

ct
s 

D
ir

ec
t e

ffe
ct

s 
In

di
re

ct
 e

ffe
ct

s 
D

ir
ec

t e
ffe

ct
s 

In
di

re
ct

 e
ffe

ct
s 

D
ir

ec
t e

ffe
ct

s 
In

di
re

ct
 e

ffe
ct

s 

N
P 

 
0.

45
5*

* 
 

0.
30

6 
 

0.
01

3 
 

0.
11

2 
 

−
0.

00
00

7*
  

−
0.

00
01

  
0.

14
2 

 
0.

11
9 

 
0.

00
00

3*
**

  
0.

00
00

2 
SH

A
PE

  
34

76
.6

85
**

* 
 

66
9.

13
8 

 
−

21
6.

48
0*

**
  

−
51

5.
68

3 
 

−
0.

54
2*

* 
 

−
0.

91
4 

 
15

25
.1

76
**

  
−

12
72

.5
35

  
0.

14
9*

**
  

0.
07

 
EN

N
  

−
2.

59
0*

* 
 

−
8.

10
5*

  
0.

06
5 

 
0.

31
  

−
0.

00
04

* 
 

0.
00

1*
  

−
1.

44
1*

* 
 

−
7.

91
1*

* 
 

−
0.

00
01

**
  

−
0.

00
07

**
* 

PL
A

D
J 

 
14

4.
46

4*
**

  
31

6.
44

4 
 

−
6.

81
0*

  
−

36
.2

09
  

−
0.

02
0 

 
−

0.
13

2*
**

  
11

9.
44

4*
**

  
18

8.
30

2 
 

0.
01

0*
**

  
0.

02
8*

**
 

IJ
I  

39
.7

45
**

* 
 

33
.4

24
  

0.
97

7 
 

8.
05

5*
  

0.
00

2 
 

0.
01

7*
* 

 
15

.2
75

**
* 

 
−

1.
15

1 
 

0.
00

1*
**

  
0.

00
05

 
CO

H
ES

IO
N

  
−

62
5.

16
9*

* 
 

77
4.

50
8 

 
−

10
.7

39
  

−
13

3.
59

6 
 

0.
08

4 
 

−
0.

10
0 

 
−

18
9.

58
8 

 
−

40
4.

63
6 

 
−

0.
03

6*
**

  
0.

02
7 

D
IV

IS
IO

N
  

−
54

0.
87

6 
 

−
46

18
.3

86
  

−
65

.8
87

  
−

43
2.

26
9 

 
0.

34
9*

  
0.

34
7 

 
12

1.
89

4 
 

−
10

97
.4

83
  

−
0.

09
9*

**
  

−
0.

35
7*

* 
SP

LI
T 

 
−

57
.9

12
* 

 
−

12
9.

65
6 

 
4.

73
6*

  
29

.2
22

  
0.

00
9 

 
0.

02
7 

 
−

26
.3

36
  

−
37

.6
18

  
−

0.
00

1 
 

−
0.

00
1 

SH
D

I  
−

32
82

.3
17

**
* 

 
67

43
.8

72
* 

 
−

81
.3

43
  

−
90

9.
90

8*
  

−
0.

23
7 

 
−

2.
58

7*
**

  
−

16
70

.8
02

**
* 

 
71

9.
42

9 
 

−
0.

07
0*

* 
 

0.
41

7*
* 

G
D

P 
 

−
0.

25
4*

**
  

−
0.

17
3 

 
0.

00
4 

 
0.

02
2 

 
0.

00
00

2*
**

  
0.

00
00

6*
  

−
0.

02
0 

 
−

0.
09

3 
 

−
0.

00
00

03
**

  
−

0.
00

00
01

 
PO

PD
  

−
0.

28
3*

**
  

−
0.

06
9 

 
0.

00
9*

**
  

0.
04

8*
* 

 
0.

00
00

6*
**

  
0.

00
00

5 
 

−
0.

03
2 

 
−

0.
14

3 
 

−
0.

