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A B S T R A C T   

The knock-on effects between earlier vegetation activities and summer droughts may have important conse-
quences for broad ecological processes. To date, little is known about how the chained effects drive the carbon 
and water cycles on the Tibetan Plateau (TP). Using the naturally occurring above-mentioned sequential events 
in spring and summer in 2015 and 2017, we applied the observations at the site, landscape, and regional scales to 
evaluate the chained effects on the TP. Our findings indicated that higher spring vegetation productivity is 
caused by early vegetation activities, partially compensated for summer drought-induced loss. Concurrently, 
increased spring evapotranspiration induced by earlier spring may drain soil water resources earlier, exacer-
bating summer water restrictions caused mainly by sparse precipitation. This lagged effect of early spring, 
accompanied by summer drought, significantly increased summer sensible heat flux by 23.2%. Remarkably, the 
mean air temperature (Ta) was lower than the baseline during drought. This decrease was contributed mainly by 
lower nighttime Ta, indicating that the region-specific characteristics of the TP could offset the heating effects as 
mentioned above. The characteristics of high altitude, low air pressure, and thin air could strongly weaken the 
cloud insulations. More substantial decreases in cloud amount during drought further decreased atmospheric 
counter radiations, leading to lower mean/nighttime Ta. The simulation results showed that lower mean Ta 
alleviated the decreases in gross primary productivity by 4.3% through reducing vapor pressure deficit by 5.1%. 
In conclusion, the present study highlighted the need to comprehensively consider the buffering effects of lower 
temperature during summer drought to precisely assess the chained effects on the TP.   

1. Introduction 

The Tibetan Plateau (TP) plays a crucial role in the Asian summer 
monsoon, with a meteorological system that affects more than half of the 
world’s population (Shen et al., 2015b). The TP ecosystem is highly 
vulnerable to climate change due to its high altitude and cold climate 
(Zhang et al., 2019b). In recent decades, the TP has experienced a 

significant advancing trend of spring greening (Zhang et al., 2013; Zu 
et al., 2018) and more frequent summer droughts (Bothe et al., 2011; 
Chen et al., 2013; Li et al., 2018). Earlier vegetation activities have often 
been reported to increase carbon uptake (Ganjurjav et al., 2021; Zhu 
et al., 2017). In contrast, summer droughts could exert a significant 
passive impact on broad ecological processes, and this impact could be 
stronger than the positive effects of wetting (Chen et al., 2019). 
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Recognising that earlier vegetation activities and summer droughts 
might occur at the same time, a growing number of research have looked 
into their interconnected consequences on the wide ecological processes 
(Wang et al., 2020; Wolf et al., 2016). However, the TP is subject to 
significant uncertainties because the majority of studies have focused on 
only one aspect of the response of the carbon cycle to the chain effects, 
such as summer droughts (Xu et al., 2021; Zhang et al., 2019a; Zhang 
et al., 2018) or spring phenology (Shen et al., 2015a; Shen et al., 2011). 
As a result, our understanding of the chained effects is quite limited, 
prompting the need for additional research on the TP. 

The compensating effects of earlier vegetation activities on carbon 
loss caused by summer droughts may come at the cost of earlier soil 
moisture depletion due to higher spring evapotranspiration (ET), which 
will likely exacerbate water shortages during the summer drought (Wolf 
et al., 2016). Extreme droughts have a significant impact on the struc-
ture and functions of terrestrial ecosystems, as well as regional carbon 
balances (Frank et al., 2015). In 2003, the European summer drought 
reversed four years of net ecosystem carbon sequestration (Janssens 
et al., 2003). Recently, the United States and European summer droughts 
have shown that earlier vegetation activities could significantly increase 
spring carbon uptake, compensating for the summer drought-induced 
carbon loss (Wang et al., 2020; Wolf et al., 2016). However, this 
compensation could deplete soil water resources from increased spring 
ET, thus exacerbating summer water limitations, mainly attributed to 
scarce precipitation (Wang et al., 2020; Wolf et al., 2016). According to 
the long time series analysis, there is growing evidence that earlier 
greening may increase spring ET and so prematurely deplete soil water, 
leaving the ecosystem more vulnerable to water shortages during the 
summer (Buermann et al., 2013; Buermann et al., 2018; Lian et al., 
2020; Piao et al., 2019; Yu et al., 2018; Zeng et al., 2021). 

Significantly, early evaporative water loss caused by earlier greening 
may result in the emergence of longer-lasting soil water deficits, which 
could suppresses ET and increases summer sensible heat flux (Lian et al., 
2020; Wang et al., 2020; Wolf et al., 2016). This combining with summer 
drought could further strengthen a positive ecosystem heating feedback 
(Wang et al., 2020; Wolf et al., 2016). This phenomenon is validated by a 
wide range of evidence from the arid and semi-arid regions and con-
forms to the driving processes of higher mean air temperature (Ta) 
during drought (Fischer et al., 2012; Yin et al., 2014). Despite that, 
recent research has reported that lower mean Ta is accompanied by 
summer drought on the TP, especially for nighttime Ta (Chen et al., 
2020b). To the best of our understanding, these negative mean/-
nighttime Ta anomalies are most likely exclusively documented on the 
TP. This shows that the TP’s region-specific properties could counteract 
the enhanced heating feedbacks caused by water deficit. High altitude, 
low air pressure, and thin air on the TP strongly weaken the insulation 
effects of clouds (Cai et al., 2012). More substantial decreases in cloud 
amount during droughts further weaken the atmospheric counter radi-
ations and thus could decrease mean/nighttime Ta (Chen et al., 2020b). 
Moreover, heat propagating downward could be partially consumed by 
the ice-water phase change in the permafrost regions of the TP (Zhao 
et al., 2021), which may buffer soil heating during droughts. However, 
little is known about how lower mean/nighttime temperature influences 
the response of the broad ecological processes to the linked effects on the 
TP. 

