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Biological invasions facilitate zoonotic disease
emergences
Lin Zhang1,2,11, Jason Rohr 3,11, Ruina Cui1,11, Yusi Xin4, Lixia Han5,6, Xiaona Yang7, Shimin Gu1, Yuanbao Du 1,

Jing Liang8, Xuyu Wang1,9, Zhengjun Wu5,6, Qin Hao2✉ & Xuan Liu 1,10,11✉

Outbreaks of zoonotic diseases are accelerating at an unprecedented rate in the current era

of globalization, with substantial impacts on the global economy, public health, and sus-

tainability. Alien species invasions have been hypothesized to be important to zoonotic

diseases by introducing both existing and novel pathogens to invaded ranges. However, few

studies have evaluated the generality of alien species facilitating zoonoses across multiple

host and parasite taxa worldwide. Here, we simultaneously quantify the role of 795 estab-

lished alien hosts on the 10,473 zoonosis events across the globe since the 14th century. We

observe an average of ~5.9 zoonoses per alien zoonotic host. After accounting for species-,

disease-, and geographic-level sampling biases, spatial autocorrelation, and the lack of

independence of zoonosis events, we find that the number of zoonosis events increase with

the richness of alien zoonotic hosts, both across space and through time. We also detect

positive associations between the number of zoonosis events per unit space and climate

change, land-use change, biodiversity loss, human population density, and PubMed citations.

These findings suggest that alien host introductions have likely contributed to zoonosis

emergences throughout recent history and that minimizing future zoonotic host species

introductions could have global health benefits.
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The rapid increase in zoonotic diseases (i.e., diseases caused
by pathogens that are spread from animal to people, also
known as zoonoses) poses a significant threat to the global

economy, public health, and social stability1,2. Positive associa-
tions between alien animal host invasions and the incidence of
zoonosis has long been of concern3–6, especially given recent
increases in both alien species introductions7 and zoonoses, such
as avian influenza, SARS, and COVID-198–11. Established alien
species can contribute to zoonosis by increasing the abundance of
existing pathogens and introducing novel pathogens12,13. In
addition, most alien animal introductions are associated with
human activities such as pet trade and aquaculture that may pro-
vide more contact opportunities between alien hosts and humans8.
In recent years, there have been increasing reports linking alien host
species with zoonoses. For example, invasive rats have contributed
to the emergence of plague, murine typhus, scrub typhus, leptos-
pirosis, and hantavirus hemorrhagic fever throughout the world14,
introduced North American raccoons contributed to the emergence
of West Nile virus and human roundworm infections in Europe15,
the spread of alien mosquitos in Europe contributed to the emer-
gence of chikungunya and dengue fever16, and alien lice and flea
vectors have fomented epidemics of typhus and plague in estab-
lished ranges13. Although these individual examples provide strik-
ing geographical and taxonomic evidence of the transmission of
zoonoses by alien hosts6, there has not previously been a global
synthesis of the role of established alien zoonotic hosts on zoonoses
across a broad range of taxonomic groups.

Animal invasions and zoonosis emergences are often correlated
with many cofactors, such as propagule pressure (a composite
measure of the number of individuals released into a region)17;
other global change factors, such as climate change18, biodiversity
loss19, and land-use change20; human population density1; and
disease and invasive species surveillance and research efforts21.
However, few studies at the global scale, across host and parasite
taxa, have controlled for these various cofactors to better isolate
the unique contribution of established alien host species to zoo-
noses, hindering the development of effective regulations for alien
species introductions and public health.

To address this knowledge gap, we use a global database of 10,473
zoonosis events since the year 1348 (compiled with the assistance of
GIDEON)22 and evaluate the role of established alien zoonotic hosts
on the number of zoonosis events across the globe, controlling for
propagule pressure factors (non-zoonotic host introductions and
human population density), climate (global environmental stratifi-
cation, GenS), global change processes (climate change, land-use
modification and biodiversity loss), native biodiversity, sampling
effort (country surveillance capacity and reporting bias), and spatial
autocorrelation (longitude and latitude of the geographic centroid of
each administrative area) (Fig. 1). Importantly, a correlation between
zoonosis events and zoonotic alien hosts might just be a product of
areas with high propagule pressure having more introductions of
both hosts and pathogens13,17. To address this potential issue, we first
conduct an intensive literature review to identify each established
alien species as a zoonotic or non-zoonotic host species. We then
include non-zoonotic alien host richness as a positive control for
propagule pressure that cannot directly increase zoonosis emer-
gences. Thus, a significant effect of zoonotic alien host introductions
on the number of zoonosis events when controlling for the number
of non-zoonotic alien host introductions (and other covariates)
would provide an estimate of the causal effect of established zoonotic
alien host species on zoonosis independent of propagule pressure.
Given that taxonomic groupings within classes of hosts can vary in
contributions to zoonoses6,23–25, we also conduct additional analyses
to identify which alien taxonomic groups seem to contribute most to
past zoonosis events. Moreover, a correlation between alien species
invasions and zoonosis events in space may be spurious if the disease

occurred earlier than the alien animal arrivals. Therefore, we also
conduct analyses to explore the relationship between species inva-
sions and zoonosis events through time. Finally, we generate a global
map showing where historical zoonoses were likely most influenced
by alien host introductions, which might provide helpful insights into
our understanding on the potential effects of alien animal invasions
on future zoonosis emergences.

