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A B S T R A C T   

Extreme drought events have caused extensive and severe impacts on terrestrial ecosystem in last decades in 
China. Given droughts may be more intense and frequent under future climate change, accurate assessment of 
the drought impact on vegetation primary production can provide reliably scientific supports for the carbon sink 
potential. Numerous existing studies have used Standardized Precipitation Evapotranspiration Index (SPEI) to 
discover the drought-production relationships, however, most of them just considered the strongest correlation 
between production and different time scales (i.e. correlation-based method), which may underestimate the 
production loss because of the asymmetric responses under dry and wet conditions. In this work, we proposed a 
new method which assumed that the dominant time scale should correspond to the lowest primary production 
during each drought year (extreme-based method). Based on six independent Gross Primary Productivity (GPP) 
products and SPEI dataset, it showed that the extreme-based method was more reasonable and robust (with a 
larger inter-consistency of 0.50 than that of 0.05 for correlation-based method) to determine at which time scale 
GPP predominantly responded to extreme droughts. And the GPP loss can be underestimated by 45 ± 26% 
(mean ± s.d.) if the time scale was randomly selected. Furthermore, spatial analysis suggested that vegetation 
type, water balance and soil textures mainly affected the spatial heterogeneity of the dominant time scales. In 
detail, forests, humid biomes, and vegetation planted in loam tended to be more sensitive to longer-term 
droughts. This study highlighted that optimal time-scale selection using extreme-based assumption can give 
more accurate estimation of the drought impacts on vegetation primary production.   

1. Introduction 

During the recent decades, many regions have experienced extreme 
droughts around the globe, such as the 2005 and 2010 drought over 
Amazonia (Doughty et al., 2015; van der Laan-Luijkx et al., 2015), the 
2012 summer drought in the US (Wolf et al., 2016), and the 2009/10 
drought and heatwave in southwest China (Li et al., 2019; Zhao et al., 
2015). It is observed those extreme droughts caused severe impacts on 
vegetation growth and carbon cycle (Wu et al., 2021; Zhao and Running, 
2010), and it will be even aggravated given the changing climate (Xu 
et al., 2019). That is, studying how carbon cycle particularly the 
photosynthesis process responds to extreme droughts is crucial. 

Nevertheless, there has not received a consistent definition of 
drought since it is difficult to describe droughts in time and space 
(Mishra and Singh, 2010). More than 50 drought indicators (World 

Meteorological Organization and Global Water Partnership, 2016) and 
water balancing frameworks (Maurya et al., 2020) are developed to 
address this practical issue. And standardized metrics are highly rec-
ommended and assumed to better indicate droughts and enable com-
parisons across locations and biomes, since droughts imply a deficit in 
water availability that differ from normal (Slette et al., 2019; Slette 
et al., 2020). Besides, drought conditions may be different when being 
calculated based on different periods of climate context. In general, 
short-term water shortage connects with vegetation growth and is 
namely meteorological droughts, while longer-term water imbalance 
will lead to streamflow decrease, soil moisture deficit, and even failures 
on water resource systems (Mishra and Singh, 2010; Wu et al., 2018). 

The Standardized Precipitation Evapotranspiration Index (SPEI), on 
the one hand, is a standardized metric considering both precipitation 
and evapotranspiration (that is, water balance); on the other hand, can 
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indicate droughts of different time scales (Vicente-Serrano et al., 2010a): 
thus was widely used particularly for large-scale and long-term drought 
researches (Anderegg et al., 2020; Schwalm et al., 2017). Numerous 
studies employed a Pearson’s correlation analysis between SPEI at 
different time scales and vegetation-related indices, and found vegeta-
tion and carbon fluxes may respond to droughts at different time scales 
(Vicente-Serrano et al., 2013). Specifically, for arid and humid areas, 
vegetation greenness and productivity responded to short-term droughts 
although through different physiological mechanisms, while semi-arid 
and semi-humid biomes tended to respond to longer-term droughts 
(Vicente-Serrano et al., 2013). Further, the forest was more sensitive to 
long-term droughts rather than grassland and cropland due to the 
rooting system and soil texture (Jiang et al., 2020). 