A detailed examination of the chained effects on the TP necessitates a 
multiscale investigation. The measurements of ground and eddy 
covariance (vegetation phenology, ET, vegetation productivity, and so 
on) can help to enhance the mechanistic understanding of the response 
of ecological processes to climate change (Chen et al., 2020a). However, 
due to the extreme climate conditions, these observations are sparse and 
deficient on the TP (Zhang et al., 2019b). It is easy to access and use 
remote sensing observations across the regional scale, but significant 
observation errors exist, especially in areas with extreme natural con-
ditions (Parazoo et al., 2018). For instance, in regions with winter snow 
cover on the TP, remote sensing anticipated green-up dates might be 

skewed due to preseason snow cover (Huang et al., 2021). Therefore, to 
overcome the limitations of any single dataset, data synergy is required 
to analyze the chained effects on the TP. 

Naturally occurring earlier vegetation activities and summer 
droughts during 2015 and 2017 on the TP provided a rare opportunity to 
investigate the chained effects. We hope to uncover the response of the 
carbon and water cycles to the linked effects using multiple source 
datasets that includes direct observations at the site and landscape scales 
and remote sensing observations at the regional scale. The regional-scale 
observations of net primary productivity (NPP) and the green-up dates 
(minimizing the confounding impact of snow cover) have been validated 
by a large number of ground observation sites (Huang et al., 2021; Li 
et al., 2021). Based on the multiple source datasets, we aimed to (1) 
explore the impacts of earlier vegetation activities and summer drought 
on gross primary productivity (GPP), NPP, and ET; (2) estimate the 
seasonal compensations and lagged effects of earlier vegetation activ-
ities, and (3) examine the underlying mechanisms of these phenomena. 

2. Datasets and methods 

2.1. Study areas and data scope 

The TP (76◦ 7′–105◦ 5′ E, 25◦ 10′–39◦ 2′ N) is also called "roof of the 
world," with an average elevation of ~4000 m above sea level and an 
approximate 2.5 × 106 km2 of area. The typical vegetation in the alpine 
grasslands is mainly composed of alpine steppes and meadows (Zu et al., 
2018). The site and landscape-scale observations were carried out at 
alpine meadow in Nagqu (31◦38.513′N, 92◦0.921′E, 4585 m). Dominant 
species in this region were Kobresia pygmaea, Potentilla saundersiana, and 
Potentilla cuneate. 

The targeted growing seasons were set for 2015 and 2017, respec-
tively, for the site, landscape and regional scales observations that 
satisfied the criterion of early vegetation activities and summer 
droughts. The baselines were calculated for 2001–2017 (regional scale) 
and 2012–2018 (site and landscape scale), excluding the drought years. 
The discrepancies in target growing seasons were primarily due to data 
collection failures in the spring of 2015, which resulted in poor data 
quality under landscape-scale observations. Furthermore, we started the 
site scale observations on June 3, 2017; however, it was postponed until 
June 19, 2015. Despite this, we fused the observed data from the 2015 
and 2017 summer droughts to increase the robustness of the landscape- 
scale analysis, which included the possible consequences of lower mean 
Ta. A recent study looked at the anomalies in variables during the 2015 
summer drought (Chen et al., 2020b). 

2.2. Vegetation phenology observations 

Site scale: Using the modified scoring method, the site scale green- 
up dates of K. pygmaea, P. saundersiana, and P. cuneate were recorded 
during the growing season of 2015–2018. Phenology was measured 
every 3–5 days from May to September. And then, the Richards equation 
with the contraction-expansion algorithm was applied to fit phenolog-
ical scores of each species against each day plot (Eq. (1)). These pro-
cesses were the same as a previous study in our experimental site (Zhu 
et al., 2017). 

y(t) =
k

(1 + a × e− b×t)
m (1) 

Where y represents the phenological stages score, k is the maximum 
growth, a is the first observation date, b is the growth rate (phenological 
stage change per day) over time t (days since the first observation date), 
and m is a curved shape-related parameter. 

Landscape-scale: GPP is extensively used to estimate vegetation 
phenology using phenological extraction functions (Huang et al., 2021; 
Wang et al., 2019). In this study, a logistic model was applied to extract 
the green-up dates during 2012–2018 (Eq. (2)) (Zhang et al., 2003). 
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y(t) =
c

1 + ea+b×t + d (2) 

Where t is time in days, y(t) is GPP at time t, a and b are the fitting 
parameters, c+d is the maximum GPP, and d is the initial background 
GPP (Zhang et al., 2003). 

The rate of change in the curvature (RCC) of the fitted logistic models 
is used to identify phenological transition dates (Eq. (3)). 