Here, after controlling for other variables, we show that number
of zoonosis events increase with the richness of alien zoonotic hosts
across mammalian (particularly three orders: Artiodactyla, Carni-
vora, and Rodentia), birds (particularly waterfowl, Galliformes, and
Passeriformes), and Dipteran invertebrate host species both across
space and through time. Importantly, we do not observe a sig-
nificant effect of the alien non-zoonotic host species, indicating that
our findings on the correlation between the number of zoonosis
events and the number of zoonotic alien hosts are unlikely to be a
byproduct of areas with high propagule pressure having more
introductions of both hosts and pathogens.

Results
Global patterns of historical zoonoses and established alien
zoonotic hosts. As alien species may carry both existing and novel
pathogens and transmit them to local native species that can transmit
them to humans6, our analyses included events caused by both re-
emerging and novel zoonoses in each of a total of 201 countries or
regions worldwide (Supplementary Data 1). Of the 10,473 events for
161 zoonoses reported from 1348 to 2020, 2970 events were caused
by emerging diseases introduced to a new administrative unit and
7503 events were caused by re-emerging diseases that had been
reported before. Overall, these zoonoses were most often associated
with mammalian hosts, followed by avian, invertebrate, and herpe-
tofaunal hosts (Supplementary Fig. 1A, Supplementary Data 2–4,
note that some diseases may be carried by multiple host taxa). To
calculate the number of zoonosis carried by the alien zoonotic hosts,
we first obtained a total of 93,544 pathogen-alien host records from
an intensive literature and database review (Supplementary Data 2).
Using these records, we determined that at least 35.6% (283/795) of
established alien animals are zoonotic hosts of one or more zoonoses
and there is an average of 5.9 (±0.58, average ±S.E.) zoonoses per
alien zoonotic host (Supplementary Data 3). The number of zoonoses
varied among alien host taxa (Fig. 2), which was predominated by
alien mammalian zoonotic hosts, especially from orders Artiodactyla
(17.5 ± 3.70), Carnivora (12.2 ± 3.13), and Rodentia (8.9 ± 1.97), and
by alien avian hosts, especially from waterfowl (4.1 ± 0.78), Galli-
formes (3.8 ± 1.05), and Passeriformes (2.5 ± 0.36), and by alien
Dipterans (5.0 ± 0.58) for invertebrate-hosted zoonoses (Fig. 2).

These zoonosis events most often occurred in Europe (3495
events), followed by Asia (2180), North America (2120), Africa
(1301), South America (897) and Oceania (480, Supplementary
Fig. 1B). In general, these zoonosis events were concentrated in
higher latitudes, such as the United States and Western Europe
(Supplementary Fig. 2). Across pathogens, zoonoses were largely
caused by bacteria (4622) and viruses (4002), followed by
parasitic animals (1621) and fungi (225, Supplementary Fig. 1B).

Spatial relationship between alien animal invasions and zoo-
notic diseases. We next used generalized additive mixed models
(GAMMs) to examine the relationship between the number of
zoonotic alien host species and zoonosis events in a region
controlling for sampling efforts at species-, disease - and geo-
graphic-levels, administrative region size, alien non-zoonotic host
introductions (i.e., propagule pressure control), and various other
covariates, while treating continent (i.e., human settlement his-
tory), host order, and pathogen identity as random intercepts (to
control for the lack of independence associated with these factors;
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Fig. 1). We applied Akaike Information Criterion (AIC) to select
the most highly supported models (i.e., ΔAIC ≤ 2).

There were six variables that appeared in the top five most
supported models: alien zoonotic host richness, human population
density, biodiversity loss, temperature change, land-use change, and
PubMed citations (Fig. 3A). The 95% confidence intervals (CIs) of
the coefficients for these six predictors also did not overlap with
zero in any model (Fig. 3B). In addition to alien host richness,
human population size and PubMed citations explained the highest
percentages of deviance in the number of zoonosis events, followed
by the three global change factors (Fig. 3A). Most variables had
nonlinear but generally positive relationships with the number of
zoonosis events after accounting for other cofactors (Fig. 4).
Although it was only included in three of the top five models, the
latitude of a country was also a significant predictor of zoonosis
events (Fig. 3A), with zoonosis events being more common in
higher latitudinal areas (Supplementary Fig. 2). These results were
independent of whether we used 10, 8, or 6 knots in the GAMM
analyses (Supplementary Fig. 3).

