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A B S T R A C T   

Carbon (C) and nitrogen (N) cycles of terrestrial ecosystems play key roles in global climate change and 
ecosystem sustainability. In recent decades, climate change has threatened the nutrient balance of dryland 
ecosystems. However, its impact on soil organic carbon (SOC) and soil total nitrogen (STN) in drylands of China 
are still unclear. In this study, the structural equation model (SEM) was used to explain the relationship between 
environmental variables used by the best model and SOC or STN. Then Adaptive Boosting Regressor (AdaBoost), 
Gradient Boosting Regression (GBRT), Extreme gradient boosting Regression (XGBoost) and Random Forest 
Regression (RF) were used to establish the prediction model of SOC and STN based on soil samples along with 
environmental variables. The performance of these models was assessed based on a 10-fold cross-validation 
method using three statistical indicators. Finally, we predicted the SOC and STN of soil samples from 2000 to 
2019 based on the best model. Overall, the RF model performed better at predicting SOC and STN in drylands 
than the other three prediction models (AdaBoost, GBRT, XGBoost). Climate factors were the main factors 
affecting SOC and STN in the study area. In the Alashan, a dryland in northern China, the precipitation in the 
growing season increased from 2000 to 2019, at a rate of 12.9 mm/decade. During the same period, the annual 
sunshine duration significantly decreased by 66 h/decade. Along with interannual hydrothermal variability, SOC 
showed a fluctuating upward trend at a rate of 0.04 g/kg/decade, while STN exhibited a fluctuating downward 
trend at 0.003 g/kg/decade from 2000 to 2019. Due to the effects of climate change, dryland were considered as 
potential sites for carbon sequestration. However, due to the annual hydrothermal variance causing dynamic 
annual changes, it was deemed unstable. Moreover, it would cause STN loss, which might reduce soil fertility. 
More attention should be paid to STN monitoring in dryland in the future.   

1. Introduction 

Carbon (C) and nitrogen (N) cycles of terrestrial ecosystems play key 
roles in global climate change and ecosystem sustainability (Zer-
aatpisheh et al., 2019). Due to the impact of climate change, most re-
gions in the world are experiencing increasingly severe drought, which 
is mainly characterised by a decrease in regional precipitation and an 
increase in evapotranspiration (Liu and Chen, 2021). However, these 
changes may decrease plant photosynthesis and premature senescence 
and reduce the input of soil C and N (Holz et al., 2018). This will also 
change the composition of soil microorganisms and enzyme activities, 
thus affecting the balance of soil C and N (Ren et al., 2017), accelerating 

soil C loss (Mikha et al., 2005), and inhibiting soil N mineralisation 
(Hartmann et al., 2013). Due to climate change, predicting spatial and 
temporal characteristics of SOC and STN is crucial for maintaining food 
security and improving environmental quality (Gholizadeh et al., 2018). 
Generally, traditional investigation methods for SOC and STN mainly 
rely on ground investigation and laboratory analysis (Forkuor et al., 
2017), which is resource-intensive. Therefore, this study aimed to find 
an efficient, fast, and accurate method to predict the spatial variation of 
SOC and STN in unvisited locations or areas with rare fixed-point soil 
data. 

The soil-landscape model, which assumed that soil development is 
determined by climate, biology, topography, parent material, and time, 
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was first proposed by V.V. Dokuchaev and then formulised by Jenny 
(Guo et al., 2016; Leiningen, 1931). Through soil-landscape modeling, 
SOC and STN can be well predicted by environmental variables (Lei-
ningen, 1931). At present, the development of remote sensing and 
computer technology has created more means to obtain environmental 
variables (terrain parameters: DEM; vegetation or soil information: 
Landsat, MODIS, SPOT etc.; Meteorological: Climatic Research Unite, 
European Climate Assessment&Dataset, WorldClim, etc.) (Kalambu-
kattu et al., 2018), and the accuracy of new prediction models (Random 
Forest (RS), Support Vector Machines (SVM), Boosted Regression Trees 
(BoRT)) is increasing (Khanal et al., 2018; Zeraatpisheh et al., 2019; 
Zhou et al., 2020). Indeed, the soil-landscape model has good prediction 
accuracy for areas with strong spatial heterogeneity of soil types or soil 
attributes, such as mountain areas (Zhu et al., 2010), and poor in the 
low-lying areas such as plains and farmlands with weak heterogeneity of 
altitude, slope, and vegetation (Iqbal et al., 2005). At present, 
soil-landscape models which are suitable for high biomass areas such as 
forests, grasslands, and farmland have been established (Shahhosseini 
et al., 2019; Tajik et al., 2020). However, a more accurate prediction 
model for SOC or STN based on soil-landscape models is lacking in 
dryland areas. In addition, previous scholars used the soil-landscape 
models to relevel the spatial distribution characteristics of soil proper-
ties in the study area (Zeraatpisheh et al., 2019; Khanal et al., 2018) but 
failed to reveal the relationship between soil properties and environ-
mental variables, and the impact of changes in environmental variables 
on soil properties, especially in dryland. 