RCC = b3cz

⎧
⎨

⎩

3z(1 − z)(1 + z)3[2(1 + z)3
+ b2c2z

]

[
(1 + z)4

+ (bcz)2]5
2

−
(1 + z)2

(1 + 2z − 5z2)
[
(1 + z)4

+ (bcz)2]3
2

⎫
⎬

⎭

(3) 

Where z = exp(a + bt). When vegetation transitions from a dormant 
state to maximum leaf area during the growth period, the first local 
maximum value of RCC is defined as the green-up date (Zhang et al., 
2003). 

We used the Quasi-Newton and Universal Global Optimization in 
1stOpt 1.5 (First Optimization; 7D-Soft High Technology Inc. Beijing, 
China)  to estimate the parameters of phenology models in the site and 
landscape-scale observations. 

Regional-scale: We used plant phenology index (PPI) and normal-
ized difference phenology index (NDPI) to estimate the green-up dates 
during 2001–2017. Based on the 21 ground-based sites, our recent 
studies showed that PPI and NDPI performed well for both snow-free 
and snow-covered sites on the TP (Huang et al., 2021). The Asym-
metric Gaussian was utilized to reconstruct the PPI and NDPI time series 
in TIMESAT, and then extracted the green-up dates (Huang et al., 2021; 
Zu et al., 2018). 

2.3. LAI, NPP, and GPP observations 

Site scale: GPP was measured by an infrared gas analyzer (IRGA; LI- 
6400, LiCor Inc.) attached to a transparent chamber (0.3 × 0.3 × 0.3 
m3). Two small electric fans were installed inside the chamber and ran 
continuously to mix the air inside to ensure air uniformity in the static 
chamber. GPP was measured every 5–7 days from 9:00 a.m.–12:00 a.m. 
from May to September in 2015–2018. 

Landscape-scale: The open-path eddy covariance system, including 
an infrared gas analyzer (Model LI-7500A, Li-cor Inc., Lincoln, NE, 
USA), was used to measure GPP at 2.3 m above the ground during 
2012–2018. The flux data were collected at 10 Hz, then resampled to 30 
min average by a CR3000 datalogger (Model CR3000, Campbell 
Scientific). 

We collected landscape-scale observations of leaf area index (LAI) in 
the MOD15A2H (4-day, 500 m) (https://modis.ornl.gov/globalsubset/). 
Each LAI image was sampled by picking pixels covering the flux tower 
over the desired time interval. The LAI data utilized in this study were 
acquired like that applied in previous landscape-scale investigations (Li 
et al., 2016). 

Regional-scale: The Carnegie-Ames-Stanford approach model was 
used to estimate monthly NPP with a spatial resolution of 1 km (CASA; 
Eq. (4)). CASA is a light consumption efficiency model, with its NPP 
defined primarily by absorbed photosynthetically active radiation 
(APAR) and light energy conversion (ε) (Potter et al., 1993) as follows: 

NPP = APAR × ε = fPAR × PAR × ε∗ × Tε × Wε (4) 

fPAR is the fraction of the incoming photosynthetically active radi-
ation intercepted by green vegetation, which NDVI can calculate; ε*: the 
maximum possible light energy conversion efficiency; Tε and Wε: unit-
less scalars for temperature and water stress coefficients. This CASA NPP 
dataset used in our study was validated by 362 ground sites on the TP 
(Li et al., 2021). The simulated NPP corresponded well with the 
field-measured ones, with an R-squared more than 80% (Li et al., 2021). 

The global, OCO-2-based SIF product (GOSIF) and linear relation-
ships between SIF (Solar-induced chlorophyll fluorescence) and GPP 

were used to map GPP globally from 2001 to 2017 at 0.05◦ spatial 
resolution and monthly timestep (http://globalecology.unh.edu/data/ 
GOSIF-GPP.html) (Li and Xiao, 2019). The datasets mentioned above 
were accumulated into 0.05◦ × 0.05◦ spatial resolution and one-month 
temporal resolution. 

2.4. ET, drought indexes, and meteorological observations 

Landscape-scale: ET was measured using an open path infrared gas 
(H2O) analyzer (LI-7500; LI-COR). The soil water content (SWC), soil 
temperature (TS), Ta (nighttime, daytime, and mean), relative humidity 
(RH), net radiation (RN), downward shortwave radiation (DR), down-
ward long radiation (DLR; nighttime, daytime and mean), latent energy 
(LE), sensible heat flux (H), and precipitation were simultaneously 
measured by a meteorological station near the flux tower. The SPI_SL_6 
was utilized to calculate the one-month standardized precipitation index 
(SPI). 

Vapor pressure deficit (VPD) in the landscape scale was calculated 
from mean Ta and RH in Eq. (5) (Zhang et al., 2018). 

VPD = 6.11 × exp
17.27 × Ta
Ta + 237.3

×

(

1 −
RH
100

)

(5) 

Regional-scale: GLASS ET (0.05◦ × 0.05◦; 8 days) was estimated by 
five traditional LE algorithms using the Bayesian Model Averaging, 
including MODIS, the revised remote sensing-based Penman-Monteith, 
the Priestly-Taylor Jet Propulsion Laboratory, the modified satellite- 
based Priestley-Taylor and the semi-empirical Penma algorithm (Yao 
et al., 2015a; Yao et al., 2015b). The validation results show that GLASS 
ET reduces the uncertainty of a single algorithm and ensures the preci-
sion and quality of products (Yao et al., 2015a). 