Next, we added to the model an interaction between host order
and alien zoonotic host richness to test whether certain orders were
more important contributors to emergences of zoonoses. The effects
of alien zoonotic host richness for three mammalian orders (i.e.,
Carnivora, Effect size ± S.E.: 0.0150 ± 0.0028, P < 0.001; Artiodactyla,
0.011 ± 0.0023, P < 0.001; and Rodentia, 0.0197 ± 0.0021, P < 0.001),
three avian groups (i.e., waterfowl, 0.0149 ± 0.0022, P < 0.001;
Galliformes, 0.0059 ± 0.0024, P= 0.0134; and Passeriformes,
0.0082 ± 0.0019, P < 0.001), and order Diptera of the invertebrates
(0.0151 ± 0.0053, P < 0.01) had significantly stronger associations
with zoonosis events than other host groups (Columbiformes,
−0.0043 ± 0.0032, P= 0.891; Lagomorpha, 0.0033 ± 0.0045, P=
0.462; Psittaciformes, 0.0027 ± 0.0028, P= 0.327; amphibians,
0.0061 ± 0.0062, P= 0.326; reptiles, 0.0007 ± 0.006, P= 0.902, Fig. 5).

Finally, we plotted the estimated contribution of alien zoonotic
host introductions to historical zoonosis events for each adminis-
trative unit globally predicted by the GAMMs with and without the
alien zoonotic host (Fig. 6). This map suggests that zoonosis
hotspots due to past alien zoonotic host introductions were most
concentrated in Europe, Oceania, and the Caribbean islands (Fig. 6),

which is largely consistent with the global hotspots of alien animal
establishment26.

Temporal relationship between alien animal invasions and
zoonotic diseases. To verify that there was a positive association
between alien host introductions and zoonosis events through time,
we first conducted a multiple regression analysis where we treated
year as the replicate, the number of zoonotic diseases as the depen-
dent variable, and the number of zoonotic and non-zoonotic alien
introductions as the independent variables. Model averaging analyses
of the generalized additive models showed that the number of zoo-
nosis events through time was positively correlated with the number
of alien zoonotic host introductions through time (Estimate= 3.04,
95% CI= 2.23~3.85, P < 0.001, Supplementary Fig. 4), but was not
correlated with the number of alien non-zoonotic host introductions
(Estimate= 0.62, 95% CI=−0.69~1.94, P= 0.345). In addition, we
also conducted breakpoint regression analyses to evaluate whether
the breakpoints (when there is a sharp change in a response variable
in time) for zoonosis events and introductions of zoonotic and non-
zoonotic alien hosts tended to coincide in time. The number of
zoonosis events increased sharply in 1962 (i.e., a breakpoint based on
AICc), just two years after alien zoonotic host introductions sharply
increased in 1960 (Supplementary Fig. 5A, B). In contrast, the
breakpoint for non-zoonotic alien hosts was in 1948 (Supplementary
Fig. 5C), which was far from the zoonosis breakpoint in 1962.

Discussion
The present study, to the best of our knowledge, provided the first
comprehensive global evaluation of the relationship between alien
species invasions and zoonotic disease emergences. Our literature and
database review showed a high diversity of zoonoses with an average
of ~5.9 diseases per alien zoonotic hosts. This is likely an under-
estimate as our criteria for zoonotic alien hosts were highly con-
servative (Supplementary Data 2). Given taxonomic and geographic
biases in zoonosis sampling, there might be many unknown zoonotic
hosts that have not yet been reported or studied27,28. Despite this, we
tried to account for potential sampling biases in disease surveillance
efforts and which species and geographic locations were studied to
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Fig. 1 Analysis diagram to estimate the effect of alien animal invasions on zoonosis emergences at the global scale. The role of alien animal zoonotic
hosts was determined by accounting for global change factors (Hx1-x6), environmental factors (Ix7-x9), sampling bias (Jx10,11), spatial autocorrelation (Llat, lon),
and a lack of independence among zoonoses by treating pathogen, host order and continent as random factor intercepts (εx14-x16). Thin-plate spline smooths
for each predictor variable are designated by S(), and α, β, γ, δ, and Z are constants (α is an intercept and β, γ, δ and Z represent the coefficient estimates of
different predictor variables, and ε represents the random effects). Silhouettes were freely obtained from “islide” plug-in (https://www.islide.cc).
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Fig. 2 Associations between the zoonotic diseases reported by the GIDEON database and alien zoonotic hosts. Bipartite network analysis shows the
relatedness between the top 50 zoonoses with the largest number of alien zoonotic host species and the alien zoonotic host orders. The exact number of
zoonotic diseases per alien zoonotic host is provided in Supplementary Data 3. Width indicates the number of zoonotic diseases carried by alien zoonotic
host species in each order. The order of figure column is based on the default output of the R software to minimize the number of crossovers. Animal
silhouettes were obtained from PhyloPic.
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Fig. 3 Proportion of deviance explained and effect size of each predictor variable in model averaging analyses based on GAMMs. Columns represent
individual models and rows represent predictor variables, with smoothing function knot value= 10. Shown in bold are the variables that appear in all five of
the most highly supported models in panel A and that have model-averaged 95% confidence intervals that do not overlap zero in panel B. The circle size in
panel A represents the proportion of deviance explained by each predictor and any blanks indicate that the predictor is not included in the model. The panel
B represents mean effect sizes with 95% confidence intervals of different predictor variables explaining the number of zoonosis events worldwide
(n= 10,473, Supplementary Data 4).

