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• Response of dry-wet dynamics to land-
scape pattern was examined.

• Increased abundance in forest and crop
landscapes can reduce drought risk.

• Enhanced forest connectivity can opti-
mize dry-wet environment.

• Large-scale grass landscape would in-
crease extreme drought risk.

• Balance between agricultural benefit and
crop landscape effect should be consid-
ered.
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Land cover has been demonstrated to have substantial impacts on climate and dry-wet environment, but potential in-
fluence of landscape pattern dynamics accompanying land cover change on drought remains unclear. In this study, re-
sponse of dry-wet dynamics to landscape pattern in China was examined. Results suggest that landscape pattern in
China's nine agricultural districts had transformed to varying extents and showed spatiotemporal heterogeneity
from 1980 to 2018. For forest landscape, the highest annual average Percentage of Landscape (PLAND) was recorded
in SC, reaching 62.26%; and the highest Largest Patch Index (LPI) was presented in YGP, followed by SC, with annual
values of 53.79% and 46.26% respectively. The QTP has the most prominent forest connectivity in spite of its lower
abundance. For grass landscape, the highest abundance and dominance were recorded in QTP, with annual PLAND
fluctuation range of 49.66%—63.52% and annual LPI variation range of 34.10%—58.46%, which is associated with
its climate and altitude. The most prominent crop landscape abundance and dominance were recorded in HHHP,
with annual PLAND fluctuating interval of 56.53%—60.64%, indicating the highest agricultural development level
in this district. At landscape level, dry-wet circumstance could be improved with enhancements in the largest patch
percentage, patch density and spatial connectivity, while worsen with increases of landscape fragmentation and sep-
arated degree. At class level, increases in abundance and dominance of forest and crop landscapes would reduce
drought risk, while it was opposite for grass landscape. Improved forest connectedness would optimize dry-wet envi-
ronment and reduce drought risk. The PLAND of forest and crop landscapes contributed the most prominent effect to
alleviate drought intensity. Compared with forestland and grassland, determining suitable crop landscape configura-
tion to reduce drought risk is more complex because the balance between agricultural economic benefits and ecolog-
ical landscape effects should be taken into account.
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1. Introduction

Globally, drought is profoundly threatening sustainable developments
in various industries (Lu et al., 2019a, 2019b; Pedro-Monzonís et al.,
2015; Wang et al., 2017). Over last decades, drought disasters have been
extremely common in a multitude of regions around the world (Spinoni
et al., 2019; Wang et al., 2021; Zhu et al., 2021) and have even spread to
some humid areas (Mishra and Singh, 2010; Zhou et al., 2020), as result
of global warming caused by intensification in human activities
(Esfahanian et al., 2017; Yao et al., 2018). According to statistics, quite a
few regions throughout the world such as North America (Lu et al.,
2019a), European (Spinoni et al., 2015a, 2015b), China (Xu et al., 2015)
and East Africa (Gebremeskel et al., 2019) are suffering from drought to
varying extents. Moreover, the intensity and frequency of drought are ex-
pected to continuously increase in future climate scenarios as pervasive ir-
regularity in precipitation and widespread rising in temperature (Song
et al., 2021; Wanders and Wada, 2015). This indicates drought may pose
amore profound threat to both human society and eco-environment system
in future under current social and environmental progression patterns.
Therefore, it is essential to examine some controllable ecological factors as-
sociated potentially with dry-wet dynamics in current context of human ac-
tivity, to offer a potential opportunity to regulate drought from a practical
perspective, reducing its negative impacts as far as possible.

The formation and occurrence mechanism of drought is complex,
associating with various factors concurrently (Yao et al., 2020). Many eco-
logical processes occurred on land surface such as vegetation evapotranspi-
ration and runoff would interact with regional wet-dry environment
(Aguilos et al., 2021; Kyatengerwa et al., 2020; Ma et al., 2021; Wang
et al., 2019). In recent years, in addition to the direct effects of climatic fac-
tors on drought (Vicente-Serrano et al., 2015; Yang et al., 2020), some indi-
rect effects associatedwith human activities, especially land use/land cover
change, have gradually attracted worldwide attention (Fan et al., 2015;
Júnior et al., 2015; Peng et al., 2019). Previous researches have suggested
that regional land use transformation driven by human activities and social
development would pose substantial impacts on a series of climate vari-
ables such as temperature, precipitation and humidity by changing some
physical properties in land surface (Betts et al., 2007; Mahmood et al.,
2014). Variation of territorial underlying surface caused by land utilization
shift such as urban expansion would impact radiation balance and energy
exchange in ground-atmosphere system, thus changing near-ground mete-
orological conditions such as temperature, humidity, precipitation and
wind speed (Li et al., 2021; Mohammad Harmay et al., 2021; Son et al.,
2020). Such variations in climate factors caused by land cover transforma-
tion will further influence regional dry-wet circumstances as dry-wet dy-
namic is prominently affected and restricted by meteorological conditions
(Asadi Zarch et al., 2015; Mishra and Singh, 2010; Vicente-Serrano et al.,
2020; Zhu et al., 2021). Therefore, it is reasonable to deduce that land
cover change would perform a profound impact on regional wet-dry envi-
ronment. Up to now, although the substantial contribution of land use to re-
gional climate variability has been confirmed, the relationship between
land cover pattern as well as its physical configuration variation accompa-
nying land use transformation and dry-wet dynamics remains unclear. This
underlying relation needs to be explored, because it can provide a more
concrete accordance for regulating dry-wet environment and reducing
drought risk from the path of optimizing land planning and allocation.

The spatial composition and configuration, physical morphology, geo-
graphical distribution characteristics and diversity of land patches at re-
gional scale synthetically reflect the dynamics and direction of land use
progress driven by human activities, constituting the landscape pattern con-
jointly (Medeiros et al., 2021; Metzger et al., 2021; Yohannes et al., 2021).
Landscape pattern is an integrated manifestation of various effects includ-
ing geographical process, hydro-meteorological effect, human activities
and socioeconomic development (Dadashpoor et al., 2019; Deng et al.,
2009). Based on the proved correlations between land cover and regional
climate as well as dry-wet conditions as mentioned above, it is not difficult
to ratiocinate that landscape pattern evolution accompanied by land cover
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change would constitute a considerable influence on dry-wet dynamics.
Furthermore, some researches have demonstrated that landscape pattern
change will directly trigger the variations in vegetation cover, hydrological
cycling, evapotranspiration and ecological water requirement (Deng et al.,
2017; Karlsen et al., 2019; Tordoni et al., 2020; Zhao et al., 2019), and these
affected factors are closely correlated with regional dry-wet dynamics
(Ding et al., 2020; Jiang et al., 2021; Teuling et al., 2013; Zhao et al.,
2015). However, it is still unclear that how landscape pattern impacts
dry-wet circumstance, dry-wet dynamic is mainly affected by which
concrete landscape indicators, and what is the specific mechanism for
such effect.