However, it remains uncertain whether the largest linear correlation 
coefficient is reasonable for selecting an optimal response time scale. 
First, responses of vegetation productivity to precipitation tend to be 
asymmetric, which might show a smaller increase of productivity in wet 
years than the decline in dry years, or in the opposite way (Knapp et al., 
2017). A recent study of America using multiple Gross Primary Pro-
ductivity (GPP) data sources has revealed a consistent spatial pattern of 
the asymmetry, and the Great Plains indicated a negative asymmetry (a 
greater decline in dry years) and the Southwest positive (Al-Yaari et al., 
2020). Besides, correlations between SPEI and tree ring index showed a 
tipping point and turned to be much weaker under non-extreme dry 

conditions (Huang et al., 2015). In this way, linear fit might not well 
portray the true response of vegetation growth in extreme wet or dry 
conditions. Second, the correlation coefficients on whole time series are 
highly affected by extreme values and may be not valid when variables 
are not normally distributed (Mukaka, 2012). Furthermore, Pearson’s 
correlation coefficients may reflect relationships between general 
vegetation growth and water content condition, but fail to concentrate 
on samples from extreme situations, the range of which should be truly 
concerned for studying droughts. Thus, as one of the most severe climate 
extremes (Reichstein et al., 2013; Zscheischler et al., 2014), droughts 
may lead to abrupt tree mortality and sudden system failure (Allen et al., 
2010), and linear correlation approach may not be appropriate for 
studying vegetation response to droughts. 

Drought affected areas have been doubled in China during the last 
three decades (Xu et al., 2012), and will continue to increasing under the 
background of climate warming (Su et al., 2018). There areas were also 
accompanied by a decreasing greenness and a decline of carbon uptake 
(Deng et al., 2021). For example, the 2013 drought and heat wave 
caused a reduction of 101.54 Tg C in carbon sequestration in southern 
China (Yuan et al., 2016). In this sense, we took China as the study area 
and re-considered the issue of how vegetation photosynthesis responds 
to droughts but under extreme situations: (1) Which time scale of 
extreme droughts lead to most ecosystem Gross Primary Productivity 
(GPP) loss? (2) Is the dominant scale different from that derived by the 

Fig. 1. An example of deriving dominant time scales from extreme and correlation perspectives. Standardized anomaly of annual mean SPEI (SPEISA) at time scales of 
1–24 month and mean GPP (GPPSA) at one pixel are shown in Fig. 1a. As in this example, dominant time scale derived from extreme-based method (b) is 11-month 
since mean GPPSA during extreme drought years (when SPEISA was less than − 1.64) firstly reaches the minimum. And the scale derived from correlation-based 
method (c) is 3-month since the Spearman correlation coefficient between annual GPPSA and SPEISA reaches the maximum. 
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linear correlation method? (3) Whether drought impacts will be under 
(over) estimated if time scale and thresholds are not carefully selected? 
By addressing the above questions, we combined six state-of-the-art GPP 
products derived from remote sensing observations, FLUXNET upscale 
approach and process-based model simulations. Given that GPP can 
hardly be measured at large ecosystem scales, two additional indices 
Contiguous Solar-induced Fluorescence (CSIF) and Near-Infrared 
Reflectance of vegetation (NIRv), which are suggested to strongly 
correlated with GPP signals, were provided as well. 

2. Materials and methods 

2.1. Methodology 

In this study, we tended to compare the dominant drought scale 
derived from the extreme and correlation perspectives (following most 
previous studies (Vicente-Serrano et al., 2013)). From the extreme 
perspective, drought is described as an extremely low water availability 
from the normal level, that is, standardized anomaly (SA) of SPEI is 
below one threshold. Then the threshold and the time scale of SPEI are 
concerned when defining an extreme drought year. Thus, we examined 
the GPP response (SA of GPP) during extreme drought years defined by 
different combinations of SPEI time scales and thresholds, and the 
dominant time scale is the shortest time scale of SPEI under which the 

Fig. 2. Study area (a) and uncertainties of GPP from different products (b). Land cover data was adapted from the 1:1,000,000 digitalized vegetation map of China 
(Editorial Board of Vegetation Map of China, 2007). Forest, shrubland and grassland areas were analyzed. Information of Six GPP estimations or simulations is shown 
in Table 1, and uncertainty was measured by the Coefficient of Variation (C.V.) among the products. 

Table 1 
Data sources used in this study.  