00
00

00
7 

 
−

0.
00

00
1 

TE
M

  
−

62
.0

12
**

* 
 

54
.1

59
**

* 
 

−
1.

22
8*

  
−

0.
62

2 
 

−
0.

00
6*

* 
 

−
0.

00
4 

 
−

78
.0

41
**

* 
 

−
48

.1
06

**
* 

 
−

0.
00

2*
**

  
0.

00
2*

* 
RF

  
−

0.
18

5 
 

0.
37

8*
* 

 
0.

03
8*

**
  

0.
09

5*
**

  
0.

00
00

5*
  

0.
00

00
1 

 
0.

09
9 

 
0.

10
8 

 
−

0.
00

00
05

  
0.

00
00

2*
**

 
N

D
VI

  
12

52
7.

27
9*

**
  

16
00

3.
25

0*
* 

 
−

77
.2

34
  

−
90

.0
01

  
−

0.
63

1*
* 

 
−

2.
14

2*
  

43
20

.9
07

**
* 

 
48

55
.7

27
  

0.
41

6*
**

  
0.

44
 

N
ot

es
: *

**
p 
≤

0.
01

, *
*p

 ≤
0.

05
, *

p 
≤

0.
1.

 

J. Guo et al.                                                                                                                                                                                                                                      



Ecological Indicators 138 (2022) 108860

14

Although the model simulations conducted in this study are still 
constrained by the accuracy and local suitability of input parameters, 
spatial scale effects, and other uncertainties arising from data processing 
and analyses, this study revealed the spatiotemporal evolution of LUC 
and ESs as well as their spatial determinants, which provide important 
references for the formulation of environmental conservation and 
restoration strategies and landscape optimization approaches. In the 
future, more accurate input data and adjusted parameters will be inte-
grated into biophysical models to improve the accuracy of spatial sim-
ulations, and scenario analysis tools will be applied to forecast ES 
responses to environmental, socioeconomic, and landscape drivers. 
Accordingly, adaptive management strategies have been proposed to 
support landscape optimization and enhance ESs. 

5. Conclusions 

This study explored the evolution of dominant ESs in coastal areas of 
southeastern China and their responses to coastal activities such as ur-
banization, ecosystem conservation and restoration, and aquaculture 
industry development. In addition, the spatial associations between ESs 
and multi-aspect variables were investigated via spatial econometrics 
and GWR approaches, and their policy and practical implications are 
discussed. 

In the past four decades, particularly during 2000–2017, intensive 
coastal exploitation, such as urbanization and aquaculture industry 
development, accelerated LUC conversion from natural LUC to urban 
areas and aquaculture ponds, which profoundly altered landscape 
structure. In rapidly urbanizing areas, LUC conversion weakened CS, SR, 
and HQ and increased WY and NE, thus threatening ecosystem sus-
tainability. All ESs are closely associated with environmental, socio-
economic, and landscape variables, and the determinants present 
significant spatial heterogeneity and spillover effects, which could be 
applied in ecosystem assessment, modeling, and forecasting for land use 
management and ecosystem conservation efforts. The identified spatial 
determinants and their spillover effects demonstrate that regional 
landscape planning and ecosystem conservation must take environ-
mental, socioeconomic, and landscape aspects into consideration and 
call for cross-sectoral collaboration from both local and adjacent units, 
which coordinate trade-offs between ecological and economic goals and 
conflicts of interests between neighboring units from a regionally inte-
grated perspective, eventually facilitating the achievement of win–win 
outcomes and improving the efficacy of ERPs. The research findings 
provide important references for landscape optimization and policy 
revision for ES management, which are potentially applicable to global 
coastal regions in combination with targeted policies, localized prac-
tices, and delicate scenario simulations. 
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Baró, F., Gómez-Baggethun, E., Haase, D., 2017. Ecosystem service bundles along the 
urban-rural gradient: Insights for landscape planning and management. Ecosyst. 
Serv. 24, 147–159. 

Beck, P.S.A., Goetz, S.J., 2011. Satellite observations of high northern latitude vegetation 
productivity changes between 1982 and 2008: Ecological variability and regional 
differences. Environ. Res. Lett. 6 (4). 