Monthly DR and precipitation during 2001–2017 were directly 
derived from the China Meteorological Forcing Dataset (CMFD) at a 0.1◦

spatial resolution (He et al., 2020b). By averaging the three-hourly 
products for the corresponding period in CMFD, monthly daytime Ta, 
nighttime Ta, and nighttime DLR were synthesized. GLEAM v3.5a 
monthly root-zone SWC was calculated using a multi-layer runni-
ng-water balance with a spatial resolution of 0.25◦ from 2001 to 2017 
(Martens et al., 2017). The Standardized Precipitation Evapotranspira-
tion IndexIndex (SPEI) used in this study was derived from SPEIbase 
v2.5 at a 0.5◦ resolution and one-month timescale (http://spei.csic.es 
/database.html). 

The mean Ta, air pressure (p), and specific humidity (q) in CMFD 
from 2001 to 2017 with a spatial resolution of 0.1◦ was obtained He 
et al., 2020a). Then we used month p, mean Ta, and q to calculate 
monthly VPD in the regional scale observations according to Eqs. (6), 
((7), and (10) (Ding et al., 2018). 

VPD = es − ea (6) 

The saturated vapor pressure (es) was calculated using Eq. (7). 

es = 6.11 × exp
(

17.27 × Ta
273.3 + Ta

)

(7) 

The actual water vapor pressure (ea) is related to the mixing ratio (r), 
as shown in Eq. (8). 

r =
0.622 × ea

p − ea
(8) 

The mixing ratio is very close to the specific humidity (Wallace and 
Hobbs, 2006), as shown in Eq. (9), since r << 1. 

q =
r

1 + r
≈ r (9) 

The ea was then calculated according to Eq. (10). 

ea =
p × q

0.622 + q
(10) 
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The datasets, as mentioned above, were uniformly gathered into the 
spatial resolution of 0.1◦ × 0.1◦ and temporal resolution of one month. 

2.5. Statistical analyses 

The statistical differences in the anomalies of variables were 
analyzed using a one-way ANOVA and a one-sample t-test. The path-
ways that could explain the drivers of the anomalies in GPP and ET at the 

landscape scale were investigated using structural equation modeling 
(SEM). In spatial grid-scale, the partial correlation analysis (PCOR) was 
used to investigate the driving factors of the anomalies in the green-up 
dates, vegetation productivity, and ET. PCOR was also applied to 
analyze the lagged impact of spring ET on summer SWC, and the 
Granger causality test was used to quantify causality. To estimate the 
driving factors of nighttime Ta anomalies and quantify the relative 
contributions of the independent variables at the landscape and regional 

Fig. 1. The monthly dynamic of the environmental variables for the target growing seasons and baseline under regional and landscape scales observations. (a, b). 
Precipitation, (c, d). Drought indexes, (e, f). Nighttime DLR (DLRN), (g, h). Daytime Ta, (i, j). Nighttime Ta, (k, l). Mean Ta, and (m, n). VPD. "Δ" indicated the target 
growing seasons minus the baseline, and "*" represented the differences were significant (p < 0.05). Spring: May and June; Summer: July and August. 
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scales, multiple linear regressions (MLR) and random forest models (RF) 
were employed. RF was also applied to simulate the potential effects of 
lower mean Ta on GPP during summer drought in this study. First, we 
established the training models using observed values during the sum-
mer drought and then exported predicted GPP (GPPControl). Second, 
baseline mean Ta replaced observed mean Ta, and VPD was replaced by 
the simulated values calculated by baseline mean Ta. Third, we applied 
the same training models to export predicted GPP (GPPSimulated) based 
on this scenario simulation. The differences between GPPControl and 
GPPSimulated were defined as the potential effects of lower mean Ta on 
GPP through changing VPD. These analyses were conducted in R 4.0.3 
(http://www.r-project.org/) software (The instructions of parameter 
optimization in the RF are available in Appendix S1). 

3. Results 

3.1. The environmental variable anomalies under multiple scales 
observations 

The average spring precipitation deficits were 10.6 mm on a regional 
scale, while precipitation was generally higher than the baseline in the 
mid-eastern TP (Figs. 1a and A.1). Spring precipitation was significantly 
higher (p < 0.05) than the baseline of 98.9 mm at the landscape scale 
(Fig. 1b). Precipitation deficits during summer (particularly in July) 
were significant in the landscape and regional scales, with the magni-
tude of 100.5 mm (July; 94.9 mm) and 59.8 mm (July; 50.3 mm) less 
than the baseline (p < 0.05), respectively (Fig. 1a,b). Summer precipi-
tation deficits occurred in most of the study area (Fig. A.1). The SPEI and 
SPI for both scales were consistent with the precipitation variability 
(Figs. 1c,d and A.1). 