Indicators Products Spatial 
resolution 

Temporal 
resolution 

References 

SPEI SPEI v2.5 0.5◦ monthly Vicente-Serrano et al., 2010b 
GPP MODIS GPP C5.5 500 m 8-day Chen et al., 2021; Zhao et al., 2005 

P-model 0.5◦ daily Stocker et al., 2018; Stocker et al., 2019 
VODCA2GPP 0.25◦ 8-day Wild et al., 2021 
MTE GPP China 0.1◦ monthly Li et al., 2019; Yao et al., 2018 
FLUXCOM upscaling 1◦ monthly He et al., 2021; Tramontana et al., 2016 
TRENDYv8 0.5◦ ~ 2.8125◦ monthly Le Quéré et al., 2018; Piao et al., 2020 

Others CSIF 0.05◦ 4-day Chen et al., 2021; Zhang et al., 2018 
NIRv 0.1◦ monthly Badgley et al., 2017; Huang et al., 2019 

Fire emissions GFED v4.1 0.25◦ monthly Randerson et al., 2017 
Environmental 

factors 
Precipitation CRU TS 

4.03 
0.5◦ × 0.5◦ monthly Harris et al., 2020 

Potential 
evapotranspiration 
Soil texture 0.0083◦ ×

0.0083◦

none Resources and Environmental Sciences, Chinese Academy of 
Sciences (RESDC)  
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most negative GPP response was observed (Eq.(1)). 

SAs,t(GPP) = min
[
SAs,1(GPP), SAs,2(GPP),⋯, SAs,24(GPP)

]
(1)  

where SAs,t(GPP) is the minimum value of standardized anomaly of GPP 
during drought years defined by SPEI from 1-month scale to 24-month 
scale under one particular threshold, and the t is the dominant 
drought time scale. If more than one time -scale of SPEI share the same 
GPP response, the shortest time scale should be the dominant time scale. 

From the correlation perspective, drought is described as a general 
dry condition over the period, that is, the dominant drought time scale is 
identified by the linear correlation method just as in previous studies 
(Gouveia et al., 2017; Jiang et al., 2020; Li et al., 2018). And the 
dominant drought time scale is the time scale under which the strongest 
Spearman’s correlation between annual SPEI and GPP was observed (Eq. 
(2)). 

|R(GPP, SPEIt) | = max[|R(GPP, SPEI1) |, |R(GPP, SPEI2) |,⋯,

|R(GPP, SPEI24) |]
(2)  

where |R(GPP, SPEIt) | is the maximum value of the absolute correlation 
coefficient between GPP and SPEI from 1-month scale to 24-month 
scale, and the t is the dominant drought time scale. 

To better illustrate the differences, Fig. 1 shows an example of how 
dominant SPEI time scale was derived from these two perspectives. For a 
given pixel, annual time series of SPEI at 1–24 month scales and GPP 
were in Fig. 1a: from the extreme perspective, extreme drought years 
were defined when SPEI was below one threshold. Here we chose − 1.64 
as the threshold since the probability of 5% is always regarded as an 
extreme event (IPCC, 2014), and the left-tail probability of a normal 
distribution is 5% when the z-score is below − 1.64. Then mean GPP 
responses during drought years were calculated, and the dominant time 

scale was at which scale minimum GPP response was firstly reached 
(Fig. 1b, 11-month); from the correlation perspective, Spearman’s cor-
relation coefficients between SPEI and GPP (annual values from Fig. 1a) 
were calculated, and the dominant time scale was at which scale the 
strongest correlation was found (Fig. 1c, 3-month). 

2.2. Study area 

The study area China locates between 3◦N ~ 54◦N and 73◦E ~ 
136◦E, with large climate gradients and rich vegetation cover. Fig. 2a 
shows the vegetation cover, and the data was derived and adapted from 
the 1:1,000,000 digitalized vegetation map of China (Editorial Board of 
Vegetation Map of China, 2007). The majority of forests and shrublands 
locate in the south and part of the northeast, croplands spread over 
continuous areas in North China Plain and Sichuan Basin, grasslands 
distributes widely in arid and semi-arid north and northeast China. In 
case of the unavoidable impacts of human management, croplands were 
removed for analysis. The various vegetation cover and complex 
topography constitute a challenge for precise GPP estimation or simu-
lation. It is observed uncertainties among different GPP products could 
be large, the Coefficient of Variation (C.V.) is more than 1.5 g C m− 2 d-1 

in alpine vegetation (Fig. 2b). Generally, the uncertainty decreased from 
the northwest to the southeast, exhibiting a changing gradient. 