Drylands account for about 41% of global terrestrial land surfaces 
and are home to 2.5 billion people (Grace et al., 2006). Due to the low 
soil fertility of dryland, these areas are exceedingly sensitive to degra-
dation caused by climate change (Li et al., 2016). In the last 100 years, 
the greatest warming occurred in drylands (Huang et al., 2017). The 
region of northwest and Inner Mongolia is the main dryland in China; 
characterised by a dry climate, minimal rainfall, and a fragile ecological 
environment (Wieder et al., 2015). Due to the influence of climate 
change in the past decades, dryland ecosystems in Northwest China are 
in disequilibrium (Reynolds et al., 2007). The temperature in the 

dryland of northwest China shows a significant upward trend, and the 
precipitation has increased with a trend of 3.2mm/decade (Li et al., 
2012). However, the change of SOC and STN in soil are sensitive to 
climate change (Fang et al., 2019). Climate change can affect carbon 
storage by affecting the environmental conditions of carbon minerali-
sation (Bontti et al., 2009) and plant growth (Bai et al., 2010). C and N 
cycles in terrestrial ecosystems are two closely related processes. The 
storage of C in ecosystems is affected by the availability of N (Luo et al., 
2009). In recent decades, climate change has threatened the balance of 
dryland ecosystems, but the impact of climate change on SOC and STN in 
arid areas of China is still unclear. 

Therefore, the purposes of this study are 1) to filter the environ-
mental variables affecting SOC and STN in dryland areas; 2) to establish 
an accurate prediction model of SOC and STN in arid areas of China with 
the data of environmental variables (climate, topography, soil, and 
vegetation), according to the idea of soil-landscape model; 3) to reveal 
the relationship between environmental variables and SOC or STN; and 
4) to enhance the understanding of the characteristic variation of SOC 
and STN in the context of climate change in dryland. 

2. Materials and methods 

2.1. Study area and soil data 

The study area is located in the eastern wing of the desert in central 
Asia and belongs to the Alashan League of Inner Mongolia Autonomous 
Region, China (Fig. 1). This area is dominated by deserts and desertifi-
cation land, accounting for approximately 29% of the total area. 
Affected by an extremely arid climate, vegetation in this area shows a 
sparse distribution (Yuan et al., 2018). This area is characterised by low 
precipitation, higher evaporation, strong winds, extreme temperature 
differences between day and night, hot summers, and cold winters. The 
topography of Alashan shows that the south is higher than the north, 
with widely distributed deserts. Alashan has a fragile ecological envi-
ronment and is one of the birthplaces of sandstorms in China. 

In September 2019, 70 soil samples were collected from the Alashan 

Fig. 1. Spatial distribution of sampling points and weather stations. Red dots are sampling points, and blue dots are weather stations. The 200 weather stations in the 
traction map in the lower right corner were used to interpolate the regional meteorological data by ANUSPLIN interpolation. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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(Fig. 1), including topsoil samples (0–5 cm). In order to reduce the 
impact of human activities, samples were mainly located in the area 
covered by the natural vegetation that is less affected by human activ-
ities such as grazing and fertilisation. The Tengger Desert, Badain Jaran 
Desert, and Ulanbuh Desert were distributed in a triangular shape to 
make up the study area. Most of this area is covered with sand, with 
sparse vegetation growing on the edge of the desert; thus, sampling 
points are distributed in the desert border area. In addition, the sampling 
did not have great coverage because some areas were inaccessible. The 
amount of SOC was determined by means of wet oxidation with di-
chromate (Walkley and Black, 1934). STN was measured by a Kjeltec 
System 2300 (Foss Inc., Hillerød, Denmark). 