China, a momentous agricultural country in the world, has been
plagued by drought for a long time; and since the reform and opening up,
China's land cover and concomitant ecological landscape pattern have un-
dergone drastic transformations. In this study, China was selected as the
study area to examine the correlation between landscape pattern and dry-
wet dynamics at national-level agricultural division scale. Objectives of
this study are as follows: (1) To quantify the variations in ecological land-
scape pattern, respectively at the holistic landscape level and subordinate
vegetation level, among China's nine national-level agricultural districts
from 1980 to 2018 using different landscape indicators; (2) to ascertain
spatiotemporal variation in dry-wet dynamics using the Standardized Pre-
cipitation Evapotranspiration Index (SPEI) across different agricultural dis-
tricts; and (3) to reveal the impact of landscape pattern evolution on wet-
dry environment and to propose some suitable suggestions of landscape
pattern optimization strategy aiming at improving dry-wet circumstance
and reducing extreme drought risk. The results of this research can provide
theoretical guidance and scientific basis for rational landscape planning
and configuration to optimize regional dry-wet environment.

2. Methodology

2.1. Study region

China is the largest developing country in the world, ranging from lati-
tudes of 3°31′N to 53°33′N and longitudes of 73°29′E to 135°2′E. Consider-
ing that China is a typical agricultural producing country persecuted by
drought, it is of great significance to investigate drought at the scale of
national-level agricultural district. According to the China's nine major
agricultural division standard provided by the Resource and Environment
Science and Data Center (https://www.resdc.cn/data.aspx?DATAID=
275), the whole China can be divided into a total of nine national-level
agricultural districts; respectively the Northeast China Plain (NCP),
Yunnan-Guizhou Plateau (YGP), Northern arid and semiarid region
(NASR), Southern China (SC), Sichuan Basin and surrounding regions
(SBSR), Middle-lower Yangtze Plain (MLYP), Qinghai Tibet Plateau
(QTP), Loess Plateau (LP) and Huang-Huai-Hai Plain (HHHP) (Fig. 1).
There are obvious discrepancies in climate characteristics between various
districts. Climate types across China mainly include subtropical monsoon,
temperate monsoon, tropical monsoon, temperate continental climate. Pre-
cipitation is gradually decreasing from southeast coast to northwest China.
Overall, climate and precipitation among different districts across China
have prominent spatiotemporal heterogeneity.

2.2. Data sources

Remote sensing image data for the whole China from 1980 to 2018
were obtained from the Chinese multi-period land use and land cover re-
mote sensing monitoring dataset (CNLUCC), which were downloaded
from the Resource and Environment Science and Data Center (http://
www.resdc.cn/, last accessed on 2020). The CNLUCC was developed by ar-
tificial visual interpretation using Landsat remote sensing image data as the
main data source. Spatial resolution is 1 km. Land cover in CNLUCC in-
cludes six primary categories: cultivated land, forestland, grassland, water
area, residential land and unused land. Furthermore, 25 secondary land
cover types were included such as paddies, dry farm, shrubland, open

https://www.resdc.cn/data.aspx?DATAID=275
https://www.resdc.cn/data.aspx?DATAID=275
http://www.resdc.cn/
http://www.resdc.cn/


Fig. 1. Study region (Unit of DEM is m).
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forestland, high/medium/low density grassland, river and canal, lake, res-
ervoir, intertidal zone, urban land, rural residential land, industrial area
and construction land. Meteorological data from 1980 to 2018 were ob-
tained from the China Meteorological Data Sharing Service System
(http://data.cma.cn/, last accessed on 2020), the National Tibetan Plateau
Science Data Center (http://data.tpdc.ac.cn/zh-hans/, last accessed on
2020) and the Resource and Environment Science and Data Center. In
this study, Taiwan, Hong Kong andMacaowithin the corresponding district
were not considered due to the lack of data.

2.3. Landscape pattern analysis

In this research, representative landscape indicators respectively at ho-
listic landscape level and subordinate class level (different vegetation cover
types) were investigated to reveal evolution characteristics in ecological
landscape pattern among different national-level agricultural districts
across China. Landscape indicators at holistic landscape level can reflect
various aspects of the variation in landscape structure for a particular re-
gion. Indicators at subordinate class level can reflect the dynamic change
in landscape pattern of different vegetation cover types within a specified
region. Landscape indicators are capable of revealing multiple aspects of
ecological landscape configuration, such as spatial distribution, structural
complexity, shape characteristics, aggregation, connectedness and diver-
sity. A total of 15 typical landscape indicators involving aspects of area,
morphology, spatial distribution and landscape diversity were selected to
systematically explore the dynamic variation trend and development direc-
tion of landscape patterns. These indicators include the number of patches
(NP), patch richness (PR), patch density (PD), mean patch area (MEAR),
edge density (ED), percentage of landscape (PLAND), largest patch index
(LPI), landscape shape index (LSI), fractal dimension index (FRAC), conti-
guity index (CONTIG), contagion index (CONTAG), patch cohesion index
3

(COHESION), splitting index (SPLIT), Shannon's diversity index (SHDI)
and Simpson's diversity index (SIDI). In present study, FRAGSTATS 4.2
was employed to extract landscape information and to calculate landscape
indicators, based on raster data (grids) in remote sensing images (CNLUCC)
from 1980 to 2018. Calculation formulas and detailed method descriptions
of selected indicators were shown in Table 1.

2.4. Assessment for dry-wet environment

A series of drought indices have been proposed to identify regional dry-
wet dynamics, nevertheless, each of them has advantages and disadvan-
tages. For instance, the accuracy of Palmer drought severity index (PDSI)
in evaluating short-term drought is insufficient (Guttman, 1998). Although
standardized Precipitation Index (SPI) has the advantage of being simple to
calculate, it is only suitable for assessing meteorological drought to some
extent, as it merely takes into account precipitation (Gao et al., 2017). By
contrast, standardized precipitation evapotranspiration index (SPEI) has
been demonstrated as a comprehensive drought indicator that can accu-
rately quantify regional drought intensity as it considers both precipitation
and evapotranspiration (Vicente-Serrano et al., 2010). Therefore, SPEI was
selected to quantify wet-dry environments and drought intensities among
different agricultural districts. Determination for SPEI is based on the
non-exceedance probability of the differences between precipitation and
potential evapotranspiration (PET), reflecting deviation degree in drought
or moist by standardizing the discrepancy between precipitation and PET.
Obviously, the assessment of PET is essential, and it was performed using
the Penman-Monteith model recommended by FAO (Allen et al., 1998).
Differences between precipitation and PET were calculated at different
time scales, which were normalized and standardized using a three-
parameter log-Logistic probability distribution function that is capable of
capturing the water deficit values (Vicente-Serrano et al., 2010). Compared

http://data.cma.cn/
http://data.tpdc.ac.cn/zh-hans/


Table 1
Description and formula of landscape indicators.

Indicator Interpretation Formula

Number of patches (NP) Amount of autocephalous landscape patch. NP = ni
Patch Richness (PR) Number of different patch types present within landscape boundary. PR = q
Patch Density (PD) Number of patches divided by landscape area. PD ¼ N

A � 10000� 100
Edge Density (ED) Edge length per unit area. ED ¼ E

A � 10000
Mean patch area (MEAR) The average size of patches in a landscape. MEAR = ∑n

i¼1∑
m
j¼1aij

N

Largest Patch Index (LPI %) Proportion of the largest patch area to specific total landscape area. LPI ¼ max n
j¼1aij
A � 100

Percentage of Landscape
(PLAND %)

Abundance percentage of a specific landscape category to overall landscape. PLAND ¼ ∑n
j¼1aij
A � 100

Landscape Shape Index (LSI) Morphological complexity of landscape patches. LSI ¼ 0:25�∑m
k¼1eikffiffiffi
A

p

Fractal Dimension Index (FRAC) Structure complexity of landscape patches. FRAC ¼ 2 ln 0:25pijð Þ
ln aij

Contiguity Index (CONTIG) Spatial proximity and contiguity among landscape patches.

