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A B S T R A C T   

Droughts affect the interannual variability of global land carbon fluxes and are expected to exert widespread 
impacts on the carbon cycle given a future climate with more intense and frequent droughts. Evidence indicates 
that the impacts of droughts on the carbon cycle vary in different seasons, but a quantitative examination of the 
seasonal differences is lacking. Here we ensemble multiple data streams for greenness indices and carbon fluxes, 
including those from remote sensing observations, flux tower upscaling, atmospheric inversions, and dynamic 
global vegetation models (DGVMs), to quantify the seasonal responses of vegetation to extreme droughts in 
China. We find that summer droughts cause the largest negative responses of leaf area index (LAI, with median 
standardized anomalies of -0.40), gross primary productivity (GPP, -0.55), and net ecosystem productivity (NEP, 
-0.74); notably, droughts in autumn largely suppress carbon uptake. The response patterns show a high degree of 
heterogeneity, and we identify the factors driving these spatial variations using the extreme gradient boosting 
(XGBoost) machine learning approach. Climate is the dominant driver of spring and autumn GPP responses while 
LAI predominantly drives summer GPP loss. Looking into the biotic factors, carry-over effects (previous-season 
vegetation growth affecting current-season growth) contribute substantially to the alleviation of drought stress, 
in that previous-season greening compensate vegetation loss during droughts. Our results not only quantify the 
seasonal response differences in carbon fluxes and greenness, but suggest that carbon fluxes respond more 
sensitively to drought than greenness. Also, we show seasonal differences in the degree to which factors 
contribute to drought impacts, which highlight that annual-scale drought analyses may mask spring and autumn 
vegetation response to droughts.   

1. Introduction 

Droughts are projected to be more intense and frequent as the Earth 
warms (IPCC, 2013; Zhou et al., 2019). The impacts of extreme droughts 
on carbon fluxes have been observed over the globe, such as the 2003, 
2010, and 2018 European summer droughts and heat waves (Bastos 
et al., 2020b; Ciais et al., 2005), the 2015-16 Amazon droughts 
(Doughty et al., 2021; Koren et al., 2018), and the 2012 US drought 
(Wolf et al., 2016). That is, droughts play a crucial role in regulating the 
interannual variability of carbon cycle (Piao et al., 2020b; Zscheischler 
et al., 2014) due to its effect on photosynthesis, heterotrophic and 
autotrophic respiration, and soil carbon (Anderegg et al., 2013; Sippel 
et al., 2018). However, an understanding of the complex drought im-
pacts on the carbon cycle at regional scales remains incomplete (Deng 

et al., 2021). 
One major limitation in understanding drought responses is their 

seasonal differences, particularly in the northern hemisphere where 
vegetation dynamics show distinct characteristics across seasons. Recent 
studies have increased our awareness that drought responses can vary by 
season. For example, during spring droughts, photosynthesis and net 
carbon uptake are not so sensitive to precipitation (Xu et al., 2020), as 
they might be enhanced by the warmer air temperature (Fu et al., 2015; 
Wolf et al., 2016). In comparison, summer vegetation growth is thought 
to be predominantly suppressed by droughts (Angert et al., 2005), 
although there is no consensus on whether the driving mechanism is 
atmospheric aridity (Yuan et al., 2019a) or soil moisture deficit (Liu 
et al., 2020). Temperature and radiation were thought to be the key 
factors that limit autumn vegetation activity, but a recent study 
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indicated that soil water supply regulated autumnal photosynthesis and 
carbon uptake (Zhang et al., 2020c). Thus, the timing of drought onset is 
critical when studying the drought impacts (De Boeck et al., 2010), such 
as on vegetation growth (Gao et al., 2018) or the resistance and resil-
ience of ecosystems to droughts (Li et al., 2020). 

The seasonal differences are further complicated by the nonlinear 
and seasonal carry-over effects. On one hand, over a year the climate 
resources (temperature, precipitation, and radiation) are not distributed 
evenly and would affect the timing of peak photosynthesis activity (Park 
et al., 2019), which may contribute to discrepancies in the seasonal 
responses to droughts. On the other hand, plant growth can be affected 
by previous-season state, which is a phenomenon of biological memory 
(Ogle et al., 2015) and has been documented as “an individual’s previous 
history and experience explain current performance” (O’Connor et al., 
2014). Those inter-season carry-over effects have been reported in 
several cases, such as the 2012 US summer drought (Wolf et al., 2016) 
and the 2018 European drought and heat waves (Bastos et al., 2020a). 
For example, during the 2012 US drought, carbon uptake was reduced 
by 0.23 Pg C in the summer, but the warmer spring led to additional 
greening and a higher uptake of 0.24 Pg C, which was found to 
compensate for the reduction in summer drought-induced productivity 
(Wolf et al., 2016). By contrast, the earlier spring greening was also 
implied to play a negative role in that it triggered soil moisture deficit 
and exacerbated the summer drought (Lian et al., 2020). A recent study 
concluded this negative lagged memory-induced vegetation decline as 
structural overshoot effects, and 11% of the drought events were found 
to be overshoot-related globally (Zhang et al., 2021). These findings 
seemed to indicate large seasonal differences in carbon cycle response to 
droughts, and carry-over effects need to be quantified to better under-
stand vegetation growth through different periods of the growing sea-
son. However, systematic assessments on how the carbon cycle responds 
to droughts in different seasons remain scarce. 