2.2. Environmental variables 

Forty-eight environmental variable data sets were selected to predict 
the content of SOC and STN. Nine topographic attributes were obtained 
from a Digital Elevation Model (DEM) (www.gscloud.cn/): Elevation, 
Slope, Aspect, Roughness, Relief Amplitude, Slope of Aspect, Stream 
Power Index, Sediment Transport Index, and Topographic Wetness 
Index. The spatial distribution map of meteorological elements in the 
study area was obtained by ANUSPLIN interpolation based on 200 
weather stations in and around the study area (Fig. 1). Climate data from 
2000 to 2019 were obtained, including annual and seasonal mean 
temperatures, annual and seasonal accumulated temperatures, annual 
and seasonal mean surface temperatures, annual and seasonal cumula-
tive precipitation, cumulative precipitation in the growing season (June 
to October), annual and seasonal mean relative humidity, and annual 
and seasonal sunshine duration. Meteorological station data were ob-
tained through the Data Center of Resources and Environmental Sci-
ences, Chinese Academy of Sciences. The normalised difference 
vegetation index (NDVI) and enhanced vegetation index (EVI) from 
2000 to 2019 were derived from the Terra Moderate Resolution Imaging 
Spectro-radiometer (MODIS) 16-day composite products, with a spatial 
resolution of 250m. The data were acquired from the NASA ftp website 
(ftp://e4ft101u.ecs.nasa.gov/MOLT/). 

2.3. Structural equation model 

Structural equation model (SEM) was developed from the concept of 
path analysis proposed by Sewll Wright in the 1920s, and is a statistical 
method proposed by Karl. Joreskog in the 1970s to analyse the rela-
tionship between variables based on the covariance matrix (Ullman, 
2001; Wright, 1934). Its most prominent characteristic is that it applies 
the concept of a latent variable to the model and integrates path anal-
ysis, confirmatory factor analysis, and general statistical test methods to 
analyse the causal relationship between variables (Tankak, 1990). The 
SEM also considers error factors, makes up for the shortcomings of factor 
analysis, is not limited by the hypothetical conditions of path analysis, 
and allows certain errors between independent variables and dependent 
variables (Grace and Keeley, 2006). 

2.4. Machine learning algorithm 

2.4.1. Adaptive Boosting Regressor 
Adaptive Boost (AdaBoost) is an iterative algorithm in ensemble 

learning. Its core purpose is to train different classifiers (weak classi-
fiers) for the same training set and then assemble these weak classifiers 
into a stronger final regression (strong regression) (Avnimelech and 
Intrator, 1999). The weight of each sample is determined according to 
the classification correctness of each sample in each training set and the 
last overall classification (Friedman, 2001). The new data with modified 
weights are sent to the lower-level regressions for training, and finally, 
the regressions obtained every time are coalesced into the final decision 
regression (Seo et al., 2017). 

2.4.2. Gradient boosting regression 
Gradient boosting can also be called a multi-layered decision tree. 

The algorithm was proposed by Friedman at the beginning of the 20th 
century and has a strong nonlinear fitting ability (Natekin and Knoll, 
2013). The GBRT is composed of multiple decision trees; the final result 
is only necessary to add the output results of all decision trees. To pre-
vent over-fitting, a boosting process is added (Albataineh, 2019). The 
original Boost algorithm will give each sample the same weight and then 
start training the model. If the model is heading in the right direction, it 
will reduce its weight; while if it is heading in the wrong direction, the 
weight will increase. After n iterations, the incorrect points will have the 
highest weights, and we get n simple classifiers, which can be combined 
to get the final model (Guo et al., 2016). 

2.4.3. Extreme gradient boosting regression 
Extreme gradient boosting regression (XGBoost) is a tree structure, 

which is an improvement of the gradient boosting regression algorithm 
optimised by the additive learning model (Friedman, 2001). Continuous 
iteration generates a new tree, and subtrees are added to make the model 
approach the sample distribution continuously. Finally, several tree 
models with low classification accuracy are combined into one model 
with high accuracy. Regularisation terms are added to XGboost loss 
function to control the complexity, reduce variance, and avoid 
over-fitting. The loss function optimisation of GBDT is the first deriva-
tive, XGBoost is expanded by the second Taylor expansion, allowing the 
first and second derivatives to be used simultaneously (Chen and 
Guestrin, 2016). 