Fig. 4 Relationships of the six most important predictor variables with zoonosis emergences in the five highly supported models. Scatter plots
represent the partial residuals of each smoothed variable when controlling for other variables. Blue lines show the predicted function of each variable with
mean and the shaded area as the 95% confidence band based on GAMMs. The dependent variable (zoonosis event density) is treated as the residuals of
the fitted regression correlating the density of zoonosis events and the density of all disease events to account for the degree of overall disease surveillance
(Supplementary Data 4). All predictor variables were standardized (to a mean of zero and standard deviation of one) before entering the model.
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increase the robustness of our findings. We encourage future studies
to further support or refute our findings with more zoonoses and
host discoveries.

Consistent with our hypothesis, we showed that the richness of
alien zoonotic hosts was indeed an important factor determining
the number of zoonosis events. Comparatively, we did not find an
important effect of the richness of non-zoonotic host on the
emergence of zoonoses (Fig. 3), demonstrating that the correla-
tion of zoonosis events with alien zoonotic hosts was not simply a
by-product of anthropogenic-related propagule pressure. We also
detected a close temporal relationship between zoonosis emer-
gences and alien zoonotic host introductions. These results cor-
roborate the spatial patterns and further bolster the hypothesis
that alien species invasions have contributed to the increase of
zoonosis events over the last sixty years.

Our study illustrated that alien species in certain mammalian
orders, such as Carnivora, Artiodactyla, and Rodentia, were sig-
nificantly associated with zoonosis events. This result is consistent
with previous studies showing that mammalian orders Carnivora,
Artiodactyla, and Rodentia are strongly associated with zoonotic
diseases23,25. Orders Chiroptera and Primates were also previously
shown to be associated with human zoonotic diseases23,25, but they
were not included in our analyses because there are too few alien
species from these orders. Many mammals have a predilection for
human-dominated environments29,30 and are closely related to

humans phylogenetically, both of which can facilitate spillover
probabilities23. Within class Aves, there were significant associa-
tions between alien zoonotic host species introductions and zoo-
notic diseases for waterfowl (including five orders: Anseriformes,
Gruiformes, Pelecaniformes, Phoenicopteriformes, Suliformes), and
orders Galliformes and Passeriformes, but not Columbiformes and
Psittaciformes (Fig. 5). Consistent with these findings, alien water-
fowl can be carriers of cryptosporidiosis, giardiasis, and
microsporidiosis8, and a recent global study showed that passerine
species were highly associated with human-disturbed habitats,
which may increase the probability of passerine-related zoonosis
events30. We found that the invertebrate zoonoses were dominated
by Dipteran-hosted diseases. As examples, the rapid expansion of
Aedes and Anopheles mosquitoes has resulted in the worldwide
transmission of various diseases, such as malaria, yellow fever,
dengue, chikungunya and lymphatic filariasis31. We did not detect
effects of alien herpetofauna host species on zoonotic diseases
consistent with there only being a few zoonoses shared by humans
and herpetofauna32 and the considerable physiological differences
between herpetofauna and humans. Nevertheless, we suggest that
the potential zoonotic risks from alien reptiles and amphibians
should not be overlooked given continued alien reptile and
amphibian introductions33 and an increasing frequency of direct
contacts between herpetofauna and humans through the pet trade
and aquaculture32.
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Fig. 5 The relationship of alien zoonotic animal richness and the zoonosis emergences across alien host groups. The strength of each host group is
tested by including an interaction between the richness of alien zoonotic species with each of the 12 host orders identified as important in the GAMMs
after accounting for other co-factors. Each host order had established alien populations in at least 50 administrative units. Lines show the predicted
relationship between density of zoonotic disease events and alien zoonotic host richness, with mean and the shaded area as the 95% confidence band
(Supplementary Data 4). All predictor variables were standardized (to a mean of zero and standard deviation of one) before entering the model. Animal
silhouettes were obtained from PhyloPic.
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Our analyses also unsurprisingly unveiled that human population
density was positively associated with zoonotic diseases. Countries
with higher human population densities may be likely to host more
zoonoses, which has long been observed by epidemiologists1. Con-
sistent with past studies21,34, we detected positive associations
between the number of zoonosis events and both anthropogenic
land-use transformation and changing temperatures. Anthro-
pogenically influenced habitats can lead to more human-wildlife
contacts that can facilitate spillover of zoonoses from wildlife to
humans30. Similarly, insect vector-borne diseases can be favored in
human-disturbed habitats where opportunities for human contact
can increase35. Additionally, habitat modification can create more

vacant niches, facilitating establishment of zoonotic host
populations36. Changing temperatures can expand the distributional
ranges of pathogens, making previously unsuitable regions
habitable37, and can accelerate the development and increase the
abundance, survival, and transmission rates of reservoir hosts or
vectors38. We found that biodiversity loss rather than native host
species richness was an important predictor of zoonosis events
(Fig. 3), which was consistent with previous studies showing that
there was no overall effect of biodiversity on zoonosis emergence
at large spatial scales39,40 and that anthropogenic biodiversity
loss rather than natural biodiversity gradients was key in driving
zoonoses19,41.The important role of PubMed citations in explaining