CONTIG ¼
∑z
r¼1

cijr
a∗
ij

� �
−1

v−1
Patch Cohesion Index
(COHESION)

Physical connectedness, aggregation and landscape spatial pattern and characteristics.
COHESION ¼ 1− ∑n

i¼1∑
m
j¼1pij

∑n
i¼1∑

m
j¼1pij�

ffiffiffiffi
aij

p
� �� �

� 1− 1ffiffiffi
N

p
� �h i−1

� 100

Contagion Index (CONTAG %) A higher CONTAG for a given region indicates there is a preponderant landscape and a
better clustering. CONTAG ¼ 1þ

∑m
i¼1∑

m
k¼1 Pi� gik

∑m
k¼1

gik

h i
� ln Pi� gik

∑m
k¼1

gik

� �h i
2 lnm

2
4

3
5� 100

Splitting Index (SPLIT) Spatial separated and fragmentation extent between various landscape patches. SPLIT ¼ A2

∑m
i¼1∑

n
j¼1a

2
ij

Shannon's Diversity Index
(SHDI)

Landscape diversification is proportional to land exploitation, a higher SHDI indicates a
higher extent in land comprehensive development.

SHDI ¼ −∑m
i¼1 Pi � ln Pið Þ

Simpson's Diversity Index (SIDI) Landscape diversity reflected by SIDI is less sensitive for infrequent landscape patches. SIDI ¼ 1−∑m
i¼1P

2
i

Note: E is boundary length for all patches in landscape (m); A is total landscape area (m2); aij is area of patch ij (m2); eik is edge length between patch types i and k; Pij is
perimeter of patch ij (m); Cijr is contiguity for pixel r in patch ij; v is sum of values in a 3-by-3 cell template; aij⁎ is area of patch ij in terms of number of cells; m is number
of landscape patch categories including landscape border; n is number of patch for a landscape; N is number of landscape patches; Pi is proportion of area of landscape
patch type i in total landscape; q is number of patch types present in landscape excluding landscape border if present; gik is number of pixels adjacent to patch k within
the landscape type i; gii is number of like adjacencies between pixels of patch type i based on the single-count method.
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with two-parameter distribution, the three-parameter Log-logistic probabil-
ity distribution provides an opportunity to address the inadequate consider-
ation for some extreme negative values in water deficit for many arid and
semi-arid regions (Tirivarombo et al., 2018). Detailed calculation is as the
method of Vicente-Serrano et al. (2010). SPEI at scale of twelve months
was selected to reflect dry-wet circumstances among different districts, be-
cause it can appropriately reflect dry-wet condition for a year.

2.5. Statistical analysis

Statistical analyses, including redundancy analysis, regression analysis
and correlation analysis, were performed using SAS 9.4 and R 3.6.1
software.

3. Results

3.1. Spatiotemporal evolutions in landscape pattern at holistic landscape level for
different national-level agricultural districts

Given that China is an important agricultural producer globally, the spa-
tiotemporal changes in landscape pattern at the scale of national-level agri-
cultural district were examined. There is a conspicuous spatial discrepancy
in NP among different agricultural districts from 1980 to 2018, with a var-
iation ranging from 51,677 to 189,935. The largest NP was recorded in
NASR, followed by MLYP, YGP and SBSR. For PR, the discrepancy among
various agricultural districts was not significant, and PR tended to increase
first and then decrease during 1980—2018 for the vast majority of agricul-
tural districts. Both PD and ED in SBSR, LP, MLYP, YGP and SCwere higher
than those in other districts. The values of MEAR in NASR, QTP and NCP
were significantly higher than that in other districts. Except for QTP, the
NP, PD, MEAR and ED in other agricultural zones has no dramatic change
with time. The values of LPI have obvious spatial differentiation among dif-
ferent districts, with a distribution interval of 4.199–50.842. The LPI values
in HHHP and SCwere generally higher than those in other districts, and the
LPI in QTP, LP, HHHP and MLYP showed conspicuous temporal variations.
Higher LSI values were mainly observed in NASR, QTP, MLYP and YGP for
4

the last decades. Spatiotemporal variations in both FRAC and COHESION
across different agricultural districts were not obvious. The higher
CONTAG values were mainly concentrated in NCP, NASR, HHHP and
QTP, while higher CONTIG values were recorded in NASR and QTP. The
SPLIT showed a strong spatiotemporal irregularity and heterogeneity
across China from 1980 to 2018, with a fluctuation range of 3.853—
237.269. The highest SPLIT was recorded in YGP, followed by LP and
QTP. The SHDI and SIDI for the most agricultural districts showed a trend
of increasing first and then decreasing (Fig. 2).

3.2. Dynamic variations in landscape pattern for different vegetation cover types

Landscape pattern indicators at subordinate class level were further ex-
amined to explore different categories of vegetation landscape dynamics
(i.e. forest landscape, grass landscape and crop landscape). As a whole,
the landscape pattern characteristics and dynamic evolutions of the three
categories of vegetation among various national-level agricultural districts
are quite different (Fig. 3).

For forest landscape, the highest annual average PLAND was presented
in SC, reaching 62.26%; followed by YGP, with annual average value of
59.09%, indicating the higher forest abundance in these two agricultural
districts. In addition, MLYP, NCP and SBSR also have a moderate percent-
age of forest landscape, with the annual average values of 46.69%,
44.37% and 34.83%, respectively. The minimum PLAND was recorded in
NASR, with annual average value of merely 7.54%. Overall, there is signif-
icant discrepancy in abundance of forest landscape among different agricul-
tural regions across China, reflecting the great heterogeneity in natural
vegetation coverage among various regions. The discrepancy in LPI
among nine agricultural districts was prominent. The highest LPI was re-
corded in YGP, followed by SC, MLYP and NCP, with the annual average
values of 53.79%, 46.26%, 41.02% and 20.94%, respectively. The mini-
mum LPI was recorded in QTP, with the annual average value of merely
3.72%. It is worth highlighting that the largest annual LPI in YGP is approx-
imately 14.46 times the minimum LPI in QTP, manifesting a prominent dis-
crepancy and spatial heterogeneity in forest landscape dominance among
various agricultural districts. Similarly, higher forest MEAR values were



Fig. 2. Spatiotemporal variation in landscape pattern at holistic landscape level for different national-level agricultural districts.
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also distributed in YGP, SC, MLYP and NCP, indicating a relatively higher
forest landscape magnitude in these regions. On the contrary, agricultural
districts with higher LPI and MEAR generally have a lower NP, such as
YGP, SC and MLYP, while those with lower LPI and MEAR generally have
a higher NP, such as NASR and QTP. This further confirmed that in regions
with higher forest landscape dominance degree and larger forest planting
scale, concentricity and continuity for forest landscape are usually stronger,
and fragmentation degree of forest patches is relatively lower. During last
nearly four decades, the highest annual average LSI was observed in YGP,
reaching 177.94; followed by NASR and SBSR, with annual average LSI
values of 171.37 and 166.21 respectively. The minimum LSI was observed
inHHHP,with an annualmean value of 89.92, which is approximately 50%
of the maximum LSI in YGP. Obviously, there is significant discrepancy in
the complexity and irregularity of forest landscape structure among differ-
ent agricultural districts. From 1980 to 2018, agricultural districts ranking
in a descending order of annual average forest CONTIG are QTP, YGP, SC,
NCP, SBSR, LP, MLYP, NASR and HHHP, respectively (Fig. 3a).
Fig. 3. Spatiotemporal variation in ecological landscape pattern of different vegetation cover categories at class level.
6