Burkhard, B., Kandziora, M., Hou, Y., Müller, F., 2014. Ecosystem service potentials, 
flows and demands concepts for spatial localisation, indication and quantification. 
Landsc. Online 34, 1–32. 

Cai, Z., Li, W., Cao, S., 2021. Driving factors for coordinating urbanization with 
conservation of the ecological environment in China. Ambio 50 (6), 1269–1280. 

Cao, S., Shang, D., Yue, H., Ma, H., 2017. A win–win strategy for ecological restoration 
and biodiversity conservation in southern China. Environ. Res. Lett. 12. 

Cao, S., Liu, Z., Li, W., Xian, J., 2021. Balancing ecological conservation with 
socioeconomic development. Ambio 50 (5), 1117–1122. 

Cao, Y., Zhang, X., Fu, Y., Lu, Z., Shen, X., 2021. Urban spatial growth modeling using 
logistic regression and cellular automata: A case study of Hangzhou. Ecol. Indicat. 
113. 

Castillo-Eguskitza, N., Martín-López, B., Onaindia, M., 2018. A comprehensive 
assessment of ecosystem services: integrating supply, demand and interest in the 
Urdaibai Biosphere Reserve. Ecol. Indic. 93, 1176–1189. 

Chaurasia, H., Srivastava, S., Singh, J.K., 2020. Does seasonal variation affect diarrhoea 
prevalence among children in India? An analysis based on spatial regression models. 
Children Youth Serv. Rev. 118, 105453. 

Chen, W., Chi, G., Li, J., 2019b. The spatial association of ecosystem services with land 
use and land cover change at the county level in China, 1995–2015. Sci. Total 
Environ. 669, 459–470. 

Chen, W., He, B., Nover, D., Lu, H., Liu, J., Sun, W., Chen, W., 2019c. Farm ponds in 
southern China: challenges and solutions for conserving a neglected wetland 
ecosystem. Sci. Total Environ. 659, 1322–1334. 

Chen, W., Chi, G., Li, J., 2020b. The spatial aspect of ecosystem services balance and its 
determinants. Land Use Pol. 90. 

Chen, J., Xiao, H., Li, Z., Liu, C., Wang, D., Wang, L., Tang, C., 2019a. Threshold effects of 
vegetation coverage on soil erosion control in small watersheds of the red soil hilly 
region in China. Ecol. Eng. 132, 109–114. 

Chen, J., Xiao, H., Li, Z., Liu, C., Wang, D., Ning, K., Tang, C., 2020a. How effective are 
soil and water conservation measures (SWCMs) in reducing soil and water losses in 
the red soil hilly region of China? A meta-analysis of field plot data. Sci. Total 
Environ. 735, 139517. 

Chen, J., Li, Z., Xiao, H., Ning, K., Tang, C., 2021. Effects of land use and land cover on 
soil erosion control in southern China: implications from a systematic quantitative 
review. J. Environ. Manage. 282. 

Chi, G., Ho, H.C., 2018. Population stress: a spatiotemporal analysis of population 
change and land development at the county level in the contiguous United States, 
2001–2011. Land Use Policy 70, 128–137. 

Congreve, A., Cross, I.D., 2019. Integrating ecosystem services into environmental 
decision-making. J. Appl. Ecol. 56 (3), 494–499. 

Costanza, R., De Groot, R., Braat, L., Kubiszewski, I., Fioramonti, L., Sutton, P., Farber, S., 
Grasso, M., 2017. Twenty years of ecosystem services: how far have we come and 
how far do we still need to go? Ecosyst. Serv. 28, 1–16. 

Czúcz, B., Arany, I., Potschin-Young, M., Bereczki, K., Kertész, M., Kiss, M., Aszalós, R., 
Haines-Young, R., 2018. Where concepts meet the real world: a systematic review of 
ecosystem service indicators and their classification using CICES. Ecosyst. serv. 29, 
145–157. 

Dall’erba, S., 2009. In: International Encyclopedia of Human Geography. Elsevier, 
pp. 683–690. 