Predicted zoonotic risk related with alien host animals

0.0168-0.00125

(A) Upper bound of 95% Confidence Interval

(C) Lower bound of 95% Confidence Interval

(B) Average

Fig. 6 Global map showing the potential contribution of alien zoonotic host introductions to zoonosis events of each administrative area at the global
scale. Maps are derived for predicted zoonosis events caused by alien host species and the relative risk is calculated by subtracting the GAMM fitted
values excluding the zoonotic host introduction from those using all predictor variables in Supplementary Data 4.
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the number of zoonosis events in each administrative region con-
firmed that controlling for research effort or bias towards particular
hosts and pathogens is important for understanding observed spatial
patterns of disease1,21,28.

Our results provide quantitative, global, spatial, temporal, and
multi-taxonomic evidence supporting the hypothesis that established
alien species can promote zoonosis events across the planet. The
detected associations between zoonosis events and climate change,
land-use change, biodiversity loss, and introduced species also offer a
deeper understanding of the potential responses of zoonosis emer-
gences to ongoing global change and might help inform policy and
regulatory recommendations targeted at both the control of zoonotic
diseases and the mitigation of the effects of global change. The
provided global map identifying the likely contribution of introduced
species to historical zoonosis events (Fig. 6) offers a decision support
tool for directing both surveillance and disease control efforts.
Assuming a positive correlation between past and future hubs of
zoonotic diseases, the hotspots identified on this map should serve as
a preliminary prediction of the locations where future diseases
associated with zoonotic host introductions are most likely to occur
and where zoonosis surveillance might be most wisely targeted.

Methods
Disease data source. All analyses were conducted at the administrative level, and
the exact list of known zoonotic diseases is recorded in the GIDEON database22.
GIDEON is currently the most comprehensive and frequently updated infectious
disease outbreak database reporting epidemics of human infectious diseases at the
global scale and has been widely used in global zoonosis studies42,43 (Last access
date, November 9, 2020). The administrative designations used in our analyses
were based on the Global Administrative Areas (GADM) database (www.gadm.org,
downloaded on November 8, 2020), which includes very detailed boundary data for
global countries and major island groups.

Pattern and correlates of zoonosis events worldwide
Number of zoonosis events. GIDEON defines human infectious disease reservoirs as
any animal, plant, or substrate supporting the survival and reproduction of
infectious agents and promoting transmission to potential susceptible hosts. Its
host category therefore includes all human-specific, zoonotic, multihost, and
environmental agents. As our main aim was to test the role of established alien
animal species in the emergence of zoonotic diseases, we focused on a total of 161
diseases specified in GIDEON’s host designations and definitions as nonhuman
zoonotic (n= 115) and multihost (n= 46) diseases (Supplementary Data 1) and
excluded diseases with human-specific hosts that do not need animals to persist or
be transmitted. The infectious agents of nonhuman zoonotic diseases complete
their entire lifecycle in nonhuman hosts but may have the potential to spillover and
infect human populations. Infectious agents of multihost diseases can use both
human and animal hosts for their development and reproduction. We measured
the number of zoonosis events for each jurisdiction according to five host taxo-
nomic groups: mammals, birds, invertebrates, reptiles and amphibians. These
zoonoses were mainly caused by bacteria, viruses, parasitic animals and fungi. We
excluded zoonoses from the Algae (3 diseases) due to low sample sizes in GIDEON.

Correlates of the number of zoonosis events
Climatic variables. Following a previous study21, we used global environmental
stratification (GEnS) as a composite bioclimatic variable generated by stratifying
the Earth’s surface into zones with similar climates44. The GEnS database was
constructed based on a total of 125 strata across 18 global environmental zones
with a spatial resolution of 30 arc seconds (equivalent to approximately 0.86 km2 at
the equator). The values in GEnS range from 1 to 18 with a higher value indicating
warmer and wetter conditions.

Human population density. We used human population density as one general
anthropogenic factor reflecting propagule pressure and human-assisted pathogen
movements1,21,45. Human population size data and the land area of each jur-
isdiction were collected from World Bank Open Data from 2011 to 2020 (available
at https://data.worldbank.org/indicator/SP.POP.TOTL, accessed on November 18,
2020). We then calculated the human population density using the human
population size divided by the land area.