2.4.4. Random Forest Regression 
Random forest (RF) is a classified regression model which contains 

multiple decision trees in which the output category is determined by 
the number of categories output by individual trees. RF contains many 
decision trees with high prediction accuracy, weak correlation or even 
irrelevance, forming a combination prediction model. After integration, 
many prediction models will jointly participate in predicting the values 
of the new observation output variables to obtain higher accuracy 
(Breiman, 2001). The RF model has the advantages of improving pre-
diction accuracy, reducing overfitting, is insensitive to missing data and 
multivariate collinearity, and has the ability to deal with a large number 
of quantitative and qualitative data (Scornet et al., 2015). 

2.5. Accuracy evaluation 

We used four machine learning algorithms to predict SOC and STN 
and used 10-fold cross-validation with 100 replications to evaluate the 
predictive performance (Mahmoudzadeh et al., 2020). The whole 
dataset was randomly split into calibration (70%) and validation (30%) 
sets to model. In order to compare the model performance of the four 
prediction models above, three validation criteria were selected, 
including the root mean square error (RMSE), the mean absolute error 
(MAE), and the coefficient of determination (R2). These measures of 
model performance are described as follows (Wang et al., 2018b): 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√
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MAE =
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|Pi − oi| (2)  

R2 =

∑n
i=1(Pi − Oi)

2
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i=1(Oi − Oi)

2 (3)  

where Pi is the predicted value, Oi is the true value, and n is the number 
of validated observations. 
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3. Results 

3.1. Descriptive analysis of SOC and STN 

Descriptive analyses of SOC and STN in the study area are presented 
in Table 1. The median of SOC (2.25 g/kg) and STN (0.21 g/kg) were 
smaller than the average (SOC: 2.48 g/kg, STN: 0.25 g/kg), which 
indicated that half of the sample points were below the average, and 
contained great differences among them. The results showed that SOC 
and STN in most areas of the study area were lower than the average. 
While the range (SOC: 5.89 g/kg, STN: 0.89 g/kg) was dramatically 
higher than the average, the difference between the interquartile range 
and the mean or median was small; this indicated that there were areas 
with high or low SOC and STN in the research area, but the proportion 
was small. Variance and standard deviation were high, with a strong 
dispersion among the sampling points. Index values of degree of 
dispersion indicated that the differences in SOC and STN in different 
areas of the study area were significant. SOC and STN had right skew-
ness, which could be evaluated from skewness and kurtosis, indicating 
that was more data on the left side of the mean. It also showed that SOC 
and STN in most areas of the study area were lower than the average. 
Overall, central tendency, degree of dispersion, and distributional 
pattern indicated that SOC and STN had strong spatial heterogeneity in 
the study area. 

3.2. Relationship between environmental variables and SOC or STN 

In the study, 48 environmental variable data sets were selected to 
predict SOC and STN. The SEM was used to explain the relationship 
between them and was successfully fitted to our data at SOC and STN, 
satisfying the goodness-of-fit metrics (RMSEA<0.08, GFI>0.9, CFI>0.9, 
NFI>0.9, P > 0.05; Fig. 4). Together, 8 out of 48 variables explained 
36% of the variations in SOC and 6 out of 48 variables explained 58% of 
the variations in STN. 

As shown in Table 2 and Fig. 2, effects of environmental variables 
were classified into standardised direct, indirect, and total effects in the 
model. Indirect effect plus direct effect equalled total effect. EVI is a 
primary index in biophysical parameter products of remote sensing, 
which can reduce the disturbances of atmospheric and soil noise 
together and effectively respond to vegetation distribution in the 
measured area (Huete et al., 2002). SEM had shown that annual sun-
shine duration (SSD), mean relative humidity in spring (RHUSP), pre-
cipitation in the growing season (PREGS), silt particle content (SILT), 
relief amplitude (RA), roughness (RU), slope (SLO), and mean relative 
humidity in autumn (RHUAU) were the main factors influencing SOC 
changes. Moreover, PREGS and SILT exerted a direct effect on SOC, 
whereas other factors directly or indirectly affected vegetation (EVI), 
PREGS, and SILT, eventually changing SOC. In addition, effects of cli-
matic factors (RHU (0.478), PREGS (0.398), and SSD (0.219)) on SOC 
were significantly stronger than topographic features (SLO (0.174), RU 
(0.161), and RA (0.120)) and soil texture (SILT (0.253)). PREGS, SILT 
directly affect STN, while Accumulated temperature in winter 
(ATEMWI), RU, RA directly or indirectly affect vegetation (EVI), PREGS, 

SILT indirectly affected STN. Likewise, for STN alterations, climatic 
factors (PREGS (0.587) and ATEMWI (0.214)) had a higher impact than 
soil texture (SILT (0.458)) and topographic features (RU (0.076) and RA 
(0.052)). 