China is a country with a gradient of climate zones and distinct 
seasonality of vegetation activities. The vegetation changes from de-
ciduous in the north with a strong seasonal cycle, to evergreen in the 
south with a weak seasonality in productivity (Dannenberg et al., 2020). 
China is also susceptible to droughts, such as the 2009/2010 drought in 
Southwest China that substantially reduced vegetation productivity (5.7 
± 9.5 g C m− 2 month− 1) and carbon uptake (4.4 ± 5 g C m− 2 month− 1). 
Additionally, droughts were estimated to reduce maize yield by 440 kg 
ha− 1 yr− 1 in northern China (Yuan et al., 2014). Thus, China is an ideal 

region to examine how the regional carbon cycle responds to seasonal 
droughts. The accumulation of ground and satellite-based observations, 
the development of terrestrial ecosystem models, and atmospheric in-
versions of carbon fluxes allows for the study of vegetation activity, 
vegetation productivity, and ecosystem carbon balance at various 
spatial and temporal scales (Anav et al., 2015). Here, we synthesized 
multiple data products from both bottom-up and top-down approaches 
to explore: 1) whether the responses of vegetation greenness and carbon 
fluxes to extreme droughts vary in different seasons; and 2) which factor 
(s) drive the seasonal differences in drought responses. 

2. Methods and data 

2.1. Study area 

Located in East Asia, most areas of China are affected by monsoon 
climate, which hosts an abundance of vegetation types and has a distinct 
seasonality in productivity (Fig. 1). Northeast China (deciduous forests) 
and the mountain areas around Sichuan Basin have a high seasonality in 
leaf area index (LAI), while the vast arid and semi-arid regions in North 
China, Northwest China, and the Tibetan Plateau have low seasonality. 

2.2. Data sources 

Here, we utilized the Standardized Precipitation Evapotranspiration 
Index (SPEI) to indicate dry conditions. SPEI is a widely used drought 
metric with flexible time scales and is advantageous in that it considers 
both potential evapotranspiration and precipitation (Vicente-Serrano 
et al., 2010). Monthly SPEI data was used in this study, and the spatial 
resolution was 0.5◦ × 0.5◦ (Vicente-Serrano et al., 2010). Following 
Deng et al. (2021), the extreme drought seasons were defined as the 
seasons when the standardized anomaly (SA; see Section 2.3) of the 
3-month SPEI was less than a threshold of -1.5. The precipitation and 
temperature data we used were obtained from the Climatic Research 
Unit (CRU) TS 4.03 data, and incoming shortwave radiation was from 
the CRU Japanese Reanalysis (CRU JRA) v2.0 data (Harris et al., 2020; 
Kobayashi et al., 2015). Land cover data was adapted from a 1:1,000, 
000 digitized vegetation map of China (Editorial Board of Vegetation 
Map of China, 2007). Vegetation types were grouped into forest, 
shrubland, grassland, and cropland for further analysis. Since the data 
was missing, the extent of the south China sea islands was not shown in 

Fig. 1. Vegetation type (a) and seasonality of LAI (m2 m− 2) (b). Land cover data was adapted from a 1:1,000,000 digitized vegetation map of China. Seasonality is 
defined as the seasonal amplitude, which is the difference between the maximum and minimum monthly values in a calendar year. For LAI, we used the median value 
of four products (Table S1). 
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the results (Figs. 2 and 4). 
To examine how vegetation responded to extreme seasonal droughts 

from both the structural and functional perspectives, we used LAI, gross 
primary productivity (GPP), and net ecosystem productivity (NEP, the 
difference between GPP and terrestrial ecosystem respiration) to indi-
cate vegetation greenness, photosynthesis, and net carbon flux, respec-
tively (details of different data sets are shown in Table S1). 

As a well-defined indicator of vegetation canopy structure, LAI is an 
index of one-sided green leaf area relative to the ground surface area for 
broadleaf canopies (or one half for the needleleaf) per unit ground area, 

and several remotely sensed LAI approaches have been developed. Here, 
we included four LAI products (MODIS C6 (Myneni et al., 2015), GIMMS 
LAI3g (Chen et al., 2019), GLASS LAI v4.0 (Xiao et al., 2016), and 
GLOBMAP LAI v3.0 (Liu et al., 2012)). 

Net carbon exchange (the opposite of NEP) and GPP can be estimated 
in situ using eddy covariance towers at canopy scales with footprints that 
usually have diameters of a few hundred meters (Chu et al., 2021). 
Despite this, the estimation or simulation of GPP at large scales can be 
categorized as (1) data-driven GPP, which uses remote sensing (RS) data 
and the light use efficiency (LUE) model; (2) flux-tower upscaled GPP; 

Fig. 2. The spatial patterns of drought frequency, intensity, and anomalies of precipitation, temperature, and radiation (standard deviation, s.d.) during extreme 
droughts in spring (first column, March–May, MAM), summer (second column, June–August, JJA), and autumn (third column, September–November, SON). Extreme 
drought seasons were defined as seasons with a standardized SPEI anomaly less than a threshold of -1.5 (more details in Section 2.2). Frequency was the number of 
extreme drought seasons during the period 2000-2015, and intensity was mean SPEI anomalies (s.d.). 
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and (3) process-based modeled GPP, such as dynamic global vegetation 
models (DGVM) outputs. We used five widely used GPP products from 
these three different approaches to assess drought impacts, including 
MODIS GPP (Zhao et al., 2005), P-model GPP with soil moisture limi-
tations (Stocker et al., 2019), upscaled MTE-GPP (Yao et al., 2018), the 
ensemble mean of FLUXCOM-GPP (Tramontana et al., 2016), and the 
ensemble mean of GPP from TRENDY v6 (Le Quéré et al., 2018). 