The anomalies of spring nighttime DLR differed insignificantly 
relative to the baseline for both scales (Fig. 1e,f; p > 0.05). The 

significant decreases (p < 0.05) in nighttime DLR were 12.9 W m− 2 and 
12.4 MJ m− 2 (July) during summer at the regional and landscape scales, 
respectively (Figs. 1e,f, A.1 and A.2). Nearly 90% of the study area 
exhibited negative anomalies of nighttime DLR during summer 
(Fig. A.1). Summer daytime Ta and nighttime Ta were 0.8 and 1.0 ◦C 
significantly lower (p < 0.05) than the baseline under the regional scale, 
respectively (Fig. 1g,i). These negative anomalies of Ta occupied more 
than 75% of the study region, which were also spotted in the meteoro-
logical stations (Figs. A.3 and A.4). Though summer mean Ta was close 
to the baseline, July nighttime Ta was significant 0.6 ◦C cooler, resulting 
in mean Ta of 0.2 ◦C lower than the baseline (Figs. 1h,j,l and A.2). In 
summer, VPD was significantly increased (p < 0.05) by 0.5 hPa (July: 
0.8 hPa) at the regional scale (Fig. 1m). Similarly, the landscape 
observation of VPD was significantly 0.5 hPa higher (p < 0.05) than the 
baseline in July (Fig. 1n). 

3.2. The anomalies of the green-up dates and vegetation productivity 
under multiple scales observations 

Under the site-scale, the green-up dates of K. pygmaea, P. saundersi-
ana, and P. cuneate were significantly advanced (p < 0.05) by 12, 11, and 
8 days, respectively, compared to the baseline (Fig. 2a). Similarly, 
compared to the baseline, the green-up date was 9 days earlier under the 
landscape scale (Fig. 2b; p < 0.05). According to regional-scale obser-
vations, more than 70% of the study region experienced earlier vege-
tation activities. Compared to the baseline, the green-up dates were on 
average 3 days earlier (Fig. 2c,d; p < 0.05). 

Spring GPP was 55.6 g C m− 2 and 19.0 g C m− 2 greater than the 
baseline (p < 0.05) under the site and landscape scales, respectively 
(Fig. 3a). Similarly, spring NPP and GPP increased significantly (p <
0.05) by 5.6 g C m− 2 and 5.4 g C m− 2 under the regional scale, 
respectively (Fig. 3a,b,d). The positive anomalies mainly appeared in 

Fig. 2. The anomalies of the green-up dates under the multiple scales observations. (a). Site scale; (b). Landscape-scale; (c, d). Regional-scale of NDPI (c). and PPI (d). 
(a). White dots in the violin plots indicated the mean of the green-up dates. (c, d). The pixel values indicated the anomalies of the green-up dates, and the density 
distributions of the anomalies are shown in the bottom-left corner of each panel. (For interpretation of the references to color in this figure, the reader is referred to 
the web version of this article.). 
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the mid-eastern TP (Fig. 3b,d). In contrast, summer GPP decreased 
significantly (p < 0.05) by 100.7 g C m− 2 and 27.7 g C m− 2 under the site 
and landscape scales (Fig. 3a). Likewise, during summer, the NPP and 
GPP were 12.75 g C m− 2 and 20.49 g C m− 2 lower significantly than the 
baseline (p < 0.05) under the regional scale, respectively (Fig. 3a,c,e). 
Three-scale observations consistently demonstrated that increased 
spring vegetation productivity could partially compensate for the sum-
mer declines. 

3.3. The anomalies of the water and heat fluxes under multiple scales 
observations 

At the landscape scale, spring LE (62.0 MJ m− 2), ET (25.4 kg H2O 
m− 2), and total soil water storage (TWS) (42.1 mm) were significantly 
higher (p < 0.05) than the baseline during spring (Fig. 4a–c). Compared 
to the baseline, evaporative cooling through LE (ET) was significantly 
reduced by 29.0 MJ m− 2 (− 11.9 kg H2O m− 2), with some of the excess 
energy released through increased H (+14.0 MJ m− 2) during summer 
(Fig. 4a,b; p < 0.05). Summer TWS (51.0 mm) was significantly lower 
than the baseline (p < 0.05) under the landscape scale (Fig. 4c). 
Regional-scale observations of the variability in ET and SWC showed 
similar anomalies (Fig. A.5). ET and SWC during spring were significant 
2.5 W m− 2 and 0.01 m3 m− 3 higher than the baseline (p < 0.05), 
respectively, and more than 65% of the study region experienced these 
increases (Fig. A.5). In summer, the negative anomalies of ET and SWC 
occupied approximately 70% of the study area, and ET and SWC were 

significantly lower than the baseline by 4.9 W m− 2 and 0.01 m3 m− 3, 
respectively (Fig. A.5; p < 0.05). 

We then examined the lagged effects of increased spring ET on 
subsequent SWC at the landscape and regional scales. On the one hand, 
precipitation deficits were 76.3 mm during the early summer drought, 
while ET was 11.0% higher than the baseline (Fig. 4b,e). Increased ET, 
partly due to more vigorous vegetation activity (GPP anomalies > 0 in-
crease), may increase TWS consumption, thereby exacerbating the water 
deficit during subsequent drought (Fig. 4d). On the other hand, at the 
landscape scale, we observed the significant negative correlations be-
tween spring ET and summer TWS (Table 1; p < 0.05). Similarly, more 
than 50% of the study area (about 25% with a significant negative 
correlation) experienced above negative correlations under the regional 
scale (Fig. 5a; p < 0.1). The negative regions mentioned previously 
densely distributed across the mid-eastern TP, with the majority of them 
overlapping with the area of higher spring ET than the baseline (Fig. 5a). 
Furthermore, at the landscape and regional scales, the Granger causality 
test revealed that spring ET was the Granger cause of summer SWC/TWS 
(about 94% of the significant negative correlations accorded with 
Granger reason) (Table 1; Fig. 5b). These results suggested that 
increasing spring ET could deplete soil water resources earlier, thus 
exacerbating summer water limitations mainly driven by decreasing 
precipitation. 