Grass landscape abundance in QTP has always been prominently higher
than that in other districts, with annual fluctuation range of 49.66%—
63.52% during 1980—2018. In addition, grass landscape in NASR, LP
and SBSR also occupied an appropriate proportion in territorial holistic
landscape, with annual variation ranges of 34.58%—37.66%, 33.90%—
37.89% and 31.11%—32.68%, respectively. The lowest PLAND for grass-
land was recorded in MLYP, with an annual mean value of 3.71%. It is
worth emphasizing that landscape dominance degree of grassland varied
greatly among different regions during 1980—2018. Specifically, the
highest LPI was recorded in QTP, followed by SBSR, with annual variation
ranges of 34.10%—58.46% and 21.99%—23.46%, respectively. Mean-
while, the LPI of grassland in MLYP, NCP and SC has never exceeded 1%
over last decades. Analogously, the largest MEAR has also been invariably
recorded in QTP regardless of year, manifesting the absolute advantage in
grass landscape of QTP among nine agricultural districts. It's worth noting
that the number of grassland patches (NP) in QTP was not prominent in
nine regions, while the NP of grass landscape in some regions with lower



Fig. 3 (continued).
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grassland dominance and abundance was relatively higher, such as YGP,
NCP, SC, NASR and MLYP. This illustrates that grass landscape with a
strong fragmentation and dispersion generally has lower landscape domi-
nance. The nine agricultural regions can be ranked as NASR, YGP, LP,
QTP, SBSR, NCP, HHHP, MLYP, SC, in descending order of LSI of grass
landscape, with annual average LSI of 229.65, 205.14, 173.75, 157.53,
141.99, 130.39, 127.21, 126.53, 122.06, respectively. From 1980 to
2018, the largest LSI has always been presented in NASR, which is nearly
twice that in SC. Such discrepancy indicates the complexity and irregularity
of grass landscape structure varied greatly among different regions, which
is related to the discrepancies in grassland management and greening poli-
cies between different districts. The highest grass landscape CONTIG oc-
curred in QTP, followed by NASR and YGP, indicating a stronger spatial
connectedness and contiguity of grassland in these districts (Fig. 3b).

During last nearly four decades, the HHHP has the largest proportion of
crop landscape among several agricultural districts, with an annual mean
PLAND of 59.15% and an annual PLAND fluctuating interval of 56.53%—
7

60.64%. Moreover, crop landscape in MLYP, NCP and LP has also occupied
a non-negligible proportion in regional holistic landscape, with annual av-
erage PLAND of 38.73%, 37.34%, 35.98%, and annual fluctuating range of
36.64%—40.17%, 33.63%—39.38%, 34.46%—36.74%, respectively.
Abundance ratio of crop landscape in QTP was always the lowest from
1980 to 2018, with an annual average PLAND of merely 0.68%. Such dis-
crepancy in crop landscape abundance suggests a great heterogeneity of ag-
ricultural development level among various agricultural districts across
China. Furthermore, the maximum values of LPI and MEAR of cropland
were also recorded in the HHHP, indicating the highest crop dominance
and agricultural development scale in this region. Agricultural develop-
ment degree varied greatly with agricultural district as results of the enor-
mous discrepancies in both LPI and MEAR for crop landscape among
different districts. Similar to forestland and grassland, a district with a
lower LPI and MEAR for cropland usually has a higher NP, such as the
YGP. This phenomenon indicates that the fragmentation and dispersion of
any category of vegetation landscape, ordinarily, are inversely proportional



Fig. 3 (continued).
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to the dominance and scale of that regardless of vegetation cover type. The
nine agricultural districts can be ranked as YGP, NASR,MLYP, LP, SC, NCP,
HHHP, SBSR and QTP, in descending order of LSI for crop landscape. Over
last decades, the largest LSI has always been recorded in YGP, varying from
226.92 to 234.19, which are nearly 3—4 times that in QTP. During last de-
cades, higher annual CONTIG for crop landscape mainly occurred in NASR
and NCP, indicating a stronger spatial connectedness for cropland in these
two districts. Compared with forestland and grassland, the difference of
spatial connectivity for cropland between different agricultural districts
was not noteworthy (Fig. 3c).

3.3. Spatial-temporal variation in dry-wet dynamics among different national-
level agricultural districts

From 1980 to 2018, varying degrees of droughts have occurred in
China's nine national-level agricultural districts. NASR and LP were always
the most prominent two districts among all the agricultural districts across
China in consideration of intensity and frequency in regional average dry-
wet environment deterioration. Moreover, YGP, NCP and QTP have also
8

showed a worsening tendency in regional dry-wet environment for particu-
lar years, such as YGP in 2005 and 2010, NCP in 2000 andQTP in 2015. For
the vast majority of agricultural districts, regional average dry-wet levels
have fluctuated greatly with time from 1980 to 2018. With the exception
of 1990, the nine agricultural districts across China have more or less expe-
rienced varying extents of drought. Overall, there are significant discrepan-
cies in dry-wet circumstances among different agricultural districts, and
dry-wet dynamics across China have prominent spatiotemporal heterogene-
ity and uncertainty (Fig. 4a). To further examine the extreme drought inten-
sities in disparate districts from 1980 to 2018, minimum SPEI for various
agricultural districts were depicted in Fig. 4b. The most profound extreme
drought intensity and frequency have uniformly presented within the
QTP, in where prominent extreme drought conditions were recorded in
1980, 2010 and 2015, followed by the NASR in 1980 and 2005. Intense ex-
treme droughtswithin the HHHP and LP havemainly occurred during 1995
—2005. Among all agricultural districts, the MLYP has the lowest intensity
and frequency of extreme drought. As a whole, occurrence, intensity and
frequency of extreme drought have strong spatiotemporal uncertainty and
heterogeneity across China's nine agricultural districts.
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3.4. Correlations between landscape pattern at holistic landscape level and dry-
wet dynamics

To systematically reveal the potential connections between ecological
landscape variations and dry-wet dynamics during last decades, regression
analysis between landscape variables and SPEI were conducted. Here, var-
ious landscape indicators, involving aspects of landscape patch density,
abundance, shape, spatial distribution, structure characteristics and diver-
sity, were selected for the regressions with SPEI, which is conducive to
comprehend comprehensive influences of ecological landscape changes
on dry-wet situations. Overall, correlation between regional holistic land-
scape pattern and dry-wet circumstance was obvious. There were varying
degrees of positive correlations between average SPEI and PR, PD, LPI,
LSI, COHESION, CONTAG. Inversely, average SPEI were negatively corre-
lated with NP, MEAR, SPILT, SHDI, SIDI (Fig. 5). To further reveal the po-
tential impact of landscape pattern variation on the intensity of extreme
drought, regression analysis between landscape indicators and local mini-
mum SPEI were performed. As a whole, landscape pattern indicators
were observably correlated with minimum SPEI. Concretely, the minimum
SPEI showed a downward trend with increasing NP, PR, MEAR, LSI, FRAC,
SPLIT, SHDI and SIDI, while that exhibited an upward trend with increases
in PD, ED, LPI and COHESION (Fig. 6). These indicate that regional holistic
dry-wet dynamics and extreme drought intensity are related to the transfor-
mation direction of landscape pattern under influence of human activities.
To some extent, landscape patch amount, density, configuration, structure,
aggregation, connectivity and diversity could affect dry-wet balance and
the intensity of extreme drought.