Similarly, the NEP products we used included FLUXCOM-NEP and 
ensemble mean of DGVM outputs, and CAMS v17r1, which estimates 
NEP using CO2 concentration and atmospheric inversion models (Che-
vallier et al., 2005). Empirical studies (e.g., for vegetation greening 
(Zhu et al., 2017) or for wheat growth (Martre et al., 2015)) showed the 
model ensemble can decrease the uncertainty and perform better than 
the individual models. Thus, we used the ensemble mean of the data sets 
to minimize the uncertainties. By synthesizing both top-down and 
bottom-up data sets, we aimed to provide a comprehensive assessment 
of extreme seasonal droughts in China and their impacts on vegetation 
and carbon cycle. 

2.3. Data pre-processing and analyses 

We used monthly data to analyze changes in climatic factors, vege-
tation greenness, and carbon fluxes due to seasonal droughts. Monthly 
climate data with a spatial resolution of 0.5◦ × 0.5◦ were analyzed from 
CRU TS 4.03 and CRU JRA v2.0. For MODIS LAI and GPP, we generated 
monthly composites using the Maximum Value Composite (MVC) pro-
cedure (Holben, 1986). All the LAI products were interpolated into the 
spatial resolution of 0.05◦ × 0.05◦ using the nearest neighbor method 
(Parker et al., 1983), while the flux data (GPP and NEP) were interpo-
lated or aggregated into a spatial resolution of 0.5◦ × 0.5◦. In addition, 
climate and land cover data were also interpolated (or aggregated) into 
the same resolution (0.05◦ or 0.5◦) to match other data (LAI, GPP, and 
NEP) for analysis. We used the nearest neighbor method to interpolate 
(or aggregate) the continuous climate data and we used the majority 
method to classify vegetation types. 

After spatio-temporal aggregation, the linear trend (least square 
fitting) was removed from original monthly data (climate, LAI, and 
carbon fluxes). We computed seasonal means for SPEI, temperature, 
radiation, LAI, GPP, NEP, and the sum of precipitation during spring 
(March, April, and May, MAM), summer (June, July, and August, JJA), 
and autumn (September, October, and November, SON), respectively. 
Further, we derived standardized anomalies (SA) of those variables for 
each grid: 

SAts =
xts − μs(x)

σs(x)
(1)  

where xts is the seasonal value (spring, summer, or autumn) of a variable 
for the year t (2000-2015, the overlapping period of all data), μs(x) and 
σs(x) are the mean and standard deviation of the variable in s season 
over the study period. Thus, the original values were standardized 
locally into Z-scores for comparisons. 

Bagging or boosting are widely used in machine learning approaches 
to ensemble weak learners to obtain a strong learner. These algorithms, 
such as bagging-based random forest (RF) and boosting-based boosted 
regression tree (BRT), have been used in ecological studies to search for 
the dominant drivers of response variations (Li et al., 2020; Luo et al., 
2021). In general, the bagging method aims to reduce the variance by 
bootstrapping samples and averaging predicted results, while the 
boosting method aims to reduce the bias by iteratively generating trees 
and minimizing the residual error from the previous tree (Sutton, 2005). 
Extreme gradient boosting (XGBoost) was developed using boosting, 
and its objective function includes both training loss and model 
complexity, so that it can achieve higher accuracy and largely avoid 
overfitting. XGBoost can also get an optimized model fast using the 
gradient descent algorithm and parallelization (Chen and Guestrin, 

2016). Thus, we used XGBoost to identify contributions of climate, 
drought characteristics, and inter-seasonal carry-over effects to altering 
LAI, GPP, and NEP in response to extreme droughts. XGBoost and partial 
dependence analysis was performed using the packages “xgboost” 
(Chen et al., 2022) and “pdp” (Greenwell, 2017) in R 4.1.1 (R Core 
Team, 2021). 

The carry-over effect was a phenomenon of biological memory, 
regarding drought, negative correlations between previous-state 
greenness and current-state drought impacts can be found, which have 
been defined as structural overshoot droughts and have a negative carry- 
over effect (Zhang et al., 2021). The carry-over effect can be quantified 
using multiple linear regression and partial correlation and path anal-
ysis, and the linear (path) coefficient can be used to obtain the effect size 
(Lian et al., 2021). Following previous studies, we defined carry-over 
effect as the effect of previous-season vegetation status or productivity 
(LAI, GPP, or NEP) on present-season drought impacts. The variable 
importance and partial dependence analysis of the XGBoost model were 
used to assess the magnitude and the direction (positive or negative) of 
the effect. 