Fig. 3. The anomalies of vegetation productivity under multiple scales observations. (a). The anomalies of GPP and NPP at three scales; (b-e). The spatial distribution 
of the anomalies in NPP (b, c) and GPP (d, e) during spring and summer. "*" indicated significant (p < 0.05) anomalies. 
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3.4. The driving factors of the anomalies in GPP and ET under multiple 
scales observations 

At the landscape scale, SEM results indicated that the positive 
anomalies of spring GPP and ET were primarily due to the indirect and 
beneficial effect (p < 0.05) of positive SWC anomalies on increasing LAI 
(Fig. 6a). In contrast, during the summer drought, the negative anom-
alies of GPP and ET were directly driven by the negative anomalies of 

Fig. 4. The seasonal dynamic and anomalies of the water and heat fluxes under the landscape scale. (a). LE and H; (b). ET; (c).TWS; (d). GPP; (e). Precipitation. The 
numbers atop showed the mean seasonal anomalies. Shaded areas between the solid lines and the dotted lines represented the study variables’ anomalies. The grey 
areas indicated the early summer drought. 

Table 1 
. The correlations of spring ET and summer TWS under the landscape scale based 
on PCOR and the Granger causality test for the above correlation.   

PCOR Granger causality test 

Coefficient p -value F values p -value 

Parameters − 0.53 <0.001 5.25 0.03 

Control variables: DR, precipitation, and mean Ta. 
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SWC (Fig. 6b; p < 0.05). SWC also indirectly influenced the negative 
anomalies of GPP and ET by decreasing LAI and increasing VPD (Fig. 6b; 
p < 0.05). Furthermore, positive VPD anomalies significantly (p < 0.05) 
and directly negatively influenced ET, GPP, and LAI anomalies during 
summer drought (Fig. 6b). The standardized total effects indicated that 
in comparison to mean Ta and VPD anomalies during spring and sum-
mer, SWC anomalies had a more significant impact on ET, LAI, and GPP 
anomalies (Fig. 6c,d). Furthermore, the indirect negative impacts of 
mean Ta anomalies on GPP anomalies through reducing LAI and 
increasing VPD were greater than its direct positive impacts during 
summer drought (Fig. 6b). 

PCOR analysis revealed that the significant negative correlations (p 
< 0.1) of the anomalies in spring SWC and mean Ta with the green-up 

date anomalies occupied 20% and 15.4% of the study area, respec-
tively (Fig. 7a,b,g). Then, in about 25% of the study area, the green-up 
dates anomalies significantly and negatively (p < 0.1) influenced spring 
NPP and ET anomalies based on PCOR (Fig. 7c,d). The significant cor-
relations of the anomalies in summer SWC (positive) and VPD (negative) 
with summer NPP anomalies occupied 24.9% and 13.6% of the study 
area based on PCOR, respectively (Fig. 7e,f,h; p < 0.1). SWC anomalies 
had a higher impact on green-up dates and summer NPP anomalies than 
on spring mean Ta and summer VPD anomalies, consistent with the 
landscape scale (Fig. 7g,h). 

Fig. 5. The spatial distributions of the partial correlation coefficients of spring ET with summer SWC (a) and the Granger causality test for above correlations (b). The 
distributions of the significant correlations are shown in each panel’s bottom-left corner (p < 0.1). 

Fig. 6. SEM analysis reveals the im-
pacts of abiotic and biotic factors on the 
anomalies of ET and GPP during (a) 
spring and (b) summer, and the stan-
dardized total effects of the variables 
during (c) spring and (d) summer. The 
solid (broken) arrows connecting the 
boxes indicate significant/insignificant 
paths at the p=0.05 level. The thickness 
of the lines shows the strength of the 
correlations, while the values adjacent 
to arrows are the standardized path co-
efficients. The blue/red arrows illustrate 
positive/negative relationships. Model 
statistics include the Root Mean Square 
Error of Approximation (RMSEA), 
Normed Fit Index (NFI), and Chi-square 
(χ2). (For interpretation of the refer-
ences to color in this figure, the reader 
is referred to the web version of this 
article.).   
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3.5. The driving factors of lower Ta and its potential effects on GPP 
during summer drought 

The negative mean Ta anomalies during the summer drought, for-
notably for nighttime Ta, were revealed by multiple scales observations, 
prompting us to investigate their causes. Both MLR and RF analyses of 
the landscape-scale observations during the summer drought consis-
tently indicated that nighttime DLR anomalies contributed more to 
nighttime Ta anomalies than nighttime TS, DR, H, and precipitation 

anomalies (Table 2; p < 0.05). Similarly, over 70% of the research area 
demonstrated that nighttime Ta anomalies were explained mainly by 
nighttime DLR anomalies compared to the anomalies in other variables 
on a regional scale (Fig. A.6; p < 0.1). 