3.3. Performance of machine learning algorithms 

We used SEM to reveal the relationship between environmental 
variables and SOC and STN, and found the main environmental factors 
that affect the change of SOC and STN. Based on the concept of the soil- 
landscape model, we used these environmental variables to establish the 
prediction model of SOC and STN. The prediction results of SOC and STN 
using four machine learning algorithms are presented in Figs. 3 and 4. 
Overall, RF had the highest prediction accuracy for SOC (R2 = 0.71, 
RMSE = 0.94, MAE = 0.76) and STN (R2 = 0.76, RMSE = 0.13, MAE =
0.10) (which accounts for 70.7% and 76.2% of the total variation of SOC 
and STN, respectively). Further, the prediction result of STN was better 
than SOC. Regarding the result of accuracy evaluation, the prediction 
performance hierarchy for SOC was as follows: RF > AdaBoost > GBRT 
> XGBoost. That of STN was RF > AdaBoost > XGBoost > GBRT. 

The rankings of predictor variables for SOC and STN predicting using 
RF ordered by relative importance are shown in Figs. 3(D) and Fig.4(D), 
respectively. In the RF, 8 out of 48 variables could account for 70.7% 
(R2

SOC = 70.7%) of the total variation of SOC (Fig. 3(E)). SSD, RHUSP, 
PREGS, SILT, RA, RU, SLO, and RHUAU were the most effective envi-
ronmental variables in predicting SOC. Among them, SSD (38.5%), 
RHUSP (18.1%), PREGS (8.7%), and RHUAU (5.2%), representing 
climate variables, accounted for 70.5% of R2

SOC. Furthermore, RU 
(8.7%), RA (7.6%), and SLO (5.4%), representing topographic features, 
accounted for 21.7% of R2

SOC, while SILT, representing soil texture, 
accounted for 7.7% of R2

SOC. In the RF, 5 out of 48 variables could ac-
count for 76.2% (R2

STN = 76.2%) of the total variation of STN (Fig. 4(E)). 
PREGS, RU, SILT, ATEMWI, and RA were the most effective environ-
mental variables in predicting STN. Among them, PREGS (45.3%) and 
ATEMWI (14.0%), representing climate variables, accounted for 59.3% 
of R2

STN. RU (18.1%) and RA (7.0%), representing topographic features, 
accounted for 25.1% of R2

STN, while SILT (15.6%), representing soil 
texture, accounted for 15.6% of R2

STN. The above results showed that 
climate was the main driver for SOC and STN distribution in the arid 
desert area, followed by topography and soil texture. 

3.4. Changes in climatic elements of the study area from 2000 to 2019 

The above analysis indicated that climatic variables were potentially 

Table 1 
Summary statistics of SOC and STN data.  

Attributes SOC STN 

Central tendency Average (g/kg) 2.48 0.25 
Median (g/kg) 2.25 0.21 

Degree of dispersion Range (g/kg) 5.89 0.89 
Interquartile range (g/kg) 1.11 0.12 
Variance 2.17 0.04 
Standard deviation 1.46 0.2 
Coefficient of dispersion 0.59 0.8 

Distributional pattern Skewness 0.57 1.25 
Kurtosis − 0.4 1.31  

Table 2 
Standardised total, direct and indirect effects of environmental variables on SOC 
and STN analysed by structural equation modeling.  

Environmental 
variables 

SOC STN 

Total 
effects 

Direct 
effects 

Indirect 
effects 

Total 
effects 

Direct 
effects 

Indirect 
effects 

SSD 0.219 0 0.219 – – – 
PREGS 0.398 0.308 0.090 0.587 0.326 0.261 
SILT 0.253 0.189 0.064 0.458 0.265 0.194 
RA 0.120 0 0.120 0.052 0 0.052 
RU 0.161 0 0.161 0.076 0 0.076 
SLO 0.174 0 0.174 – – – 
RHU 0.478 0 0.478 – – – 
EVI 0.231 0.231 0 0.347 0.347 0 
ATEMWI – – – 0.214 0 0.214 