3. Results 

3.1. Characteristics of extreme droughts 

Fig. 2 shows the seasonal patterns of drought frequency, intensity, 
and the corresponding climate anomalies during seasonal droughts for 
spring, summer, and autumn. Frequent and intense spring droughts 
(twice or three times per decade) were found in northeastern China, 
central China, and the Tibetan Plateau (Fig. 2a, d), and intense summer 
droughts found in western China (Fig. 2e). In contrast, autumn droughts 
were found with lower intensity, and were mostly distributed in western 
China and southeast coastal areas (Fig. 2c, f). During drought seasons, 
we consistently found a precipitation deficit for all three seasons (96.7% 
~ 97.5% of the study area), whereas the anomalies of temperature and 
radiation showed spatial heterogeneity. High temperature anomalies 
were found in northern and southwestern China during spring droughts, 
and also in northeastern and southwestern China during autumn 
droughts. During summer droughts, however, most of the study area 
suffered from high temperature stress. The spatial patterns of radiation 
anomalies were generally consistent with temperature anomalies during 
seasonal droughts, with discrepancies found in spring over large areas in 
southeastern China. 

3.2. Divergent responses of vegetation greenness and carbon fluxes to 
seasonal droughts 

Fig. 3 shows how LAI, GPP, and NEP changed in response to extreme 
seasonal droughts. Among the different seasons, summer droughts 
exerted the largest negative impact on vegetation greenness and the 
carbon cycle, with a mean Standardized Anomaly (SA) of -0.40, -0.55, 
and -0.74 for LAI, GPP, NEP, respectively. The reduction in LAI was 
larger during summer droughts (with median SA among the data 
products varying from -0.59 ~ -0.21) than during autumn (-0.26 ~ 
-0.16) and spring (-0.22 ~ -0.01) (Fig. 3a, c). Generally, GPP and NEP 
decreased by a relatively larger extent than LAI. Although the ensemble 
mean of multiple products showed a larger reduction in GPP during 
summer droughts than in spring and autumn, the responses to seasonal 
droughts differed among individual GPP products. For MODIS and 
FLUXCOM, the largest GPP decrease was found during summer droughts 
(-0.60 and -1.61, respectively), while for MTE-GPP, P-model GPP, and 
DGVM outputs, the largest decrease was found during autumn droughts 
(-0.34, -0.61 and -1.63, respectively) (Fig. 3b). How NEP responded to 
droughts was inconsistent among the different NEP estimations 
(Fig. 3c). Results from the atmospheric inversion (CAMS), with a much 
coarser resolution, suggested on average that there were no changes to 
extreme seasonal droughts except for a slight NEP decrease in response 
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to autumn drought, while FLUXCOM-NEP and DGVM simulations 
showed a substantial reduction in NEP, particularly in response to 
summer drought (with a median SA of -1.2 and -1.06, respectively). 

3.3. Spatial patterns of responses in LAI, GPP, and NEP to seasonal 
droughts 

The responses of vegetation greenness and carbon fluxes to extreme 
seasonal droughts exhibited considerable spatial heterogeneity. 
Ensemble mean flux anomalies of different products are shown in Fig. 4, 
For LAI, substantial decreases during spring droughts were found in 
eastern China and Guizhou Province (Fig. 4a), with an agreement index 
(Kendall’s concordance coefficient W) of 0.62 among different data 
products (Fig. S2). During summer droughts, significant decreases in LAI 
occurred in northern and western China with an agreement index of 0.60 
(Fig. 4d). We found a substantial reduction in LAI in response to autumn 
droughts in the arid areas of northern China and parts of Shandong and 

Sichuan Provinces (Fig. 4g). Generally, the negative impacts of seasonal 
droughts on vegetation greenness were stronger in summer than in 
spring and autumn (p < 0.05 for LAI and GPP, also seen in Fig. 3). 
Looking into different vegetation types, we found that grasslands and 
croplands were more vulnerable to seasonal droughts with a larger 
reduction in LAI, especially during summer, while forests were more 
resistant to moisture stress (the inset bar plots in Fig. 4a, d, g). 

The responses of GPP to extreme seasonal droughts showed similar 
patterns as LAI, except that there was a larger extent of negative impacts 
over southern China in spring, eastern China in summer, and the North 
China Plain in autumn (Fig. 4b, e, h). Among the different data products, 
FLUXCOM-GPP and DGVM were much more sensitive to extreme sea-
sonal droughts than the others (Fig. S3). Like what we found for LAI, the 
reduction in GPP for grasslands and croplands during seasonal droughts 
was much larger than for forests, particularly for the MODIS results 
(Fig. S3a–c). To test the robustness of our results, we defined the extreme 
drought seasons with soil moisture instead of SPEI and found that the 