3.5. Influence of landscape pattern variation in different vegetation cover
categories on dry-wet dynamics

To further reveal the potential relationship between landscape pattern of
different vegetation category and dry-wet dynamics, correlation analysis be-
tween landscape variables at class level with SPEI was conducted respec-
tively for forest, grass and crop landscape. Results showed that regional
average SPEI was significantly positively correlated with COHESION of for-
est landscape and negatively correlated with LSI of Grass landscape (p <
0.05), suggesting the connectivity in forest landscape and the structural
complexity in grass landscape would significantly associated with regional
dry-wet dynamics. There was no obvious correlation between dry-wet dy-
namics and crop landscape pattern. It is worth highlighting that landscape
pattern characteristics at vegetation (class) level were significantly related
to the extreme drought intensity, regardless of vegetation category. Specifi-
cally, extreme drought intensity was prominently positively correlated with
MEAR, LPI, PLAND and COHESION in forest and crop landscape, while it
was prominently negatively correlated with MEAR, LPI, PLAND and
COHESION in grass landscape. These results suggest that increased domi-
nance, abundance, scale and spatial connectedness in forest and crop land-
scape may reduce the intensity of extreme drought in a particular district,
but the opposite is true for grass landscape. In addition, there was signifi-
cantly positive correlation between extreme drought intensity and NP only
for forest landscape, and there was significantly negative correlation be-
tween extreme drought intensity and LSI only for crop landscape (Table 2).

3.6. Redundancy analysis (RDA) considered both landscape and vegetation
levels comprehensively

Redundancy analysis (RDA) was further performed for synthetically
comparing dry-wet dynamics with landscape pattern variables in both ho-
listic landscape level and vegetation level, to determine the mutual correla-
tions among various landscape variables, and to quantify their
contributions to variance of dry-wet dynamics and extreme drought inten-
sity. As a whole, the model demonstrated a significant influence of ecolog-
ical landscape pattern on dry-wet dynamics. Canonical axis1 explained
38.53% of result variance and canonical Axis2 explained 25.74% of that.
Red arrows represent ecological landscape indicators in landscape and
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class level respectively, and black arrows represent regional average SPEI
and minimum SPEI. All the landscape variables associated with cropland
and a large proportion of variables associated with forestland were posi-
tively correlated with the canonical axis1, while most landscape variables
associated with grassland were negatively correlated with the canonical
axis1. This implies the heterogeneity in ecological landscape characteristics
between grass landscape and other two categories of vegetation landscape
to some extent. Overall, the influences of landscape pattern variables on ex-
treme drought intensity were more prominent than those on regional aver-
age dry-wet level. Specifically, LPI of holistic landscape, MEAR, LPI and
PLAND of both crop and forest landscapes, were positively correlated
with the minimum SPEI, significantly. COHESION of holistic landscape
was significantly positively correlated with the average SPEI; while
COHESION of forest landscape showed significantly positive correlation
with average and minimum SPEI concurrently. The COHESION in crop
landscape was significantly positively correlated with the minimum SPEI
but not with the average SPEI. Of these, the PLAND of both forest and
crop landscapes showed the strongest relationship with the minimum
SPEI. Moreover, the MEAR, PLAND, COHESION, LPI and LSI of grass land-
scape were negatively correlated with the minimum SPEI significantly,
while only the LSI of grass landscape has significant negative correlation
with the average SPEI. Of these, the PLAND of grass landscape has the
strongest negative correlation with the minimum SPEI, followed by
MEAR and LPI. In addition, the LSI, MEAR and NP at holistic landscape
level were also negatively correlated with the minimum SPEI. Overall, re-
sults of RDA, which considered comprehensive effects of different land-
scape scales, are consistent with the results of regression analysis at
landscape level and the results of correlation analysis at class level, further
verifying the relationship between ecological landscape pattern and dry-
wet circumstance (Fig. 7).

4. Discussion

4.1. Landscape pattern for the nine agricultural districts in China

Landscape pattern is an integrated result of various human activities
and ecological processes (Dadashpoor et al., 2019; Deng et al., 2009; Liu
et al., 2021a, 2021b). It reflects the permutation and combination patterns
of ecological landscape elementswith various structures and configurations
at different spatial scales (Wu andHobbs, 2002). Determining for landscape
pattern is the basis of understanding ecological landscape function and re-
gional development dynamics (Liu et al., 2021a, 2021b; Sun et al., 2022;
Wu, 2019). From 1980 to 2018, landscape patterns in different national-
level agricultural districts across China had transformed to varying extents.
The discrepancy in evolutions of landscape variables among different dis-
tricts is mainly caused by unsynchronized developments in human society
and ecosystem among different districts. Such heterogeneity is highly re-
lated to various policy orientations and inconsistent regional development
layouts.

Over last decades, the abundance, dominance and scale of forest land-
scape in SC, YGP, MLYP and NCP were prominently higher than those in
other districts, demonstrating a higher forest coverage and a superior forest
ecological function service level in these four districts. Three of the four ag-
ricultural districts with high forest coverage are mainly concentrated in rel-
atively humid areas of southern China, while the dominance and abundance
of forest landscape are generally lower in the arid and semi-arid areas of
northern China. Mountainous and hilly areas are widely distributed in
southern China, with humid climate and abundant precipitation, resulting
in a greater potential for forestry production and management in these dis-
tricts (Gao et al., 2021; Xie et al., 2013; Yang et al., 2021). High-quality and
extensive forest resources are essential for soil and water conservation in
manymountainous and stormy basins in southern China, and can greatly re-
duce risk of siltation in rivers and reservoirs downstream of basins due to
frequentfloods (Chen et al., 2021; Yao et al., 2019). Synthesizing the factors
of natural environment attribute and regional development strategy, local
governments in southern China have generally attached great importance



Fig. 4. Dry-wet dynamics among different national-level agricultural districts.
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to the protection and construction of forest landscape. Such advantageous
forest coverage has also contributed to the relatively higher level in ecolog-
ical civilization construction in these regions. In addition, the abundance
and dominance in forest landscape within the Northeast China Plain are
more prominent amongmultiple regions of northern China, which is highly
related to its physiographic characteristics and natural resource composi-
tion. Large-scale and widespread forestlands clustered in the Greater
Khingan, Lesser Khingan and Changbai mountains within the NCP have
been regarded as important natural forest areas in China (Tang et al.,
2011; Yu et al., 2017; Zhang et al., 2021; Zhu and Lo, 2022). In these
areas, natural forest resources and species are extremely abundant, contrib-
uting a non-negligible percentage of China's natural forest resources. It is
worth highlighting that the vegetation landscape abundance and domi-
nance examined in this study were based on landscape relative proportion
at class level, rather than conventional absolute area analysis. Hence, the re-
sults of this research are more conducive to compare the vegetation land-
scape coverage and abundance between different regions as results of the
normalized areas for various districts. It should be noted that the QTP has
the highest forest landscape connectedness in spite of the lower forest abun-
dance and dominance, which may be due to the strong spatial aggregation
and reasonable landscape configuration of finite forest resources in this dis-
trict. Structural complexity of forest landscape varied with agricultural dis-
trict, which may be attribute to the disparate arrangement and combination
of forest landscape among different districts as results of discrepancies in op-
eration and management, terrain and slope characteristics, especially for
natural forest areas. Among all agricultural districts, QTP has the highest
grass landscape abundance and dominance, which is highly associated
with its unique climatic characteristics and altitude. Cold climatic condition
in this district has produced the largest alpinemeadow vegetation areawith
the most abundant grass species and the widest grass resource distribution
across China.