Notes: Direct effects are simple paths and are equal to the path coefficients in 
Fig. 4. Indirect effects are the sum of the products of the chain of path co-
efficients for all compound paths for which the independent variable is con-
nected to the dependent variable while maintaining the causal direction of the 
arrows. Total effects are the sum of direct and indirect effects. The values 
indicate changes of SOC or STN per standardised-unit change of environmental 
variables. 
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one of the main drivers affecting SOC and STN of arid and semi-arid 
regions. By analysing data from meteorological stations in the study 
area from 2000 to 2019, we found that there was no obvious variation 
trend in ATEMWI, PREGS increased trend at a rate of 12.9mm/decade 
and average was 119.85 mm, and eight years were above average (Fig. 5 
left). The average RHUSP and RHUAU were 30.90% and 47.91%, 
respectively, showing a decreasing trend with ratios of − 1.2%/decade 

and − 2.0%/decade (Fig. 5 middle). It showed that relative humidity was 
higher in autumn than in spring, however, the rate of decline was higher 
in autumn than in spring. Moreover, the average SSD was 3117.10h and 
had a significant decreasing trend of 60 h/decade (Fig. 5 right). Among 
many meteorological elements, SSD changed significantly and with the 
highest slope of change (Fig. 5). 

Fig. 2. Structural equation model relating environmental variables to SOC(A) or STN(B). Rectangles represent observed variables. A single arrow indicates the direct 
effect of a variable assumed to be a cause on another variable that is assumed to be an effect. Solid arrows denote positive relationships, while dashed arrows 
correspond to negative ones. Numbers in bold on arrows are standardised path coefficients. Percentages in italics on rectangles indicate the variance explained by the 
model (R2). SSD, annual sunshine duration; PREGS, precipitation in growing season; SILT, silt particle content; RA, relief amplitude; RU, roughness; SLO, slope; RHU, 
first principal component value of principal component analysis of mean relative humidity in autumn and spring; EVI, enhanced vegetation index; ATEMWI, 
accumulated temperature in winter; SOC, soil organic carbon content; STN, soil total nitrogen content. 

Fig. 3. Predicted vs. True SOC of validation dataset derived from (A) Adaptive Boosting Regressor (AdaBoost), (B) Gradient Boosting Regression (GBRT), (C) Extreme 
gradient boosting Regression (XGBoost), (D) Random Forest Regression (RF), (E) variables of importance for RF (SSD = Annual sunshine duration, RHUSP = Mean 
relative humidity in spring, PREGS=Precipitation in growing season, SILT=Silt particle content, RA = Relief Amplitude, RU = Roughness, SLO=Slope, RHUAU =
Mean relative humidity in autumn). 
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3.5. Effects of climate change on SOC and STN 

Overall, RF accurately predicted SOC and STN, while climate was the 
most important driver affecting SOC and STN. From 2000 to 2019, the 
meteorological elements (PREGS, RHUSP, RHUAU, and SSD) in the 
study area showed different trends, but how did they affect the SOC and 
STN? In contrast to the relatively stable topographic elements and soil 
texture in the short term (<20 years), the changes in meteorological 
elements were more sensitive. This study assumes that RA, RU, SLO, and 
SILT were unchanged from 2000 to 2019 and has explored the effects of 
climate change on the SOC, STN and SOC/STN. Finally, we used climate 

variables data collected from the sampling sites from 2000 to 2019 and 
combined it with the prediction model established in Section 3.3 to 
predict SOC and STN from 2000 to 2019. Results showed that in dryland, 
climate change increased SOC at a rate of 0.04 g/kg/decade, decreased 
STN at a rate of 0.003 g/kg/decade, and increased SOC/STN at a ratio of 
1.1/decade, unsteadily (Fig. 6). In the context of climate change, 
dryland was a potential source of carbon sequestration, but it was un-
stable. It changed dynamically from year to year because of the annual 
hydrothermal variance tendency, leading to STN loss, which reduced 
soil fertility. More attention should be paid to STN monitoring in 
dryland in the future. 

Fig. 4. Predicted vs. True STN of validation dataset derived from (A) Adaptive Boosting Regressor (AdaBoost), (B) Gradient Boosting Regression (GBRT), (C) Extreme 
gradient boosting Regression (XGBoost), (D) Random Forest Regression (RF). (E) variables of importance for RF (PREGS=Precipitation in growing season, RU =
Roughness, SILT=Silt particle content, ATEMWI = Accumulated temperature in winter, RA = Relief Amplitude). 