Native potential host richness and biodiversity loss. Data on the richness of native
amphibians, birds, and mammals were derived from the Biodiversity Mapping
website (https://biodiversitymapping.org/wordpress/index.php/home/, accessed on
August 19, 2020), which were based on studies from Jenkins et al. (2013)’s and
Pimm et al. (2014)46,47. The map of reptile diversity is based on an updated database

of the global spatial distribution of reptiles48. All diversity maps for each taxon were
generated through the calculation of grid-based richness at a spatial resolution of
10 km × 10 km in ArcGIS46. We did not include native invertebrate richness, as
global maps for most invertebrate taxa are not yet available. For the loss of native
biodiversity, we followed the previous study by first extracting the list of threatened
species (NT, EN and VU categories evaluated by the IUCN Red List, access on May
10th, 2021)29, and then calculated the number of threatened species for each taxon
distributes in each administrative unite as a proxy of biodiversity loss.

Richness of established alien zoonotic host species. We quantified the richness of
established alien animal species from the five main taxonomic groups (mammals,
birds, reptiles, amphibians and invertebrates) based on 4,522 establishment events
of 795 alien animals in each of 201 jurisdictions according to various databases.
Data on 262 established alien reptiles and amphibians were compiled from multiple
publications, including Kraus’s compendium49 and other recent updates50. Data on
337 established alien birds after removing all migratory bird species as vagrants
were collected from the Global Avian Invasions Atlas (GAVIA)51, which is a
comprehensive database of the global distribution of established alien birds. Data
on 119 established alien mammals were obtained from the Introduced Mammals of
the World database52 and the more recent update53. Data on 77 terrestrial alien
invertebrates (66 insects and 11 other groups) across 7 taxa with native and
invaded range information were obtained from the Global Invasive Species Data-
base (GISD, http://www.iucngisd.org/gisd/, accessed on July 1, 2020). We calcu-
lated the richness of both zoonotic and non-zoonotic alien host species for each
order. We first conducted an intensive literature review for each established alien
species of each of the four taxa to determine whether they transmit pathogens to
humans (Supplementary Data 2). The identification of zoonotic or non-zoonotic
host may be influenced by under-sampling in the literature. We therefore incor-
porated the latest synthesis of human-infecting pathogens in the ‘CLOVER’ dataset
to identify zoonotic and non-zoonotic animal hosts54. The CLOVER dataset
compiled GMPD255, EID256, HP323 and Shaw57 databases and is currently the
most comprehensive dataset on host-pathogen associations. Based on this infor-
mation, we then categorized each alien species as a ‘zoonotic host’ or ‘non-zoonotic
host’. The records of the established alien species were assigned to GADM jur-
isdictions, and we calculated the richness of the established alien zoonotic and non-
zoonotic host species for each taxonomic group within each jurisdiction. In order
to increase the statistical power, we conducted subsequent modeling analyses based
on four mammalian orders (i.e., Carnivora, Cetartiodactyla, Lagomorpha, and
Rodentia), five avian groups (i.e., waterfowl including five orders: Anseriformes,
Gruiformes, Pelecaniformes, Phoenicopteriformes and Suliformes; Columbiformes,
Galliformes, Passeriformes, Psittaciformes), the order Diptera of the invertebrates,
and herpetofauna as a whole, which have established alien populations in at least 50
administrative units.

Climate change. We extracted historical monthly mean temperature and pre-
cipitation data recorded between 1901 and 2009 from the University of East Anglia
Climate Research Unit (CRU, https://sites.uea.ac.uk/cru/, accessed on November
30, 2020)58. This database provides historical global-scale yearly climatic data with
the finest resolution of 0.5° grids. We generated the temperature and precipitation
values for all grids in each jurisdiction, calculated the slope of the temperature and
precipitation for the time series of the years 1901 to 2009 for each grid and
generated the averages based on all grids within each jurisdiction.

Anthropogenic land-use change. We downloaded global land-use data from the
Anthromes v2 Dataset (Anthropogenic Biomes version 2, accessed on October 15,
2020) in ESRI GRID format59. We used the 1900 and 2000 data to calculate the
temporal changes in land use. By using the reclassify and raster function in ArcGIS,
we calculated the percentage of grids in which the land-use type changed to a more
anthropogenically influenced type from 1900 to 2000 for each jurisdiction,
including 15 scenarios: Wildlands to Seminatural, Wildlands to Rangelands,
Wildlands to Croplands, Wildlands to Villages, Wildlands to Dense Settlements,
Seminatural to Rangelands, Seminatural to Croplands, Seminatural to Villages,
Seminatural to Dense Settlements, Rangelands to Croplands, Rangelands to Vil-
lages, Rangelands to Dense Settlements, Croplands to Villages, Croplands to Dense
Settlements, and Villages to Dense Settlements.