J. Guo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.ecolind.2022.108860
https://doi.org/10.1016/j.ecolind.2022.108860
https://doi.org/10.28991/esj-2019-01193
http://refhub.elsevier.com/S1470-160X(22)00331-4/opt96tjpoCIgN
http://refhub.elsevier.com/S1470-160X(22)00331-4/opt96tjpoCIgN
http://refhub.elsevier.com/S1470-160X(22)00331-4/opt96tjpoCIgN
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0005
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0005
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0005
http://refhub.elsevier.com/S1470-160X(22)00331-4/optOZdwZ6SAef
http://refhub.elsevier.com/S1470-160X(22)00331-4/optOZdwZ6SAef
http://refhub.elsevier.com/S1470-160X(22)00331-4/optOZdwZ6SAef
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0010
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0010
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0015
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0015
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0020
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0020
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0025
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0025
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0025
http://refhub.elsevier.com/S1470-160X(22)00331-4/optAkEZ1RTgc3
http://refhub.elsevier.com/S1470-160X(22)00331-4/optAkEZ1RTgc3
http://refhub.elsevier.com/S1470-160X(22)00331-4/optAkEZ1RTgc3
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0030
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0030
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0030
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0035
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0035
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0035
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0040
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0040
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0040
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0045
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0045
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0050
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0050
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0050
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0055
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0055
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0055
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0055
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0060
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0060
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0060
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0065
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0065
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0065
http://refhub.elsevier.com/S1470-160X(22)00331-4/optzQG1WR8IdA
http://refhub.elsevier.com/S1470-160X(22)00331-4/optzQG1WR8IdA
http://refhub.elsevier.com/S1470-160X(22)00331-4/optNxCgj9RuPr
http://refhub.elsevier.com/S1470-160X(22)00331-4/optNxCgj9RuPr
http://refhub.elsevier.com/S1470-160X(22)00331-4/optNxCgj9RuPr
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0070
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0070
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0070
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0070
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0075
http://refhub.elsevier.com/S1470-160X(22)00331-4/h0075


Ecological Indicators 138 (2022) 108860

15

Elhorst, J.P., 2014. MATLAB software for spatial panels. Int. Reg. Sci. Rev. 37 (3), 
389–405. 

Elvidge, C., Hsu, F.C., Baugh, K.E., Ghosh, T., 2013. National Trends in Satellite 
Observed Lighting: 1992-2012. Global Urban Monitoring and Assessment through 
Earth Observation, CRC Press. 

Giri, C., Long, J., Abbas, S., Murali, R.M., Qamer, F.M., Pengra, B., Thau, D., 2015. 
Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manage. 
148, 101–111. 

Hansen, A.T., Dolph, C.L., Foufoula-Georgiou, E., Finlay, J.C., 2018. Contribution of 
wetlands to nitrate removal at the watershed scale. Nat. Geosci. 11 (2), 127–132. 

Hou, L., Wu, F., Xie, X., 2020. The spatial characteristics and relationships between 
landscape pattern and ecosystem service value along an urban-rural gradient in 
Xi’an city, China. Ecol. Indic. 108. 

Huang, Y., Jiang, D., Fu, J., 2014. 1 km grid population dataset of China (2005, 2010). 
Acta Geograph. Sin. 69 (s1), 41–44 in Chinese with English abstract.  

Huete, A., Didan, K., van Leeuwen, W., Miura, T., Glenn, E., 2011. MODIS vegetation 
indices. In: Land Remote Sensing and Global Environmental Change. Springer, pp. 
579–602. 

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES), 2015. 
Functions, Operating Principles and Institutional Arrangements of the 
Intergovernmental. 

IPCC, 2019. Climate Change and Land: An IPCC Special Report on Climate Change, 
Desertification, Land Degradation, Sustainable Land Management, Food Security, 
and Greenhouse Gas Fluxes in Terrestrial Ecosystems (The Intergovernmental Panel 
on Climate Change). 