Fig. 5. Meteorological element anomaly map of the study area from 2000 to 2019. Y = 0 represents the average value from 2000 to 2019. The value above this line 
means greater than average value and below this line means less than average value. 
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4. Discussion 

4.1. Effects factors on SOC and STN in dryland 

Both the RF model (Figs. 2 and 3) and the SEM (Fig. 4 and Table 2) 
model all showed that climate elements were the most influential pre-
dictor variables in dryland to predict SOC and STN. It was different from 
mountain and farmland ecosystems, where other factors such as 
topography and soil type were the main influencing factors (Zhu et al., 
2010; Iqbal et al., 2005). Due to the low soil fertility of dryland, these 
areas are exceedingly sensitive to degradation caused by climate change 
(Li et al., 2016). Climate is closely related to SOC and STN input and 
decomposition, such as affecting vegetation distribution and growth and 
restricting litter decomposition (Li et al., 2020). For example, temper-
ature can lead to the dissociation of soil element stoichiometry and 
microbial activity (Mooshammer et al., 2017). Precipitation has an 
implication in nutrient cycling, and is related to leaching intensity 
(Gordon et al., 2008), which directly affects SOC and STN; meanwhile, it 
also affects plant growth and indirectly affects SOC and STN (Tang et al., 
2019). Different from other ecosystems, photodegradation is the main 
governing factor of surface litter decomposition in dryland ecosystems 
(Moorhead and Callaghan, 1994). It may explain why most of the carbon 
fixed by plants is directly lost to the atmosphere instead of contributing 
to soil organic matter (Austin and Vivanco, 2006). However, in the study 
area, the dramatic SSD decline from 2000 to 2019 would weaken the 
photodegradation potential due to the increased precipitation in the 
growing season (Austin and Vivanco, 2006). In addition, the change in 
precipitation was correlated with higher and lower RHU (Elliott and 
Angell, 1997; Kawamoto, 2006). Topography controls the flow of sol-
utes, water, and sediments, affecting soil development and spatial dis-
tribution of soil nutrients (Li et al., 2013). Some topographic features 
have been proven to have a highly significant correlation (e.g., RA, RU, 
and SLO) with SOC and STN (Wang et al., 2017), but they indirectly 
affect SOC and STN by affecting soil texture that affects SOC and STN 
because silt and clay particles provide physical protections of SOC and 
STN and promote its aggregation (Zinn et al., 2005). 

In previous studies, when meteorological elements were used to 
predict SOC and STN, the focus was on the annual statistical value of 
meteorological elements (Li et al., 2020; Mahmoudzadeh et al., 2020), 
while their seasonal statistical values were ignored. However, increasing 
evidence shows seasonal changes in meteorological elements affect 
vegetation growth, thus affecting SOC and STN. The accumulated tem-
perature in spring will affect the spring phenology and the time of frost 
(Yu et al., 2010). Stabilisation of carbon sequestration in a Chinese 
desert steppe benefits from increased temperatures and precipitation 
outside the growing season (Yang et al., 2019). Summer precipitation 
was important for autumn vegetation growth in the arid region, where 

summer temperature increased autumn vegetation growth in semi-arid 
and semi-humid regions (Wang et al., 2021; Xie et al., 2016). Cumula-
tive precipitation during the growing season had a dominant effect on 
the vegetation dynamics compared with temperature for some vegeta-
tion types (Liu et al., 2015). The above conclusion was consistent with 
the results of this study. Seasonal statistical values of meteorological 
elements (PREGS, RHUSP, RHUAU, and ATEMWI) will affect the growth 
of vegetation, thus affecting SOC and STN. 

4.2. Performance of predictive models in dryland 

The comparative prediction accuracy in this study showed that the 
RF model well predicted SOC and STN in drylands compared to the other 
three prediction models (Figs. 2 and 3). This result is consistent with 
Zeraatpisheh et al. (2019), who proved that RF had the highest perfor-
mance to predict SOC in dryland, central Iran. The main reason is that an 
RF model could use the regression model in the terminal nodes to pro-
duce a series of predictions with the prominent ability of RF as its pre-
diction capacity (Prasad et al., 2006). Of course, as predicting SOC and 
STN based on soil-landscape model, though different machine learning 
algorithms perform differently in various landscape types, RF often 
showed excellent performance, such as humid tropical and subtropical 
regions (Keskin et al., 2019) and dry and half-dry regions (Mahmoud-
zadeh et al., 2020). Even in some areas, the accuracy is not as high as 
other methods, but the differences are small. For example, Zhou et al. 
(2020) showed that the boosted regression trees (BRT) model out-
performed the RF model (SOC: R2 = 0.44 vs R2 = 0.40, STN: R2 = 0.38 vs 
R2 = 0.38) in the southern region of Central Europe, where forests and 
ploughland are the main land-use types, but the discrepancy was small. 
Khanal et al. (2018) showed that in an area where farmland is the main 
land-use type, the neural network model provided the highest accuracy 
compared to RF, but the discrepancy was also small (R2 = 0.60 vs R2 =