Fig. 3. Standardized anomalies of LAI, GPP, 
and NEP during extreme drought seasons. The 
whiskers and boxes indicate the maximum, 
75th quantile, median, 25th quantile, and 
minimum values (outliers exceeding 1.5 times 
of box length are not shown). Bars labeled with 
different letters indicate significant differences 
among different seasons (p < 0.05). LAI in-
cludes four products (L1, MODIS C6; L2, 
GIMMS LAI3g; L3, GLASS LAI v4.0; L4, GLOB-
MAP LAI v3.0), GPP includes five products (G1, 
MODIS GPP C5.5; G2, P-model; G3, MTE-GPP; 
G4, ensemble mean of FLUXCOM-GPP; G5, 
ensemble mean of TRENDYv6), and NEP in-
cludes three products (N1, CAMS v17r1; N2, 
ensemble mean of FLUXCOM-NEP; N3, 
ensemble mean of TRENDYv6).   
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response of GPP was similar (Figs. S4-6), which indicated that the results 
we generated using SPEI were robust. In general, the responses of NEP to 
seasonal droughts was similar with spatial patterns for GPP responses, 
except that negative impacts on NEP concentrated more in eastern China 
in spring, and southwestern China in autumn (Fig. 4c, i). Among the 
different NEP data products, FLUXCOM-NEP and DGVM outputs were 
much more sensitive to droughts than atmospheric-inversed NEP 
(Fig. S7). 

3.4. Drivers of responses of LAI, GPP and NEP to seasonal droughts 

Water availability depends on both precipitation (PREC) and po-
tential evapotranspiration (PET), which respectively indicate water 
supply and demand (Sun et al., 2017; Thornthwaite and Mather, 1951). 
As shown in Fig. 5 (in a space defined by PREC and PET anomalies), 
more than 75% of the pixels with negative responses in LAI, GPP, or NEP 
(SA less than 0.5) occurred in the quadrant of negative PREC and pos-
itive PET anomalies. Generally, precipitation deficit was more severe in 
spring with larger PREC anomalies (with a median PREC SA of -1.5, -1.5, 
and -1.4), while summer drought was associated with both low water 
supply and high water demand (Fig. 5d–f). 

Specifically, climate factors such as precipitation, temperature, and 
radiation have been identified as fundamental drivers of variations in 

vegetation growth and carbon fluxes at ecosystem scales (Niu et al., 
2017; Piao et al., 2020b; Yao et al., 2018). The carry-over effects (pre-
vious state will affect present-state vegetation growth, more details can 
be seen from the Method) are also important in determining the vege-
tation responses to drought in a given season (Buermann et al., 2018; 
Lian et al., 2020; Zhou et al., 2020). Here, we used the machine learning 
algorithm XGBoost to identify the drivers of vegetation responses to 
droughts in different seasons. Generally, variations of NEP can be 
explained by the driving factors with largest model R-square (Fig. 6c, f, i; 
with R2 of 0.95, 0.93, and 0.96) compared to GPP and LAI. GPP was 
predicted best in spring (Fig. 6b, R2 is 0.82) and was attributed to TEMP, 
LAI, and GPP in the previous season, and LAI was also best predicted in 
spring (Fig. 6a) with carry-over effects (preLAI) dominating the 
variations. 

The drivers that dominated changes in vegetation greenness and 
carbon variables in response to extreme droughts differed over seasons. 
For LAI, abiotic factors (climatic factors and drought characteristics) 
were the main predictors, contributing more than 50% of the variable 
importance (Fig. 6a, d, g). The effects of abiotic factors were asymmetric 
among seasons, enhancing LAI during spring and autumn and sup-
pressing it during summer. The primary drivers that predicted variations 
of LAI response were the carry-over effects (LAI in previous season) in 
spring and autumn (with the average gain of 0.36 and 0.29, higher gain 

Fig. 4. The spatial patterns of responses in LAI, GPP, and NEP to seasonal droughts in China for spring (MAM, a–c), summer (JJA, d–f), and autumn (SON, g–i). The 
standardized anomalies (SA) of LAI, GPP, and NEP during drought seasons were averaged across different products and presented. The inset map in (a) illustrates the 
spatial distribution of vegetation types in China. The inset bar plots in a, d, and g show the mean SA of LAI by vegetation types. The black dots on each map indicate 
the pixels where different products agree on the direction of changes (refer to Table S1 and Figs. S2, S3, S7 for details of data products used and the spatial patterns of 
responses derived from each data product). 
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value means a more important predictive feature), and vegetation type 
for summer (with the average gain of 0.26). Interestingly, precipitation 
enhanced LAI during spring and autumn, but not during summer. In 
terms of GPP, abiotic drivers accounted for 70% and 60% of the variable 
importance in spring and autumn (Fig. 6b, h), with temperature as the 
primary predictor (an average gain of 0.54 and 0.28), while LAI 

controlled GPP responses in summer (the average gain of 0.40) and 
autumn (the average gain of 0.30). The responses of NEP to droughts 
were dominated by GPP for all three seasons, with a comparable 
contribution from temperature in spring (Fig. 6c, f, i). Fig. 7 shows the 
carry-over effects from previous seasons on current-season drought 
impacts, and under most situations the effects are positive (except for 
predicting summer LAI and spring NEP), meaning that the better growth 
in previous seasons, the less drought-induced vegetation loss during this 
season. 