Sampling effort, reporting bias and incomplete data. A potential issue in quantifying
the effects of different predictor variables on the number of zoonosis events is the
need to account for the differences in survey effort, reporting bias and incomplete
disease data among regions1,21,28. There is a high probability that zoonosis dis-
covery is spatially biased by uneven levels of surveillance across countries, as the
global allocation of scientific resources has been focused on rich and developed
countries. We thus included the Infectious Disease Vulnerability Index (IDVI),
which is a comprehensive metric reflecting the demographic, health care, public
health, socioeconomic, and political factors that may have an impact on the
capacity of surveillance and detection of infectious diseases in each country60.
Second, we followed the methods of a previous study21 to control for reporting
biases. We incorporated PubMed citations per disease for each jurisdiction using a
Python-based PubCrawler21. In addition, we added the longitude and latitude of
the geographic centroid of administrative units to control for spatial
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autocorrelation as there would be a higher probability of having similar diseases in
nearby than distant administrative units61.

Statistical analysis. The number of zoonosis events, native potential host richness,
established alien animal richness and human population density were log-transformed
to improve linearity. A potential issue in our data analysis is that the numbers of
zoonosis events and the numbers of native and alien animal species are strongly
influenced by geographical area, as larger countries or regions may host more native or
alien animal species and more disease events. We therefore calculated the density of
native or alien species richness and the number of zoonosis events using the total
number divided by the geographical area of each jurisdiction. Furthermore, the number
of zoonosis events may also be influenced by the degree of local disease surveillance. We
thus obtained the residuals from a regression correlating zoonosis event density and all
disease event density, and used them as the dependent variable for further analyses
(Fig. 1). As some of our variables may be expected to be nonlinear, we performed
generalized additive mixed model (GAMM) analyses following Mollentze & Streicker
2020’s framework25 to quantify the relationships between different predictor variables
and the number of zoonosis events. We started with a full model with zoonosis event
density controlling for overall disease surveillance as the response variable and
13 smoothed fixed effects (Fig. 1 and Supplementary Data 4): GEnS, human population
density, density of native species richness, biodiversity loss, density of alien zoonotic
host richness, density of alien non-zoonotic host richness, climate (temperature and
precipitation) change, land-use change, IDVI, PubMed citations, longitude and latitude
of geographic centroid of administrative units. The reason why we included the density
of alien non-zoonotic host richness as a covariate is because this variable can serve as a
positive control for propagule pressure, allowing us to more explicitly test whether
zoonotic alien hosts contribute to zoonoses beyond propagule pressure associated with
non-zoonotic alien hosts, which cannot directly increase zoonotic diseases. These pre-
dictor variables were not highly collinear as their correlation coefficients based on
Pearson rank correlation analyses were all <0.65 (Supplementary Fig. 6). Because
human history may have a great influence on disease outbreaks, as there may be more
human pathogens on continents subject to earlier human settlement45, we followed this
literature by including continental identity (i.e., Africa, region of origin and first set-
tlements; most of Europe, Asia, Australia, New Guinea, by approx. 40,000–60,000 BP;
North America, by approx. 15,000–25,000 BP; South America, by approx. 1000–5000
years after North America, i.e., 10,000–24,000 BP; and most islands, by approx.
1000–7000 BP) as a random intercept to control for potential pseudoreplication. In
addition, to account for the lack of complete independence among disease events caused
by the same pathogens or associated with the same introduced host orders (Fig.1), we
included pathogen identity and host order as two additional random intercepts. We
fitted all models using restricted maximum likelihood method and ranked all candidate
models by the Akaike’s Information Criterion (AIC) theoretic approach25,62. Models
including all possible combinations of the 13 predictor variables (total 213-1= 8191
models) were ranked, and the models within 2 AIC unites (i.e., ΔAIC≤ 2) compared
with the top model were considered to be highly supported62. For each model, we
computed the standardized estimates of the regression coefficients of the predictor
variables with the 95% confidence intervals (CIs), and considered effects statistically
significant when the 95% CIs did not overlap zero. In addition to variable significance,
we also calculated the proportion of the deviance explained by each predictor variable
by comparing the sub-models in the absence of the variable to the full model25. To
better compare the coefficients of the different covariates, we standardized each of the
predictor variables to a mean of zero and standard deviation of one before it was
entered into the model63. Furthermore, we used different levels of thin-plate smoothers
with 6, 8, and 10 knots for the fixed-effect variables in GAMMs25. As the results were
similar regardless of which knot we used, we present the results from the analyses with
10 knots in the main text but provide the results with 6 and 8 knots in the supporting
materials (Supplementary Fig. 3). All analyses were conducted in the gamm4, mgcv,
visreg, dplyr, and MuMIn packages in R version 4.0.364 (Supplementary Notes).

To further test whether there are different responses of the zoonosis emergences
among alien host groups, we fit an interaction between host order and alien species
richness to investigate whether the effect of alien zoonotic host richness varied
across taxonomic groups. Finally, to evaluate the potential contribution of alien
zoonotic host introductions on historical zoonosis events for each administrative
unit, we generated the fitted values along with 95% CIs of the number of zoonosis
events in each administrative unit predicted by using the predictors in GAMMs,
and subtracted the predicted values excluding zoonotic host introductions from
those using all predictor variables.