And then, we evaluated the potential impact of lower mean Ta 
resulting from lower nighttime Ta. When mean Ta was replaced by its 
baseline, the simulated VPD increased by 5.1% compared to the 
observed VPD during the summer drought (Fig. 8a). Based on the 
training model of the observed values in RF, GPPSimliated (predicted GPP 

Fig. 7. The spatial distributions of the partial 
correlation coefficients of the anomalies in 
green-up dates, NPP, and ET with the anomalies 
in the environment variables. The distributions 
of the significant correlations are shown in the 
bottom-left corner of each panel (p < 0.1). 
Control variables: (a). mean Ta, DR, and pre-
cipitation; (b). SWC, DR, and precipitation; (c, 
d). mean Ta, SWC, DR, and precipitation; (e). 
mean Ta, DR, SWC, and precipitation; (f). mean 
Ta, DR, VPD, and precipitation; (g).The histo-
gram of significant partial correlations of SWC 
(Ta) with green-up date; (h). VPD (SWC) with 
summer GPP.   

Table 2 
The correlations of the anomalies of nighttime Ta with the anomalies of nighttime DLR, nighttime TS, H, DR, and precipitation based on MLR and RF under the 
landscape scale observations. Variance inflation factor: VIF  

Variable MLR RF 

coefficient relweight VIF p-value relweight p-value 

nighttime DLR 0.06 53.98 3.03 <0.001 70.66 <0.01 
nighttime TS 0.37 15.09 1.55 <0.001 13.63 <0.01 
H − 0.41 13.39 2.40 <0.001 6.54 >0.05 
DR 0.11 12.01 4.15 <0.001 5.71 >0.05 
precipitation − 0.04 5.53 1.72 >0.05 3.46 >0.05 
R2 0.78 0.74  
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was estimated by the training models using simulated VPD and the 
baseline mean Ta) was 4.3% lower than GPPControl (predicted GPP was 
estimated by the training models using the observed values) during 
summer drought (Fig. 8b). This suggests that lower mean Ta can miti-
gate GPP declines through decreasing VPD during the summer drought. 

4. Discussions 

Spring carbon uptake would be boosted by earlier vegetative activ-
ity, compensating for its loss caused by summer drought (Fig. 9). 
However, higher ET induced by earlier vegetation activities could 
deplete soil water resources and thus exacerbate the summer water 
shortage mainly ascribed to decreasing precipitation (Fig. 9). The above- 
mentioned adverse effects on soil water availability would decrease the 
evaporative cooling by reducing summer LE (ET) shifting available en-
ergy partitioning toward H, thus contributing to positive heating feed-
back (Fig. 9). However, during the summer drought, our observations 
demonstrated decreased mean Ta due to reduced nighttime Ta caused by 
lower nighttime DLR (Fig. 9). Furthermore, lower mean Ta could miti-
gate carbon loss by declining VPD during the summer drought (Fig. 9). 
As a result, our findings highlight the importance of lower mean Ta and 
its buffering effects in understanding how the carbon and water cycles 
respond to the linked effects. 

4.1. The positive effects of earlier vegetation activities on spring carbon 
uptake 

Earlier vegetative activity, fueled mainly driven through adequate 
water availability, may increase spring carbon uptake. Field and remote 
sensing observations indicated that preseason and spring water supply 
had a substantial effect on the spring phenologytrend on the TP (Dorji 

et al., 2013; Shen et al., 2015a; Zhu et al., 2017). Similarly, findings from 
landscape scale demonstrated the negative associations between SWC 
and green-up dates, showing that enough SWC may contribute to earlier 
vegetative activities (Table A.1). This is primarily because K. pygmaea, 
as the dominant species in the alpine meadow, is a shallow-rooted plant 
that relies heavily on soil surface water, making it more susceptible to 
changes in water supply (Chen et al., 2019; Dorji et al., 2013). Although 
we recognized the significant impacts of spring mean Ta on the green-up 
dates (Zu et al., 2018), the effects of spring SWC anomalies on vegetation 
activities were stronger than Ta anomalies under the landscape and 
regional scales (Table A.1). Earlier greening would lengthen the period 
of active carbon absorption and improve spring carbon uptake, as recent 
studies have demonstrated (Fu et al., 2017; Ganjurjav et al., 2021; Zhu 
et al., 2017). Therefore, earlier vegetation activities could be beneficial 
to increased carbon uptake during spring and thus partly compensate for 
summer carbon loss induced by droughts. 

4.2. The lagged effects of earlier vegetation activities on later water and 
heat fluxes 

Recent research indicates that earlier vegetation activities may 
consume soil water resources earlier due to increased spring ET, hence 
exacerbating summer droughts (Wang et al., 2020; Wolf et al., 2016). 
Similarly, based on the long time series of remote sensing data, the 
ecosystem could be more vulnerable to summer water restrictions, 
partly due to the above-mentioned lagged impacts of earlier greening 
(Buermann et al., 2013; Buermann et al., 2018; Lian et al., 2020; Piao 
et al., 2019; Yu et al., 2018; Zeng et al., 2021). Our study aimed to 
demonstrate the phenomenon by presenting the following findings. 
First, despite considerable decreases in precipitation and TWS during 
the early stages of the summer drought, ET was greater than the 

Fig. 8. Lower mean Ta and its potential impacts on GPP during summer drought. (a). The simulated VPD using baseline mean Ta and the observed VPD during 
summer drought; (b). GPPControl and GPPSimulated. White dots and numbers atop indicated the mean values of the variables. Model: 
GPP~VPD+Ta+precipitation+PAR+SWC+LAI. 
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baseline. To some extent, higher ET during this period may result in 
summer soil dryness because subsequent deficiency did not recover this 
water loss. Second, data at both landscape and regional scales consis-
tently revealed a negative association between spring ET and summer 
soil water supplies, consistent with the Granger causality test. These 
findings suggest that increasing spring ET induced by earlier greening 
could exacerbate summer soil drying. Third, during the 2017 summer 
drought, our recent result showed that deep-layer SWC in grazed was 
higher than in fenced due to reduced ET is driven by grazing-induced 
reductions in LAI (Zhang et al., 2019a). This provided an additional 
explanation for the impact of ET on water consumption. 