2.3. Datasets 

Detailed information of the data sources is shown in Table 1. The 
drought indicator SPEI (Vicente-Serrano et al., 2010a; Vicente-Serrano 
et al., 2010b) was used to identify extreme drought years, and tempo-
ral resolution of the data was monthly, and spatial resolution was 0.5◦ ×

0.5◦. 

Fig. 3. Mean GS-GPP anomalies (s.d.) during extreme drought years defined by different thresholds. Extreme drought years were defined using 3, 6, 12, and 24- 
month time scale of SPEI, and thresholds from − 1 – − 2.5 with a bin length of 0.1. Shaded areas show the range of ± 10% standard deviation. 
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Large-scale ecosystem GPP can be acquired from at least three pri-
mary means (Zhang et al., 2016). Light Use Efficiency (LUE) and remote 
sensing observations based GPP: this method assumes that GPP is the 
function of canopy absorbed photosynthetically active radiation and 
LUE (Zhao et al., 2005). The former can be sensed by satellites sensors, 
and the latter can be expressed as a function of environmental stress 
(such as temperature and soil moisture). Flux sites observation upscaling 
approach: it constructs a relationship between flux tower observed GPP 
and other biotic or environmental factors, and upscales GPP by the 
relationship and the gridded data of those driving factors (Jung et al., 
2020). The upscaling GPP can well present spatial heterogeneity, but 
may underestimate the inter-annual variations (Anav et al., 2015). 
Process-based model simulations: the models simulate ecological pro-
cesses of carbon cycle based on assumptions of ecosystem structures and 
how they respond to climate change (Sitch et al., 2008). There may exist 
uncertainties among model-simulated GPP, since the models are 
simplified and have the limitation to reflect the complicated ecosystems 
particularly under intense human disturbances (Xie et al., 2020). 

Here six state-of-the-art GPP products were used to provide a general 
picture of ecosystem primary productivity responses: 1) MODIS-GPP 
(Zhao et al., 2005) based on LUE and remote sensing observations; 2) 
P-model GPP (Stocker et al., 2019), based on LUE as well but considering 
effects of soil moisture while MODIS-GPP used Vapor Pressure Deficit 
(VPD) as a water stress; 3) VODCA2GPP (Wild et al., 2021), which was 
trained by microwave remote sensing observed Vegetation Optical 
Depth (VOD) and FLUXNET observed GPP; 4) MTE-GPP (Yao et al., 
2018), produced by flux sites observation upscaling approach and Model 
Tree Ensemble (MTE) algorithm; 5) FLUXCOM GPP (Tramontana et al., 
2016), the primary differences between the MTE and FLUXCOM GPP 
were they used different machine learning algorithms and MTE GPP 
used more flux sites in southern China; 6) 16 process-based Dynamic 

Global Vegetation Model (DGVM) simulations (TRENDYv8, Le Quéré 
et al., 2018). 

Given ecosystem GPP was hardly directly measured at a large scale, 
two additional remote sensed indices were analyzed as well. Solar- 
Induced Fluorescence (SIF) is found to be strongly correlated with car-
bon assimilation rate since the leaf-level photosynthesis and fluores-
cence share the same energy source (Genty et al., 1989). One product is 
the Contiguous Solar-induced Fluorescence (CSIF), which combined 
moderate remote sensing reflectance and SIF observations, and enables 
large-scale SIF estimation with higher temporal and spatial resolutions 
(Zhang et al., 2018). The other product is Near-Infrared Reflectance of 
vegetation (NIRv), which is reported as a good proxy of photosynthesis 
as well (Badgley et al., 2017; Huang et al., 2019). 

Environmental information was utilized to analyze driving factors of 
the dominant drought time scales. Specifically, monthly precipitation 
and evapotranspiration were derived from Climate Research Unit (CRU 
TS 4.03, Harris et al., 2020); soil texture data including the percentages 
of clay, silt and sand was from Resources and Environmental Sciences, 
Chinese Academy of Sciences. Additionally, in case of mixed informa-
tion from other disturbances, fire-induced carbon emissions were 
removed from a monthly Global Fire Emission Database (Randerson 
et al., 2017). 