Jackson, B., Pagella, T., Sinclair, F., Orellana, B., Henshaw, A., et al., 2013. Polyscape: a 
GIS mapping toolbox providing efficient and spatially explicit landscape-scale 
valuation of multiple ecosystem services. Landsc. Urban Plan. 112, 74–88. 

Jia, M., Wang, Z., Zhang, Y., Ren, C., Song, K., 2015. Landsat-based estimation of 
mangrove forest loss and restoration in Guangxi province, China, influenced by 
human and natural factors. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 8 
(1), 311–323. 

Jia, M., Wang, Z., Zhang, Y., Mao, D., Wang, C., 2018. Monitoring loss and recovery of 
mangrove forests during 42 years: the achievements of mangrove conservation in 
China. Int. J. Appl. Earth Obs. Geoinformation 73, 535–545. 

Jiang, D., Yang, X., Wang, N., Liu, H., 2002. Study on spatial distribution of population 
based on remote sensing and GIS. Advan. Earth Sci. 17 (5), 734–738 in Chinese with 
English abstract.  

Jiang, C., Zhang, H., Zhang, Z., 2018. Spatially explicit assessment of ecosystem services 
in China’s Loess Plateau: patterns, interactions, drivers, and implications. Glob. 
Planet. Change. 161, 41–52. 

Jiang, C., Zhao, L., Dai, J., Liu, H., Lie, Z., Wang, X., Yang, Z., Zhang, H., Wen, M., 
Wang, J., 2020. Examining the soil erosion responses to ecological restoration 
programs and landscape drivers: a spatial econometric perspective. J. Arid Environ. 
183. 

Jiang, C., Yang, Z., Wen, M., Huang, L., Liu, H., Wang, J., Chen, W., Zhuang, C., 2021. 
Identifying the spatial disparities and determinants of ecosystem service balance and 
their implications on land use optimization. Sci. Total Environ. 793. 

Lassaletta, L., García-Gómez, H., Gimeno, B.S., Rovira, J.V., 2010. Headwater streams: 
neglected ecosystems in the EU Water Framework Directive. Implications for 
nitrogen pollution control. Environ. Sci. Pol. 13 (5), 423–433. 

Leibowitz, S.G., Wigington, P.J., Schofield, K.A., Alexander, L.C., Vanderhoof, M.K., 
Golden, H.E., 2018. Connectivity of streams and wetlands to downstream waters: an 
integrated systems framework. J. Am. Water Resour. Assoc. 54 (2), 298–322. 

LeSage, J., Pace, R., Schucany, W., Schilling, E., Balakrishnan, N., 2009. Introduction to 
Spatial Econometrics. Chapman and Hall/CRC, New York.  

Li, Z., Xu, X., Zhu, J., Xu, C., Wang, K., 2019. Sediment yield is closely related to 
lithology and landscape properties in heterogeneous karst watersheds. J. Hydrol. 
568, 437–446. 

Li, Z., Ning, K., Chen, J., Liu, C., Wang, D., Nie, X., Hu, X., Wang, L., Wang, T., 2020. Soil 
and water conservation effects driven by the implementation of ecological 
restoration projects: Evidence from the red soil hilly region of China in the last three 
decades. J. Clean. Prod. 260. 

Liu H, Jiang D, Yang X, Luo, C., 2005. Spatialization approach to 1km grid GDP 
supported by remote sensing. Geo-information Science, 2005, 7(2), 120–123 (in 
Chinese with English abstract). 

Liu, Y., Fu, Q., Yin, C., 2009. Phosphorus sorption and sedimentation in a multipond 
system within a headstream agricultural watershed. Water Qual. Res. J. Can. 44 (3), 
243–252. 

Liu, J., Liu, M., Tian, H., Zhuang, D., Zhang, Z., Zhang, W., Tang, X., Deng, X., 2005b. 
Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis 
based on Landsat TM data. Remote Sens. Environ. 98 (4), 442–456. 

Liu, J., Kuang, W., Zhang, Z., Xu, X., Qin, Y., Ning, J., Zhou, W., Zhang, S., Li, R., Yan, C., 
Wu, S., Shi, X., Jiang, N., Yu, D., Pan, X., Chi, W., 2014. Spatio-temporal 
characteristics, patterns and causes of land-use changes in China since the late 
1980s. J. Geogr. Sci. 24 (2), 195–210. 