0.54). Overall, the RF algorithm may be the most appropriate model 
when using the soil-landscape model to predict SOC and STN in arid and 
semi-arid areas. 

4.3. Effect of interannual hydrothermal variability on SOC and STN in 
dryland 

In dryland, climate change increases C sequestration (Fig. 6). The 
result was consistent with the conclusions of many researchers. A pre-
vious study showed that the desert steppe ecosystem was a net C source 
because of high temperatures and drought (Zeng et al., 2005), but this 
may be counteracted by climate change effects which can prolong the 
growing season and increase C sink (Wang et al., 2018a). Other research 
found the desert steppe was a weak C sequestration whether combined 
carbon stocks with regional models or a soil nutrient cycling model with 

Fig. 6. Change trend of SOC, STN and SOC/STN from 2000 to 2019. Y = 0 represents the average value from 2000 to 2019. The value above the line means greater 
than average value, and below the line is less than average. 
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C flux measurements at a local scale (Wu et al., 2018; Yang et al., 2019). 
The decrease of SSD in the study area from 2000 to 2019 may weaken 
photodegradation and accelerate more carbon flowing into the soil 
carbon pool, causing an increase in SOC (Austin and Vivanco, 2006). 
PREGS increase usually enhances ecosystem C gain by increasing 
biomass (She et al., 2016). However, STN showed an opposite trend, and 
climate change would lead to the loss of STN (Fig. 6). N transformation 
in soil is often controlled by soil temperature, moisture, soil texture, and 
pH (Burke, 1989; Zhou et al., 2020). Precipitation will change the 
temporal patterns of N cycling due to the sensitivity of different N 
transform to soil moisture (Fierer and Schimel, 2002; Ladwig et al., 
2015), denitrification and the production of N2O increases with 
increasing soil moisture (Hu et al., 2015). NO3–N can be significantly 
high in drained or seasonally dry areas (Hanlon et al., 1997), and NO3–N 
is usually more leachable due to its negative charge (Liao et al., 2016). 
Therefore, under climate change, the increase of precipitation in the 
growing season strengthened soil leaching and denitrification, eventu-
ally decreasing total N concentration. Moreover, C and N cycles in 
terrestrial ecosystems are two processes that are closely related to each 
other. Climate change would prolong the growing season of plants, 
stimulate photosynthesis, increase plant biomass, and enhance 
ecosystem C gains (Luo et al., 2009). However, C fixation was regulated 
by the availability of N by plants, and the increase of carbon fixation of 
the plant was bound to increase nitrogen acquisition in soil. In the 
future, N limitation in dryland ecosystems will be more and more serious 
in the context of climate change. 

5. Conclusion 

Overall, in dryland, the RF model performed better in predicting SOC 
and STN than the other three prediction models (AdaBoost, GBRT, 
XGBoost). In the future, we can use the method to investigate SOC and 
STN in arid areas with less population and poor roads. Climate factors 
were the main factors affecting SOC and STN in the study area; SOC and 
STN can be preliminarily diagnosed by monitoring the change of 
meteorological elements. In Alashan area, a dryland in northern China, 
the precipitation in the growing season showed an increasing trend from 
2000 to 2019, at a rate of 12.9mm/decade. During the same period, the 
annual sunshine duration significantly decreased by 66 h/decade. In 
study areas, climate change increased SOC at a rate of 0.04 g/kg/decade 
and decreased STN by 0.003 g/kg/decade from 2000 to 2019 at an 
unstable rate. In the context of climate change, dryland was a potential 
site for carbon sequestration, but it is unstable. It changes dynamically 
yearly because of annual hydrothermal variability, resulting in loss of 
STN and ultimately reducing soil fertility. More attention should be paid 
to STN monitoring in dryland in the future. 
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