2.4. Pre-processing of the datasets 

We addressed the issue of how ecosystem photosynthesis responds to 
extreme droughts at a growing season scale covering 2000–2015 (the 
overlapping period of all products). SPEI, GPP, CSIF, NIRv, fire emis-
sions and climate data were firstly interpolated or aggregated into the 
same spatial resolution of 0.5◦ × 0.5◦ using the nearest method. Sec-
ondly, those data (P-model, VODCA2GPP, CSIF and NIRv) which are not 

Fig. 4. Mean GS-GPP anomalies during extreme drought years defined by different time scales of SPEI. Extreme drought years were defined using thresholds of 
− 1.28, − 1.64, and − 1.96, and time scales of SPEI from 1-month to 48-month. Shaded areas show the range of ± 10% standard deviation. 
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monthly were aggregated into monthly temporal resolution by 
Maximum Value Composite approach (Holben, 1986) to remove noises. 
Thirdly, the linear trends (the least squares fitting) were removed from 
the monthly time series. The growing season (GS) ranges were obtained 
from leaf area index and freeze/thaw data (Zhu et al., 2016), and then 
GS mean values of SPEI, GPP, CSIF, NIRv, and fire emissions were 
calculated. To remove the mixed information of other disturbances, 
potential drought-related GPP was calculated by original GPP adding 
fire-induced carbon emission. 

Anomaly and standardized anomaly of all the data (excluding soil 
texture) on basis of grids were calculated as Eq.(3) and Eq.(4). In this 
sense, original values were either centered for inter-comparisons among 
absolute GPP responses (Fig. 11) or transformed into Z-scores for inter- 
comparison statistics (Figs. 1-10). 

Ai = xi − μ (3)  

SAi =
xi − μ

σ (4)  

where Ai and SAi are the anomaly and standardized anomaly of one 
indicator (e.g. GPP or SPEI) in the ith year at one grid, xi is the growing 
season mean value in the ith year, μ is the mean and σ is the standard 
deviation over the study period (2000–2015) at the grid. 

3. Results 

3.1. GPP responses to combinations of different thresholds and time scales 
of SPEI 

Fig. 3 shows the standardized anomalies of growing season GPP 
during extreme drought years defined under the thresholds from − 1 to 
− 2.5 with a bin of 0.1. There existed discrepancies of GPP responses to 
extreme droughts when using different thresholds. Generally, more GPP 
loss was found with stricter thresholds, although a slight increase with 
the very small threshold (<-1.96) is found among some products 
(MODIS GPP, VODCA2GPP, MTE-GPP, and FLUXCOM). The threshold is 
critical for assessing the absolute GPP responses that applying larger 
thresholds (-1.28, 10% probability for normal distribution) to define 
droughts shows two thirds of GPP loss comparing with smaller thresh-
olds (-1.96, 2.5%). Further, the differences between GPP responses to 
short and long-term time scale droughts are not small particularly in 
GPP estimations from FLUXCOM (Fig. 3e). 

Fig. 4 shows the GPP anomalies (s.d.) during extreme drought years 
under the time scales from 1-month to 48-month. GPP responses varied 
differently with increasing time scales: the responses presented pheno-
logical changes in some products (most optical remote sensing based: 

Fig. 5. Spatial patterns of the dominant drought scales of GPP, CSIF, and NIRv. Dominant time scale was the shortest SPEI time scale showing the lowest GPP among 
1–24 month time scales with the threshold − 1.64 (Eq.(1)). The insets indicate accumulated percentages of dominant time scales for each vegetation type (forest, F; 
shrubland, S; grassland, G). 

Y. Deng et al.                                                                                                                                                                                                                                    



Ecological Indicators 136 (2022) 108630

7

Fig. 4 a, b, g, and h), while sensitive responses were found during short- 
term droughts rather than longer-term droughts in other products (Fig. 4 
d, e and f, excluding VODCA2GPP, in which GPP responded more 
sensitively to long-term droughts). 