The most prominent abundance and dominance for crop landscape
were presented in the HHHP as results of its absolute highest PLAND, LPI
and MEAR in cropland, compared to other districts. The HHHP has always
been themostmomentous national grain production base and a representa-
tive agricultural area dominated by dry-farming, which produced approxi-
mately 50%—60% of China's wheat (Xiao and Tao, 2014; Zhang et al.,
2013). Over last decades, the vast majority of primordial native vegetation
in HHHP has been replaced by crops, thus crop landscape has become the
dominating vegetation landscape type in this district. Although the cover-
age of crop landscape in HHHP was considerable, its morphological com-
plexity and irregularity have been unspectacular, which should be
attributed to the high-standard farmland construction, mature field mecha-
nization operation, and intensive arable land management in HHHP. Al-
though the abundance and dominance of crop landscape in YGP was
relatively unremarkable, the number of autocephalous farmland patches
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has been identified as the highest among the nine districts, indicating the
agricultural production pattern in this region is characterized by highly spa-
tial decentralization. Such highly decentralized farmland management pat-
tern may be related to the physical geographical characteristics of this
district. Similarly, the highest spatial morphological complexity in crop
landscape has always appeared in YGP, implying a relatively lower level
in arable land planning and agricultural land management in this region.
The reasonmay be that most of arable land resources in this region are gen-
erally operated by scattered individual farmers and minifundios, while
there are few large-scale mechanized agricultural operation led by govern-
ment. As a consequence, finite cultivated lands in YGP exhibited random,
discrete and irregular landscape characteristics. Overall, there are signifi-
cant discrepancies in landscape pattern between different vegetation
types, and in holistic landscape and vegetation landscape characteristics be-
tween various districts.

It is worth emphasizing that variation characteristics in holistic land-
scape pattern and vegetation landscape pattern (class level) were disparate,
suggesting the combination and interaction effects among various land-
scape elements are dependent on spatial scale. Spatially, different types of
patch clusters generally present diverse distribution and combination
types, such as random distribution, uniform distribution and aggregative
distribution. Scale dependence of landscape pattern is mainly caused
by discrepancies in landscape boundary transition zones, patch diver-
sity, and combination mode of patch clusters. Accordingly, spatial
scale effect should be considered primarily in landscape pattern optimiza-
tion and configuration, as landscape structure would change with spatial
scale, leading to a series of discrepancies and indeterminacies in ecosystem
functions.

4.2. Potential impacts of landscape pattern on dry-wet circumstances

Droughts caused by extreme climate have seriously threatened the sus-
tainable development in agriculture, social economy and ecological envi-
ronment around the world, especially in arid and semi-arid regions
(Dobler-Morales and Bocco, 2021; Mishra et al., 2021; Vicente-Serrano
et al., 2020; Zhang et al., 2019). Response of extreme climate to land
cover variation has attracted worldwide attention (Júnior et al., 2015;
Peng et al., 2019). Transformation in land cover has a potential to trigger
the change of various climatic factors, such as temperature, humidity and
precipitation (Mahmood et al., 2014). Such effect occurs through changing
a series of physical properties in land surface, and has significant spatial
scale dependence (Betts et al., 2007). Considering that composition, distri-
bution, morphology and configuration of land covers conjointly constitute
landscape pattern, transformation in landscape pattern, hence, would inev-
itably affect dry-wet dynamics. As a whole, underlying correlations be-
tween landscape pattern and dry-wet dynamics were examined. Such



Fig. 5. Regression relationships between landscape pattern dynamics at holistic landscape level and mean dry-wet circumstances.
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effect can be explained from following aspects: (1) Variation in landscape
pattern will dramatically change a series of hydrological processes
(Yohannes et al., 2021) such as vegetation evapotranspiration (Zhao
et al., 2019) and surface runoff (Bin et al., 2018), as well as near-earth me-
teorological factors such as surface albedo, temperature and humidity (Gao
et al., 2022; Shukla and Jain, 2021; Soydan, 2020), accordingly affecting
dry-wet circumstances; (2) landscape pattern can regulate regional dry-
wet balance through affecting geophysical characteristics (Ahmadi
Mirghaed and Souri, 2022); and (3) transformation in landscape pattern
will lead to variations in ecosystem function and service (Xia et al.,
2021), thus impacting transmission and exchange of matter, energy and
11
information, which may affect regional water transport and circulation
and thus the dry-wet dynamics.

Results of redundancy analysis, regression analysis and correlation anal-
ysis have unanimously demonstrated that the potential contribution of
landscape pattern to variability of extreme drought intensity was signifi-
cantly higher than holistic dry-wet circumstance. Regional holistic dry-
wet condition at national-level agricultural district scale would be
improved with increases in dominant patch abundance and landscape
connectedness. On the contrary, it will be deteriorated with increasing
landscape fragmentation and diversity. It has been revealed that landscape
pattern has the ecological potential to regulate local or regional climatic



Fig. 6. Regression relationships between landscape pattern dynamics at holistic landscape level and extreme drought intensities.
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circumstances through influencing surface albedo, land surface roughness
and vegetation evapotranspiration (Peng et al., 2019; Perugini et al.,
2017; Tayyebi et al., 2014). Nevertheless, specific mechanisms of influ-
ences of various elements in landscape pattern on dry-wet dynamics remain
unclear. Increased diversity would contribute to the enhancement in func-
tion and service of ecosystem (Queiroz et al., 2015; Verhagen et al.,
2016). In such a context, regional ecological diversity and corresponding
water consumption tend to increase. Although a higher diversity in holistic
landscape can be understood as a diversified and integrated progress of re-
gional ecosystem, it also implies water consumption intensity caused by
12
multiple industries may be intensified, thus aggravating drought. In this
study, enhanced landscape connectivity showed a potential to improve re-
gional dry-wet environment. The reason for this phenomenon may be
that appropriate connectedness can promote the transfer and exchange of
matter, energy and information between various ecological units
(Oliveira-Junior et al., 2020; Zhao et al., 2019), thus enhancing ecosystem
stability, and improving the capacity of circumvention and resistance
against extreme disasters. Inversely, some landscapes with poor connectiv-
ity generally have higher surface albedo owing to large areas of bare land,
such as gobi desert and sandy land. In where, intensive and continuous



Table 2
Correlation matrixes between landscape pattern indicators and SPEI for different vegetation cover categories.