Liu, Z., Wu, R., Chen, Y., Fang, C., Wang, S., 2021. Factors of ecosystem service values in 
a fast-developing region in China: Insights from the joint impacts of human activities 
and natural conditions. J. Clean Prod. 297. 

Ma, T., Liang, C., Li, X., Xie, T., Cui, B., 2015. Quantitative assessment of impacts of 
reclamation activities on coastal wetlands in China. Soc. Wetl. Sci. Bull. 13 (6), 
653–659. 

Mao, D., Wang, Z., Wu, J., Wu, B., Zeng, Y., Song, K., Yi, K., Luo, L., 2018. China’s 
wetlands loss to urban expansion. Land Degrad. Dev. 29 (8), 2644–2657. 

Mao, D., He, X., Wang, Z., Tian, Y., Xiang, H., Yu, H., Man, W., Jia, M., Ren, C., 
Zheng, H., 2019. Diverse policies leading to contrasting impacts on land cover and 
ecosystem services in Northeast China. J. Clean. Prod. 240. 

McGarigal, K., Cushman, S.A., Ene, E., 2012. Fragstats: Spatial Pattern Analysis Program 
for Categorical and Continuous Maps. Computer Software Program Produced by the 
Authors at the University of Massachusetts, Amherst. Available at the following web 
site: http://www.umass.edu/landeco/research/fragstats/fragstats.html. 

Meng, X., Cao, J., Wang, X., Zhang, C., Lv, J., 2021. Spatial characteristics of the human 
factors of soil erosion at the boundary of political divisions: A spatial approach. 
Catena 201, 105278. 

Mitchell, M.G.E., Suarez-Castro, A.F., Martinez-Harms, M., Maron, M., McAlpine, C., 
Gaston, K.J., Johansen, K., Rhodes, J.R., 2015. Reframing landscape fragmentation’s 
effects on ecosystem services. Trends Ecol. Evol. (Amst.) 30 (4), 190–198. 

Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, DRichard, Chan, K. 
MA., Daily, G.C., Goldstein, J., Kareiva, P.M., Lonsdorf, E., Naidoo, R., Ricketts, T.H., 
Shaw, MRebecca, 2009. Modeling multiple ecosystem services, biodiversity 
conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. 
Environ. 7 (1), 4–11. 

Ottinger, M., Clauss, K., Kuenzer, C., 2016. Aquaculture: relevance, distribution, impacts 
and spatial assessments-a review. Ocean Coast. Manage. 119, 244–266. 

Ouyang, Z., Zheng, H., Xiao, Y.i., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L.u., 
Xiao, Y., Rao, E., Jiang, L., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., 
Yang, W.u., Daily, G.C., 2016. Improvements in ecosystem services from investments 
in natural capital. Science 352 (6292), 1455–1459. 

Pedelty, J., Devadiga, S., Masuoka, E., Brown, M., Pinzon, J., Tucker, C., Roy, D., Ju, J., 
Vermote, E., Prince, S., 2007. Generating a long-term land data record from the 
AVHRR and MODIS instruments. In: Geoscience and Remote Sensing Symposium, 
2007, IGARSS 2007, IEEE International. IEEE, pp. 1021–1025. 

Peng, J., Wang, X., Liu, Y., Zhao, Y., Xu, Z., Zhao, M., Qiu, S., Wu, J., 2020. Urbanization 
impact on the supply-demand budget of ecosystem services: Decoupling analysis. 
Ecosyst. Serv. 44 (2020). 

Ren, C., Wang, Z., Zhang, Y., Zhang, B., Chen, L., Xia, Y., Xiao, X., Russell, B.D., Liu, M., 
Jia, M., Mao, D., Song, K., 2019. Rapid expansion of coastal aquaculture ponds in 
China from Landsat observations during 1984–2016. Int. J. Appl. Earth Obs. 
Geoinformation 82. 
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