3.2. Spatial patterns of dominant drought time scales 

From Figs. 3-4, it is observed that the extents of GPP responses to 
different time scales of extreme droughts were different, in this sense, 
the shortest time scale at which droughts caused the most negative GPP 
response was regarded as the dominant scale (Eq.(3)). Spatial patterns of 
dominant drought time scales are shown in Fig. 5, and results are rela-
tively consistent among different GPP products (the agreement index 
Kendall’s concordance coefficient W was 0.55). Vegetation in southwest 
China, arid northern areas, and part of the northeast, tended to respond 
droughts at shorter time scales (1–6 months); while those vegetated 
ecosystems in the southeast, Sichuan Province, and part areas in North 
China and Tibetan Plateau responded to longer-term (greater than12 
months) droughts. In terms of different vegetation types, the dominant 
drought time scales are longer in forests rather than shrubland and 
grassland (insets in Fig. 5). 

Dominant drought time scales derived by the correlation method are 
shown in Fig. 6, however, the spatial patterns show large discrepancies 

among different GPP estimations or simulations, and the agreement 
index was 0.22. Longer dominant time scales were found in the north (a, 
MODIS GPP; c, VODCA2GPP; f, DGVMs), and there did not show sig-
nificant differences across biomes. Besides, the correlation coefficients 
(between GPP and SPEI at the dominant scale) were found to be positive 
in the northern China (Fig. A.1), and to be negative in southeast China 
from patterns of most GPP products. 

3.3. The dominant time scales and environmental factors 

Following previous studies (Vicente-Serrano et al., 2013; Zhang 
et al., 2017), the relationships between the dominant time scales and 
water balance were examined (Figs. 7 and 8). Regarding the scales 
derived by the extreme-based method, vegetation in sub-humid areas 
tended to respond to droughts at shorter time scales, and the dominant 
time scales were longer as water balance increased (in humid areas). 
This phenomenon was also observed among correlation-method derived 
dominant time scales (Fig. 8) but with a weaker trend (P-model, 
VODGPP, and NIRv). For those areas of negative water balance, only a 
few GPP products (P-model, MTE-GPP, DGVMs) show that vegetation in 
sub-arid areas responded to droughts at longer-term scales (extreme- 
based) than that in arid areas. In contrast, correlation-based time scales 
show a strong increasing trend for negative water balance areas (Fig. 8). 

Fig. 6. The same as Fig. 5, but using the correlation method to derive the dominant time scales of SPEI. The dominant time scale was the SPEI time scale showing the 
largest absolute correlation coefficient with annual GS-GPP among 1–24 month time scales (Eq.(2)). 
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Additionally, looking into the gradients of water balance, forests 
responded predominantly to droughts at longer time scales derived by 
the extreme-based method, which was not captured when applying the 
correlation-based method. 

Soil texture connects with several physiological processes of how a 
plant absorbs water and nutrients, and is assumed to be potential factors 
explaining spatial variability of GPP responses to drought time scales. 
Fig. 9 shows the median dominant time scales located in different soil 
textures (composition of clay, silt, and sand). Looking into extreme- 
based derived dominant time scales (Fig. 9a), it is found vegetation 
planted in loam soil responded to droughts at longer time scales (7–10 
months), and those in soils with a larger sand content tended to respond 
to short-term droughts. Nevertheless, correlation-based derived domi-
nant time scales seem to not differ among soil types with a time scale of 
8–11 months. 

4. Discussion 

4.1. Revisiting GPP responses to different time scales of droughts 

SPEI was widely proved to act as a good indicator for regional, 
continental, and global drought identification (Chen et al., 2013; Li 
et al., 2019; Schwalm et al., 2017). Meanwhile, the optimal or dominant 
time scale of SPEI given a specific area has attracted heat discussion, and 
the correlation approach was employed to address this issue in most 
previous studies (Gouveia et al., 2017; Vicente-Serrano et al., 2013). 
That is, SPEI (of the dominant time scale) correlated strongest with 
vegetation-related index (e.g., NDVI or GPP). However, we demon-
strated that drought indicates a climate extreme, and the linear 

correlation may fail to reveal the real mechanisms for extreme values 
(Mukaka, 2012). Here we applied both extreme-based and correlation- 
based method to derive the dominant drought time scale to which 
GPP respond most sensitively, and highlighted the former be the priority 
to study extreme drought impacts. 