The observed spatial correlation of zoonosis emergences with alien animal invasions
might be problematic because there may be mismatch in the occurrence of alien animal
invasions and zoonosis events in time. For instance, zoonosis events at a location might
have occurred earlier than the alien animal invasions, which could not have caused the
disease despite a strong spatial correlation. We therefore further explored the temporal
relationship of alien zoonotic (and non-zoonotic) host introductions and zoonotic
diseases over years. To achieve this, we collected the introduction time of each alien
zoonotic and non-zoonotic host species in each country or region based on the alien
avian introduction database and literatures from alien birds51,63, the Introduced
Mammals of the World database52 for alien mammals, and the Global Invasive Species
Database (GISD) for alien invertebrates. We obtained the number of new zoonosis
events over time from the GIDEON database (Last access date, November 9, 2020), and
calculated the number of zoonosis events in each year for different taxa. For each year,

the number of new zoonosis events divided by the number of alien host introductions
for each country or region was used to evaluate the magnitude of the relationship
between alien zoonotic host introductions and the number of new zoonosis events. We
then used two approaches to analyze their temporal relationships. Firstly, we conducted
a generalized additive modeling analysis where we treated year as the replicate, and
zoonotic and non-zoonotic alien introductions as the independent variables, and the
number of zoonosis events as the dependent variable, to explore the general trend of
alien animal host introductions and the number of zoonosis events along time.
Additionally, we applied breakpoint regression analyses using the segmented package in
R (Supplementary Notes). In these analyses, the identified the breakpoint reflects the
year in which there was a rapid increase in the number of zoonotic or non-zoonotic
host species or the number of zoonosis events. For these analyses, we fit the left-
horizontal regression and two-slope regression that are widely used in ecological and
biogeographical studies65, and applied an AIC-based approach to identify the optimal
breakpoint year. We combined data across various host taxa for the temporal analyses
because some orders had little data on the timing of alien species establishment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in this study are from existing datasets and are included in Supplementary
Data 1-4. The exact list of known zoonotic pathogens and zoonoses at the administrative
level is recorded in the GIDEON database (www.gideononline.com) (Last access date,
November 9, 2020). The administrative designations used in our analyses are based on
the Global Administrative Areas (GADM) database (www.gadm.org, downloaded on
November 8, 2020). The alien host-pathogen association data are based on Gibb’s dataset
(CLOVER_Associations_Initial.csv, https://doi.org/10.5281/zenodo.4435128) and other
literatures in Supplementary Data 2. The Infectious Disease Vulnerability Index (IDVI) is
from Moore et al. (2017) (https://pubmed.ncbi.nlm.nih.gov/28845357/). We use global
environmental stratification (GEnS, https://www.geoportal.org/) as a composite
bioclimatic variable generated by stratifying the Earth’s surface into zones with similar
climates. For the temperature and precipitation change variable, we extract historical
monthly mean temperature and precipitation data recorded between 1901 and 2009 from
the University of East Anglia Climate Research Unit (CRU, https://catalogue.ceda.ac.uk/
uuid/3f8944800cc48e1cbc29a5ee12d8542d, accessed on November 30, 2020), and global
land-use data from the Anthromes v2 Dataset (Anthropogenic Biomes version 2, https://
ecotope.org/anthromes/v2/, accessed on October 15, 2020) in ESRI GRID format.
Human population size data and the land area of each jurisdiction are collected from
World Bank Open Data from 2011 to 2020 (available at https://data.worldbank.org/
indicator/SP.POP.TOTL, accessed on November 18, 2020). Data on the richness of native
amphibians, birds, and mammals are derived from the Biodiversity Mapping website
(https://biodiversitymapping.org/wordpress/index.php/home/, accessed on August 19,
2020) derived from Jenkins et al. (2013) (https://doi.org/10.1073/pnas.1302251110) and
Pimm et al. (2014) (https://www.science.org/doi/10.1126/science.1246752). The latest
map for the reptile species is from Roll et al. (2017) (https://doi.org/10.5061/
dryad.83s7k). The list of threatened species evaluated as NT, EN and VU used for
calculating the loss of native biodiversity is extracted from the IUCN Red List (http://
www.iucnredlist.org, access on May 10th, 2021). The established alien species list and the
introduction time information used for the temporal analyses are based on Kraus’s
(2009) compendium (https://link.springer.com/chapter/10.1007/978-1-4020-8946-6_6)
and Capinha et al. (2017) (https://doi.org/10.1111/ddi.12617) for reptiles and
amphibians, the Global Avian Invasions Atlas (GAVIA) (https://doi.org/10.6084/
m9.figshare.4234850) for established alien birds, Long’s (2003) book (https://
ebooks.publish.csiro.au/content/introduced-mammals-world) and Capellini et al. (2015)
(https://doi.org/10.1111/ele.12493) for established alien mammals, and the Global
Invasive Species Database (GISD, http://www.iucngisd.org/gisd/, accessed on July 1,
2020) for established alien invertebrates.

Code availability
The R code for running the analyses is provided in Supplementary Information file
(Supplementary Notes).
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