Vegetation categories Indicators NP MEAR LPI LSI COHESION PLAND Ave. SPEI Min. SPEI

Forest landscape NP 1
MEAR −0.605⁎⁎⁎ 1
LPI −0.571⁎⁎⁎ 0.980⁎⁎⁎ 1
LSI 0.497⁎⁎⁎ 0.136 0.257⁎ 1
COHESION −0.207 0.775⁎⁎⁎ 0.761⁎⁎⁎ 0.331⁎⁎ 1
PLAND −0.649⁎⁎⁎ 0.907⁎⁎⁎ 0.918⁎⁎⁎ 0.129 0.684⁎⁎⁎ 1
Ave. SPEI −0.210 0.151 0.129 −0.066 0.236⁎ 0.112 1
Min. SPEI −0.361⁎⁎ 0.268⁎ 0.265⁎ −0.121 0.241⁎ 0.348⁎⁎ 0.601⁎⁎⁎ 1

Grass landscape NP 1
MEAR 0.097 1
LPI −0.141 0.925⁎⁎⁎ 1
LSI 0.806⁎⁎⁎ 0.258⁎ 0.060 1
COHESION 0.139 0.527⁎⁎⁎ 0.516⁎⁎⁎ 0.576⁎⁎⁎ 1
PLAND 0.076 0.898⁎⁎⁎ 0.886⁎⁎⁎ 0.441⁎⁎ 0.751⁎⁎⁎ 1
Ave. SPEI −0.149 0.027 0.113 −0.291⁎ −0.190 −0.087 1
Min. SPEI −0.221 −0.482⁎⁎⁎ −0.425⁎⁎ −0.339⁎⁎ −0.334⁎⁎ −0.513⁎⁎⁎ 0.601⁎⁎⁎ 1

Crop landscape NP 1
MEAR −0.393⁎⁎ 1
LPI −0.274⁎ 0.895⁎⁎⁎ 1
LSI 0.918⁎⁎⁎ −0.170 −0.148 1
COHESION 0.055 0.570⁎⁎⁎ 0.610⁎⁎⁎ 0.314⁎⁎ 1
PLAND −0.098 0.796⁎⁎⁎ 0.869⁎⁎⁎ 0.077 0.726⁎⁎⁎ 1
Ave. SPEI −0.077 0.052 0.146 −0.213 −0.117 0.029 1
Min. SPEI 0.138 0.272⁎ 0.359⁎⁎ 0.164 0.332⁎⁎ 0.476⁎⁎⁎ 0.601⁎⁎⁎ 1

⁎ Significant at p < 0.05.
⁎⁎ Significant at p < 0.01.
⁎⁎⁎ Significant at p < 0.0001.
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surface heat is usually more serious than other areas. Negative relationship
between average wet-dry condition and landscape separation has further
demonstrated this deduction. Landscape patches with different particle
sizes may produce various ecological effects. For instance, a complete
100-square-meter green patch can contribute more cooling effects to land
surface than 10 scattered 10-square-meter green patches (Li et al., 2017).
Furthermore, the area of core zone for green landscape patch is the key el-
ement to improve local wetness. However, only the patch with a consider-
able large acreage has a core zone (Peng et al., 2019). Combining above two
aspects, it seems not difficult to understand why an increase in dominant
patch abundance tends to reduce regional drought risk. In addition, in-
creased landscape edge density also has the potential to mitigate drought
intensity. Change in landscape boundary may propose some impacts on
local wet-dry states, as changing climates had been recorded along and
near the boundaries of landscape transition and crossover (Mahmood
Fig. 7. Ordination of redundancy analysis (RDA) with dry-wet dynamics and
landscape pattern variables. (Note: L represents synthesis landscape; F represents
forestland; G represents grassland; C represents cropland).
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et al., 2014). Increasing edge density may enhance the boundary transition
zone between different landscape types, thus reducing boundary resistance,
accordingly reducing the probability of local climate abrupt change.

At class level, the impacts and contributions of ecological landscape pat-
tern of different vegetation types on regional dry-wet circumstances were
quite disparate. Concretely, promotions in abundance, dominance and
scale of forest and crop landscapes tended to reduce the intensity of extreme
drought. Interestingly, the opposite was true for grass landscape. Such dis-
crepancy should be related to the difference in photosynthesis and surface
energy exchange process caused by the difference in natural properties
and biological characteristics of different types of vegetation. For example,
compared to grass, tree and crop are generally characterized by a higher
height and leaf area index, which are more conducive to maintaining a
humid climate environment in near-surface. Many studies have demon-
strated that higher vegetation indices have the potential to reduce regional
drought risk and to improve regional dry-wet condition. For instance,many
positive relationships between vegetation indices (such as the normalized
difference vegetation index (NDVI) and net primary production (NPP))
and a series of drought indices (such as the palmer drought severity index
(PDSI), standard precipitation index (SPI) and standard precipitation
evapotranspiration index (SPEI)) have been recorded in previous re-
searches (Ji and Peters, 2003; Vicente-Serrano et al., 2013; Xu et al.,
2012; Zhang and Zhang, 2019). Interactionmechanism between vegetation
dynamics and wet-dry circumstances is complex, associating with multiple
eco-physiological and environmental factors. Apart from influence of vege-
tation indices, species with deeper roots, such as tree and crop instead of
grass, tend to be less vulnerable to the negative impacts of water deficit
(Hanson and Weltzin, 2000; Zhang and Zhang, 2019). Thus, they usually
have a higher potential in maintaining greater leaf coverage and sustained
transpiration, thereby reducing land surface temperature and maintaining
surfacemoisture, which is conducive to reduce the risk of extreme drought.

Previous research has revealed remarkable negative correlations be-
tween landscape metrics of forestland and drought intensity, but there
was no obvious relationship between forest landscape variables and flood
intensity (Peng et al., 2019), which is similar to our results. Our study
found that the increases in forest landscape abundance, dominance, scale
and connectivity have a possibility to significantly reduce the intensity of
extreme drought, while only forest connectivity is significantly correlated
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with regional mean dry-wet level. Many studies have illustrated that the in-
tensity of evapotranspiration, photosynthesis and respiration of forest is
usually stronger than that of other land cover categories owing to its consid-
erable leaf coverage and greenness, which is more conducive to promoting
regional hydrologic cycle and improving surfacemicroclimate environment
and soil water condition (Fan et al., 2015; Júnior et al., 2015; Peng et al.,
2019; Serpa et al., 2015). Moreover, increased abundance of forest land-
scape may increase precipitation probability to some extent (Perugini
et al., 2017), thus reducing the risk of extreme drought. A previous study
has implied that the increase in core area of woodland might elevate the
possibility of flood within a particular region (Peng et al., 2019). This also
means that increased abundance and dominance of forest landscape can
offer an opportunity to greatly reduce the risk of drought. Indeed, only a siz-
able patch has a core area, which makes it not hard to understand why the
conspicuous correlation between LPI of forest landscape and extreme
drought intensitywas present. It is worth noting that enhancive spatial con-
nectedness in forest landscape might significantly improve regional aver-
age dry-wet environment. The reason for this phenomenon may be that
enhanced connectivity tends to facilitate the flow and circulate of water
vapor withinwoodlands, improving vegetation photosynthetic and transpi-
ration efficiency, reducing heat accumulation, thus improving climate con-
dition and dry-wet circumstance in land surface.