On the one hand, the extreme-based approach was more robust 
rather than correlation-based method. It can be seen from Fig. 10, the 
dominant time scales derived among different GPP products are rela-
tively consistent from an extreme point of view. The inter-correlation 
coefficients can reach 0.66, and the median value is 0.50; while the 
time scales derived from correlation-based method exhibit large dis-
crepancies with the median inter-correlation coefficient of 0.05. Besides, 
probably due to similar data sources, higher correlations were found 
among remote sensing indices (MODIS, P-model, VODGPP, CSIF, and 
NIRv), and were also found between FLUXCOM and DGVMs. 

On the other hand, the time scale is crucial when assessing vegeta-
tion responses. Fig. 11 shows the differences between GPP response to 
the dominant time scale and to one given scale, and 45 ± 26% (six 
products, mean ± s.d.) of GPP loss will be underestimated if the non- 
dominant time scale is not selected (Fig. 11). For example, given the 
study area and period, average P-model GPP response to extreme 
droughts under dominant time scales was − 0.22 gC m− 2 day− 1. 
Nevertheless, if the time scale was fixed as 6-month (or 12-month), the 
response was − 0.11 (-0.12) gC m− 2 day− 1, which was only half of 
− 0.22. The time scale was also crucial when using the regular method as 
previous studies (Hua et al., 2017; Vicente-Serrano et al., 2013), and the 
correlation coefficients between SPEI and vegetation index was 
increased by ~ 30% if the optimal time scale was selected (Li et al., 
2015), although we have demonstrated disadvantages of the 

Fig. 7. Relationships between the dominant SPEI time scale and the annual average water balance. The dotted lines indicate linear trends (p < 0.05, black; p ≥ 0.05, 
grey) of all the gridded data points considering separately negative and positive water balance. The points represent median values and error bars represent the range 
between the first and the third quantiles of the data. 
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correlation-based method under extreme drought background. In this 
sense, at which scale that vegetation predominantly responds to extreme 
droughts should be carefully determined, and we suggest the extreme- 
based method is an easy and efficient way to address the issue. 

4.2. Dominant time scales and its driving factors 

Looking into the calculation steps of SPEI, the time scale shows how 
many months’ accumulation of water balance (Vicente-Serrano et al., 
2010b). The key difference between the two methods (extreme or cor-
relation based) derived time scales, was that how much time is needed to 
cause the largest losses (even failure) or trigger general vegetation 

Fig. 8. The same as Fig. 7, but using the correlation method to derive the dominant time scales of SPEI.  

Fig. 9. Median dominant drought time scale (a, extreme-based; b, correlation-based) for different soil textures. The figure is based on the soil textural triangle for soil 
classification from United States Department of Agriculture (https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/tools/?cid=nrcs142p2_054167). And 
the time scales (number on the small triangles) are the median values among the eight products. 
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changes (green or brown). Keep this in mind, several factors could 
contribute to the spatial heterogeneity of the dominant time scales. 
Firstly, it is observed that forests responded to extreme droughts at a 
longer time scale. Forests own deeper rooting systems and can access 
deeper soil water when water deficit occurs (Li et al., 2019; Xu et al., 
2018); such woody vegetation tends to better adopt strategies to keep 
basic metabolism and to avoid water loss through stomata behaviors 
(Konings and Gentine, 2017; Lin et al., 2015) and carbon allocation 
(Trugman et al., 2018). This finding agreed with regional studies in 
northern China (Xu et al., 2018), northwest pastoral areas (Jiang et al., 
2020), and the whole China (Li et al., 2015) based on the correlation 
approach at monthly scales. Therefore, forests can be more resistant to 
extreme droughts for a long period rather than grassland. 

Secondly, water balance used to play a key role in regulating the 
response time scales as previous global study (Vicente-Serrano et al., 
2013) applying correlations, and they demonstrated arid and humid 

ecosystems tended to respond to droughts at shorter time scales 
although with different mechanisms. Correlation-based results in this 
study were in line with this finding, particularly when water balance 
was negative, GPP predominantly responded to longer time scale 
droughts as water balance increased (Fig. 8). However, looking into 
extreme-based derived scales, humid biomes tended to withstand 
extreme droughts with a longer time of water deficit (Fig. 7), which was 
echoing with Zhang et al. (2017). It can be explained by the fact that 
water balance might not be the controlling factor in humid areas, soil 
moisture and short-term precipitation might be de-coupled (Wei and 
Dirmeyer, 2012), and a longer time lag for vegetation growth response 
to precipitation (Wu et al., 2015) and soil moisture (Chen et al., 2014) 
existed. 