4. Discussion 

4.1. Seasonal differences in the responses of vegetation greenness, 
photosynthesis and net carbon uptake to drought 

We found that the spatial patterns and the response magnitudes were 
different for LAI, GPP, and NEP, and also varied in different seasons. 
Generally, summer droughts led to the largest decrease in LAI, GPP, or 
NEP (Fig. 3), which is in line with the previous research on summer 
droughts (Ciais et al., 2005; Hoerling et al., 2014; Sun et al., 2015). 
Summer drought had negative impacts on LAI and GPP in north China 
during summer droughts, echoing with the findings from Zhang et al. 
(2016). Northern China such as Inner Mongolia is dominated by arid and 
semi-arid climate with grasslands, and grasslands were more sensitive 
than forests to droughts in the short term because of the shallower 
rooting system (Xu et al., 2018). Additionally, droughts that occurred at 
the earlier stage of the growing season were found to induce larger 
negative impacts on vegetation growth (D’Orangeville et al., 2018). In 
this study, northern vegetation was more sensitive to summer droughts, 
one potential reason might be that the growing season of northern 
vegetation starts later than that of southern vegetation, for example, 
greening was beginning at June, which meant summer droughts 
occurred at the early stage of vegetation growth resulting in larger im-
pacts (Fig. S13b). Similarly, for spring droughts, negative response was 
found in eastern and southern China, where growing season starts 
earlier in March and April than other regions (Fig. S13a). 

During spring droughts, sustainable vegetation greenness and 
photosynthesis reduction were found with lower precipitation than PET 

Fig. 5. The responses of LAI, GPP, and NEP to extreme seasonal droughts in 
relation to water balance. For each panel, the dots represent the pixels 
distributed in the space defined by anomalies of precipitation (PREC) and po-
tential evapotranspiration (PET), color-coded by the mean standardized 
anomalies (SA) of LAI (a, d, and g), GPP (b, e, and h) and NEP (c, f, and i) 
averaged across different data products (see Table S1 for details of data prod-
ucts). The red ellipse depicts the bivariate Gaussian distribution (75%) fitted to 
the PREC and PET anomalies where the standardized anomaly of LAI, GPP, or 
NEP is less than -0.5, while the diamond inside, along with the numbers in 
parentheses, indicates the median PREC and PET values. The percentages 
represent the fractions of pixels falling into the respective quadrants (results for 
each data product are shown in Figs. S8–S10). 

Fig. 6. Prediction of LAI, GPP, and NEP 
anomalies in response to droughts in spring 
(MAM, a–c), summer (JJA, d–f), and autumn 
(SON, g–i) using the algorithm XGBoost. For 
each panel, the inset bar plot on the left pre-
sents the relative importance of drivers based 
on their fractional contributions to the predic-
tive model, with “+” (or “-”) indicating positive 
(or negative) effects from partial dependence 
tests (see details in Fig. S11), and the gray 
error-bar shows the range between 25th and 
75th percentile of importance based on the 
same models but using different product com-
binations (Fig. S12). The abiotic factors (gray 
bars and pie chart) we included as predictors 
are PREC, TEMP, RAD, drought intensity 
(Inten), frequency (Freq), and duration (Dura), 
and biotic drivers (green bars and pie) are 
vegetation type (Veg) and LAI, GPP, or NEP of 
the previous season (PreLAI, PreGPP or PreNEP, 
respectively). Note that for spring, the previous 
season was defined as the last autumn. The 
inset red line on the right is a fitted linear 
regression line, and the gray line is the 1:1 line.   
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(Fig. 5a–c), implying small PET increase would lead to large negative 
impacts, parallel to the previous finding that droughts in the northern (>
20◦N) were more sensitive to PET than precipitation in March and April 
(McCabe and Wolock, 2015). Autumn droughts caused the largest loss in 
NEP (Fig. 3), and the possible causes may be that drought was found to 
advance the autumn leaf senescence, induce fast leaf drop and then 
decrease the carbon uptake (Wu et al., 2022). Additionally, the associ-
ated high temperature increased enzyme activities (Thalmann and 
Santelia, 2017) and resulted in ecosystem respiration increase and NEP 
decrease. We also found that temperature and radiation were critical 
driving factors in modulating GPP towards the end of the growing sea-
son, in line with two recent studies that emphasized the role of light 
limitation (Zhang et al., 2020b) and temperature (Chen et al., 2020) in 
autumn. Net carbon uptake is tightly associated with carbon balance, 
and soil moisture has been identified as the key limitation to autumn 
photosynthesis (Zhang et al., 2020c), drought that occurred in the late 
growing season should be investigated. 

Additionally, photosynthesis had more widely negative responses 
compared to vegetation greenness (Fig. 4). GPP can be expressed as the 
function of LUE (maximum LUE and environmental stress), photosyn-
thetically active radiation (PAR), and the fraction of PAR absorbed by 
the vegetation canopy (fPAR) (Monteith, 1972) . Given fPAR relates to 
LAI and the other two components might respond to droughts, GPP 
might be more sensitive to drought. As vegetation indices have been 
regarded as proxies of vegetation productivity particularly in global GPP 
estimations (Ryu et al., 2019), we highlight the importance of dis-
tinguishing photosynthesis from LAI in extreme conditions, under which 
radiation and soil moisture might modify light source and use efficiency 
(Walther et al., 2019; Zhang et al., 2020b). 