Similar to forestland, the positive effects of increasing abundance and
dominance in crop landscape on dry-wet environment are related to in-
creased scale of transpiration and surface climate regulation effect. On the
other hand, improved crop landscape connectivity may significantly pro-
mote water and heat circulation, and thus reducing heat cumulative effect
in farmland. Compared with forestland and grassland, determining appro-
priate crop landscape to reduce drought risk is more complex because it
should consider the balance between agricultural comprehensive economic
benefits and ecological landscape effects involving varies cropping struc-
tures and crop categories.

In this study, the PLAND of grassland has contributed the most to ex-
treme drought intensity, followed byMEAR and LPI. Comparedwith forest-
land and cropland, grassland has a lower efficacy to reduce surface
temperature and maintain moisture, as results of its relatively weaker tran-
spiration and lower evapotranspiration (Júnior et al., 2015; Perugini et al.,
2017; Tayyebi et al., 2014). Geographically, large-scale open meadow in
China is often distributed in somedry plateaus with little precipitation. Spa-
cious grassland is often associated with strong xerothermic wind, which is
easy to form atmospheric drought. The low height for grass results in a
large total effective area receiving solar radiation and a high surface albedo.
Finitemoisture produced by grass transpiration is easily carried away by xe-
rothermic wind after volatilizing into atmosphere. As a consequence, its ca-
pacity to retain water and humidity is significantly lower than forestland
and cropland. Furthermore, increased spatial connectedness and structural
complexity of grass landscape tend to aggravate drought risk and intensity.
Enhancement in grassland connectivity would promote the circulation of
water vapor and energy, which can accelerate the rate of water loss from
grass transpiration driven by xerothermic wind at low altitude. Therefore,
the arrangement and adjustment of landscape connectivity with the pur-
pose of regulating dry-wet environment should be based on specific vegeta-
tion category, and various environmental factors such as vegetation
attributes and physical geographical discrepancies should be took into ac-
count synthetically. Moreover, a patch with complex structure indicates a
higher irregularity in surface morphology, which would result in a compli-
cated surface albedo and radiation condition, and thus leading to an aggra-
vating drought. Previous research has also suggested that degraded
grassland with complicated structure and edge density is usually accompa-
nied by a higher albedo, which is positively related with drought events
(Peng et al., 2019). This conforms to present results.

4.3. Suggestions of suitable landscape optimization strategy

This research explored the correlation between ecological landscape
pattern and dry-wet dynamics on a national scale for the first time. It offers
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a potential opportunity to regulate regional dry-wet circumstance by opti-
mizing landscape configuration and construction. The results can provide
a theoretical guidance and scientific basis for rational project and optimiza-
tion of ecological landscape structure for the perspective of optimizing dry-
wet condition and reducing drought risk. Some concrete suggestions can be
proposed. In future landscape planning and landmanagement practice, it is
necessary to integrate isolated and scattered patches as much as possible,
reducing landscape fragmentation and enhancing integrality, concentricity
and continuity. For instance, reducing the amount of scattered unutilized
lands, combining some fragmented and irregular small lands with their sur-
rounding large-scale land covers, and promoting land intensive utilization
and water and soil conservation projects are conducive to alleviate drought
risk. Moreover, enhancing connectivity and reducing separation between
patches are also conducive to reducing drought risk. For example, in
many arid regions, unused bare lands can be converted into forestlands to
enhance the connectivity of vegetation landscape, thus improving ecosys-
tem function and stability, and ameliorating dry-wet environment. In the
process of ecological landscape layout and optimization at class level, dif-
ferent categories of vegetation landscape should be optimized in different
paths. For example, the concentrated abundance, dominance and spatial
connectedness for forest landscape should be improved as much as possible
under the premise of ensuring the coordinated development of regional
multi-industries. On the premise of ensuring the basic ecological function
and demand of grassland, the abundance proportion of grass landscape in
the whole vegetation landscape should be appropriately weaken. Com-
pared with forest and grass landscapes, deliberation of suitable crop land-
scape is more complex as it should dialectically consider the balance
between agricultural integrated economic benefits and ecological land-
scape effects. In view of this, it is essential to explore the ecological land-
scape effects and economic benefits of different planting structures of
various crops and their combinations in future.

This research has explored the potential relationship between terrestrial
landscape pattern and wet-dry environment on a national scale for the first
time. Nevertheless, there are still some scale limitations and potentially
unexplained variables. Some environmental parameters (e.g. soil and eleva-
tion) are spatially heterogeneous and uncontrollable, whichmay contribute
to some errors and uncertainty for present results, although they are diffi-
cult to avoid in large-scale regional studies. Given this, some long-term
and small scale of factors-controlledfield experiments need to be conducted
to further examine and improve present results in future.

5. Conclusion

In this study, China was selected as the study region to examine the po-
tential influence of ecological landscape pattern on dry-wet dynamic at
national-level agricultural district scale.

From 1980 to 2018, landscape pattern among nine agricultural districts
across China had transformed to varying extents and showed noteworthy
spatiotemporal heterogeneity, which is mainly caused by unsynchronized
progress in human activities and ecological environment for different
districts. The abundance and dominance for forest landscape in SC, YGP,
MLYP and NCP were higher than those in other districts. The QTP has the
highest forest connectedness in spite of its lower abundance and domi-
nance. Among all agricultural districts, QTP has the highest grass landscape
abundance and dominance, which is associated with its climate and
altitude. The most prominent crop landscape abundance and dominance
were recorded in the HHHP as results of its absolute highest PLAND, LPI
and MEAR in croplands. Although crop landscape abundance and
dominance in YGP was unobtrusive, both patch number and structural
complexity have been identified as the highest among nine districts,
suggesting agricultural development pattern in YGP is characterized by
highly decentralization. Overall, there are significant discrepancies in
landscape indicators between various vegetation categories. The combina-
tion and interaction effects of various landscape variables are dependent on
spatial scale, which should be considered in landscape configuration and
optimization.
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At holistic landscape level, dry-wet circumstance could be improved
with the enhancement of the largest patch percentage, patch density and
spatial connectivity, while worsen with the increase of landscape fragmen-
tation and separated degree. Furthermore, increasing patch fragmentation
and structure complexity may aggravate the intensity of extreme drought,
while drought intensity may be alleviated with the increases of the largest
patch percentage and edge density.

At class level, the contributions of vegetation landscape variables to dry-
wet dynamics varied with vegetation category. Increases in abundance and
dominance of forest and crop landscapes would reduce drought intensity
and risk, while it was opposite for grass landscape. Improved forest con-
nectedness would prominently optimize regional holistic dry-wet environ-
ment and reduce the risk of extreme drought. Among all landscape
indicators, the PLAND of forest and crop landscapes contributed the most
prominent effect to alleviate drought intensity. On the contrary, the
PLAND of grassland showed the greatest contribution on exacerbating
drought intensity. Moreover, increased spatial connectedness and morpho-
logical complexity of grass landscape tend to aggravate drought risk. Com-
pared with forestland and grassland, determining suitable crop landscape
configuration to reduce drought risk is more complex because the balance
between agricultural integrated economic benefits and ecological land-
scape effects should be taken into account.
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