Other environmental factors such as soil texture would contribute to 
determining at which scale GPP predominantly respond to extreme 
droughts. Permeability and nutrient content of the soil connect closely 
to how vegetation copes with drought (Jiang et al., 2020), generally, 
permeability increases with larger sand proportion (Singh et al., 2020), 
and nutrients increase with larger clay proportion (Ge et al., 2019). In 
our study from the extreme point of view, vegetation planted in loam 
predominantly responded to extreme droughts at longer time scales 
(7–10 months), since loam well trades off the permeability and nutrient 
content, and has the better capacity to conserve water and fertility in 
parallel to Jiang et al. (2020). This phenomenon was not found in 
correlation-based results, which further implied the uncertainty of 
deriving dominant scales using linear correlations. 

4.3. Uncertainties and limitations 

At which time scale ecosystem photosynthesis predominantly re-
sponds to extreme droughts was re-studied and we found the extreme- 
based method be the priority to address this issue. However, there 
remained some uncertainties to be carefully considered. On the one 
hand, although considerable consistency was observed among time 
scales derived from six state-of-the-art GPP estimations and two addi-
tional proxies CSIF and NIRv (He et al., 2021), uncertainties existed from 
data sources. Each product has its disadvantages in displaying large- 
scale GPP, for example, flux sites upscaling GPP may underestimate 
the inter-annual variability (Jung et al., 2020) and the response time 
since GPP was trained by concurrent climate data. Besides, simplified 
DGVMs may not fully represent the complex ecological processes (Wang 
et al., 2020), and correlations between SIF and GPP are not stable and 
covary with climatic factors (Chen et al., 2021). On the other hand, 
drought characteristics such as legacy (Anderegg et al., 2015) and flash 
drought (Pendergrass et al., 2020) were not considered in our study, 
which might lead to uncertainties and should be further examined. 

5. Conclusion 

Aiming at explore the dominant drought time scales, in this paper, 
we revisited the responses of ecosystem photosynthesis to extreme 
droughts with six state-of-the-art GPP estimations, CSIF and NIRv, based 
on which these conclusions can be drawn:  

(1) Responses of GPP varied when using different thresholds and 
time scales of SPEI to define extreme droughts, generally, more 
GPP loss was found with more strict thresholds, relationships 
between GPP response and SPEI time scales (1–48 months) were 
nonlinear, and thus a dominant time scale of SPEI existed.  

(2) The extreme-based method is more reasonable and robust for 
deriving the dominant time scales. The spatial patterns among 
different products were relatively consistent rather than that 
derived from correlations. If the dominant time scale was not 
selected, the GPP responses to extreme droughts might be 
underestimated by 45 ± 26%. 

Fig. 10. Inter-correlation coefficients of the dominant drought time scales 
among different GPP products and GPP-related proxies. The lower triangle 
shows the results that detected from the extreme-based method, the upper 
shows the results from the correlation-based method, and the colored circles 
indicate the difference between the lower and the upper triangle. 

Fig. 11. Differences between GPP response to the dominant time scales and one 
certain time scale (1–24 months). The inset is the absolute GPP response under 
the dominant time scale of droughts with the threshold of − 1.64. 
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(3) Factors driving the spatial heterogeneity of dominant time scales 
included vegetation type, water balance, and soil textures. In 
general, forests responded to extreme droughts at a longer time 
scale than shallow-rooted grassland and cropland. GPP in humid 
biomes can be more resistant to long-term droughts, which was 
not in line with findings from correlations, implying the corre-
lation approach may fail to reflect and focus on the extreme 
negative situation. The dominant time scales for vegetation 
planted in loam were longer since loam has a better capacity to 
conserve water and fertility. 

Our study highlighted it should be careful when selecting the 
dominant drought time scale, and the extreme-based method was rec-
ommended. In further studies, it is suggested to consider the effects of 
drought legacy and flash droughts on the response of photosynthesis to 
drought time scales. 
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