4.2. Contribution of abiotic and biotic drivers on responses to drought 

Climate affects carbon fluxes directly via water supply, temperature, 
and radiation, and indirectly via climate extremes (e.g., droughts) (Seidl 
et al., 2017). In comparison, biotic factors affect the carbon cycle 
through biogeochemical processes, such as phenology and physiology 
(Niu et al., 2017). We found that abiotic drivers dominated the LAI re-
sponses to droughts throughout the growing season (57%-68%; Fig. 6a, 
d, g). However, abiotic drivers only contributed to 40% of the variability 
of GPP responses during summer droughts and contributed equally 
(48%-53%) to NEP responses compared to biotic factors, which also 
agreed with previous studies at the annual scale (Richardson et al., 
2007; Shao et al., 2015). This phenomenon can be explained by that 
droughts in spring and autumn may influence the phenological transi-
tions (the start and end of growing season), which was associated with 
ecosystem productivity (Richardson et al., 2010) 

Specifically, the impacts of temperature on LAI during seasonal 
droughts were asymmetric throughout the growing season. Spring 
warming enhances photosynthesis as the temperature becomes favor-
able for growth (e.g., the dominance of spring warming to LAI and GPP 

changes in Fig. 6a, b), which is widely confirmed by previous studies 
(Wang et al., 2020; Xu et al., 2020) despite its weakening effects 
(Keenan et al., 2014; Piao et al., 2017). In contrast, warm temperature in 
summer may increase vapor pressure deficit (VPD), induce stomatal 
closure, and reduce vegetation growth (Yuan et al., 2019a). Autumn 
warming could slow chlorophyll degradation, lengthen the growing 
season, and therefore enhance photosynthesis (Liu et al., 2016). It is 
hypothesized that radiation impacts LAI and GPP differently by 
increasing evapotranspiration and decreasing soil moisture, which may 
offset benefits of additional radiation for photosynthesis. It has been 
shown that photosynthesis can increase despite a decrease in greenness 
(Doughty et al., 2019; Walther et al., 2019). In our study, this phe-
nomenon was observed in summer when LAI decreased as radiation and 
GPP increased. The most reasonable explanation for this decoupling was 
a negative relationship between radiation and soil moisture. Low soil 
moisture was found to always occur alongside higher photosynthesis, 
particularly in forests (Walther et al., 2019), which agreed with our 
findings that vegetation type was the primary factor in regulating 
summer vegetation greenness. 

Biotic drivers include vegetation type, carry-over effects from the 
previous season, and coherent connections among greenness and fluxes. 
Both spatial response patterns (Fig. 4) and variable partial dependence 
(Fig. S11) reveal that the forest was less sensitive to droughts. We found 
that particularly in summer, LAI loss in the forest area (-0.07) was only 
one-sixth of that in non-forest areas (-0.45), and GPP loss in forests was 
also less (-0.75 and -0.85). This difference was likely due to the deeper 
rooting systems of forests, which provides trees access to water deeper in 
the soil profile (Xu et al., 2018). This finding was in line with previous 
studies at growing season scales (Deng et al., 2021) and event-based 
scales (Flach et al., 2021). Meanwhile, the primary role of LAI in 
driving GPP response to extreme droughts in summer, which echoed a 
previous study that suggested canopy structure could be the main driver 
of the seasonality of photosynthesis rather than the seasonality of 
climate (Wu et al., 2016). 

Carry-over effects from previous seasons can be positive, due to 
biological memory (Ogle et al., 2015), or negative as suggested by the 
structural overshoot theory (Jump et al., 2017). For example, a warm 
spring can cause rapid vegetation growth and offset the impacts of a 
summer drought, as was observed during the 2012 US summer drought 
(Buermann et al., 2018; Wolf et al., 2016). On the contrary, a warm 
spring can enhance evapotranspiration and deplete soil moisture, which 
can lead to soil moisture deficit and increase the severity of summer 
droughts (Bastos et al., 2020a; Lian et al., 2020). Here, we found 
considerable positive carry-over effects (except negative effects shown 
for summer LAI and spring NEP), that is, larger growth in previous 
season reduced drought-induced loss in the current season (Fig. 7). This 
finding was in line with a vegetation carry over study in northern 
hemisphere, that the carry-over effect of early-season greenness exerted 
strong positive impacts on peak-season greenness (Lian et al., 2021). Our 
findings highlighted the importance of inter-seasonal carry-over effects 

Fig. 7. Drought response functions of LAI (a), GPP (b), and NEP (c) to their growth states in previous seasons. The response functions were generated from partial 
dependence analysis, and the dark-colored lines are results using all data, the light-colored lines are 100 bootstrap results and each model run randomly selected 70% 
of the data as inputs. The results of all independent variables (climate and other biotic factors) are shown in Fig. S11. 
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when studying drought resistance. 

4.3. Uncertainty and limitations 

Understanding the uncertainties and limitations helps to better 
interpret the findings of our study. We used multiple data streams of LAI 
and carbon fluxes, but each product has its advantages and disadvan-
tages. For LAI products, MODIS and GLOBMAP LAI were developed 
using physical approaches, a look-up table, and radiative transfer 
models, while GIMMS and GLASS LAI were trained by neural network 
algorithms and vegetation indices (Piao et al., 2020a). Different LAI 
products were generally consistent, although a validation study shows 
GLASS LAI performed better than GLOBMAP and MODIS LAI in China 
(Li et al., 2018). For GPP estimates, MODIS GPP defined the light use 
efficiency as a function of vapor pressure deficit, while P-model GPP 
considered the effect of soil moisture (Stocker et al., 2019). whether VPD 
or SM dominating the drought impact has not received common 
knowledge (He et al., 2022; Liu et al., 2020). Flux-tower upscaled GPP 
and NEP may not well capture interannual variability (Anav et al., 
2015). Moreover, MTE-GPP used more observation stations in China 
than FLUXCOM to constrain the model but FLUXCOM ensembled mul-
tiple machine learning algorithms (Tramontana et al., 2016; Yao et al., 
2018). Compared with date-driven models, most DGVMs can simulate 
the carbon fluxes under different scenarios but most models were 
simplified and hardly considered human disturbances (Le Quéré et al., 
2018). Furthermore, atmospheric inversion modeled NEP was based on 
CO2 concentration observations, whose resolution was much coarser 
than the other models due to the limited number of available 
observations. 

These data uncertainties should be taken into account when inter-
preting our results. Although variable importance results are consistent 
among different combinations of products used (Fig. S12), when looking 
into GPP response drivers, LAI was more important when using remote 
sensing based GPP as inputs, which might be associated with similar 
data inputs when producing the products. Similar phenomena could be 
found in that biological carry-over effects had greater importance when 
using DGVMs simulated GPP, and climate had a greater importance 
when using FLUXCOM GPP. 

Apart from the uncertainties in the data, other factors should be 
considered. For example, flash droughts onset and intensify rapidly, 
which can influence vegetation responses in short time scales (Christian 
et al., 2021; Pendergrass et al., 2020). In China, an increase in flash 
droughts was observed (Wang et al., 2016), which was predicted to 
result in higher risk of drought exposure in a warming climate (Yuan 
et al., 2019b). Studying the impacts of seasonal droughts has the po-
tential to reveal more detailed information than studies that focus on 
annual time scales. Fig. S14 shows the standardized anomalies of carbon 
fluxes during different numbers of extreme dry months (SPEI < -1.5). All 
seasonal droughts from 2000 to 2015 were included, but results using 
the SPEI < -1.5 threshold did not support the idea that droughts with 
rapid onsets (0 or 1 month) lead to more severe impacts. Further, climate 
conditions of 1-month droughts (particularly in summer and autumn, 
Fig. S15) were in line with that flash droughts co-occur with high tem-
perature, high vapor pressure deficit, and low soil moisture (Otkin et al., 
2017). Another study (Zhang et al., 2020a) showed that LAI, GPP, and 
NEP responded to ~ 80% flash drought in China. In that research, all 
negative anomalies were regarded as effective responses, but to what 
extent carbon fluxes responded to flash droughts should be carefully 
examined further. We suggest more in-depth studies on flash droughts 
associated with in situ observations and model simulations. 

Meanwhile, an obvious overestimation (underestimation) for low 
(high) values was found in XGBoost approach (Fig. 6, particularly for 
LAI and GPP), which could be explained by the limitation of the machine 
learning method in predicting extreme values. In future studies, deep 
learning might be introduced to address this issue (Qi and Majda, 2020). 
Additionally, it was inevitable that seasonal growth conditions would 

have lag effects on subsequent seasons when considering drought at 
seasonal scales, which was difficult to separate. Here, we considered the 
carry-over effects of vegetation conditions from the previous season 
when analyzing driving factors, but seasonal connections should be 
better examined in further experimental research. 

5. Conclusion 

We synthesized how the seasonal rhythm of vegetation growth, 
maturity, and senescence responded to extreme droughts in China using 
various data sources. We found a consistent reduction in vegetation 
productivity and net carbon uptake in response to seasonal droughts 
with the most substantial negative impacts in summer. Regions that 
were particularly sensitive to extreme droughts included eastern China, 
the arid and semi-arid northern China, and North China Plain for spring, 
summer, and autumn, respectively. Also, we quantified how and to what 
extent each driver affects vegetation responses using the machine 
learning approach XGBoost and partial dependence analysis. Interest-
ingly, results for summer were mostly in line with previous research at 
the annual or growing season scales (such as high resistance for forests, 
relationships between radiation and LAI, and GPP), but showed dis-
crepancies during spring and autumn droughts. It is notable that annual- 
scale studies may emphasize summer peaks, but we highlight that there 
are different mechanisms during other seasons. Carry-over effects from 
previous seasons were quantified and found to contribute substantially 
to vegetation responses to droughts in current seasons and were positive 
under most situations. Only summer LAI and spring NEP showed exac-
erbated loss caused by the structural overshoot effects of previous sea-
sons. Our results indicated that higher vegetation growth in a previous 
season might increase the resistance to extreme droughts in subsequent 
seasons, but this finding needs further experimental validation. 

Our study quantified vegetation greenness and carbon flux responses 
to extreme droughts and emphasized that greenness index-based 
research may underestimate the sensitivity of the response of photo-
synthesis to drought. Also, studies at annual scales might mainly present 
summer mechanisms and mask processes in spring and autumn that 
affect drought responses. 
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