Water limitations caused by early vegetation activity and summer 
drought could weaken the evaporative cooling, changing the partition-
ing of available energy toward H, contributing to a positive heating 
feedback (Wolf et al., 2016). Additionally, our analysis discovered the 
similar anomalies in LE (ET) and H. During the summer drought, the 
mean Ta was lower than the baseline in multiple scales observations, 
particularly for nighttime Ta. Even though contradicts recent research 
indicating that positive heating feedback may contribute to a higher 
mean Ta during summer drought (Wang et al., 2020; Wolf et al., 2016), 
it is consistent with our recent observations (Chen et al., 2020b). One 
possible explanation for why the mean Ta was lower than baseline may 
be lower atmospheric counter radiation (lower DLR) induced by less 
cloud amount during drought. On the TP, high altitude, low air pressure, 
and thin air could significantly reduce the insulating properties of 
clouds, particularly during summer drought (Chen et al., 2020b). Our 
unpublished findings indicated that the TP experienced a more signifi-
cant reduction in nighttime DLR and cloud amount than other regions 

during drought in China. The indirect effects of cloud cover on nighttime 
Ta through influencing nighttime DLR were stronger than other regions 
on the TP (Unpublished data). Moreover, frozen layer in permafrost 
zones is always composed of ice and soil, and hence the ice-water phase 
change would take a significant amount of energy (Zhao et al., 2004). 
Such consumption is more than 110 MJ m− 2 in the permafrost regions of 
the TP, although the simulation values vary with the active layer 
thickness (Hu et al., 2015; Zhao et al., 2021). This suggests that heat 
propagating downward is further consumed by ice-water phase change, 
buffering the heating feedbacks as previously mentioned. 

4.3. The responses of summer GPP to soil and atmospheric water deficits 

Droughts can limit GPP and plant growth by aggravating soil water 
deficiencies (Chen et al., 2020a). The resistance of dominant species 
highly determines the affected degree of ecosystem functions caused by 
droughts (Helmut et al., 2008; Hoover et al., 2014). Due to its shallow 
roots and lower leaf relative water content, K. pygmaea is more sus-
ceptible to droughts (Dorji et al., 2013; Zhu et al., 2017). It is more 
sensitive to drying than to wetness (Chen et al., 2019). Due to 
K. pygmaea’s lower resistance, its coverage is strongly restricted by soil 
water deficiencies (Chen et al., 2020b). Lower vegetation cover can 
minimize the canopy’s photosynthetic capability and GPP (Chen et al., 
2020a). According to SEM, droughts affect GPP due to the direct impact 
of lower SWC and the indirect effect of water scarcity-induced decreases 
in LAI. 

As previously stated, lower mean Ta can compensate for drought- 
induced declines in GPP by decreasing VPD. Through the land- 

Fig. 9. Diagram illustrating the cascading effects of early vegetation activity and summer drought on the carbon and water fluxes.  
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atmosphere interactions, higher VPD is mostly determined by lower 
SWC and higher mean Ta during droughts (Chen et al., 2021; Kimm 
et al., 2020). Under high VPD conditions, plants tend to close their 
stomata to minimize water loss at the leaf scale, thus restricting 
photosynthetic activities (Monteith, 1995). Although VPD has a weaker 
impact on GPP than SWC during droughts on the TP (Chen et al., 2021; 
Zhang et al., 2018) and global scale (Liu et al., 2020), higher VPD also 
plays a vital role in restraining GPP and LAI during droughts (Chen et al., 
2021; Kimm et al., 2020; Xu et al., 2021). Our multiple observations 
verified the above statements. According to RF’s simulated results, 
lower mean Ta can offset-induced GPP declines by 4.3% by decreasing 
VPD by 5.1%. This shows that lower mean Ta could reduces VPD and 
then mitigate carbon loss during droughts. 

4.4. Uncertainties and future research needs 

There are a few aspects to consider in the future. First, the magni-
tudes of green-up dates and GPP varied among the site, landscape, and 
region scales observations. This bias may be explained by their mea-
surement methods, spatial scales and datasets producting modes, etc 
(Chen et al., 2020a). Second, to our knowledge, present research cannot 
exactly quantify the actual water constraints and heating feedback 
induced by earlier vegetation activities. New experiments combining 
multiple factors (e.g., earlier spring × summer drought) are urgently 
needed to accurately measure above-mentioned hydrothermal feed-
backs in future research. Third, although our findings of lower mean Ta 
during summer drought are guaranteed, the driving mechanisms and 
potential effects of lower mean Ta need deep analysis. Future research 
should examine energy partitioning in the TP’s permafrost zones during 
the summer drought, including the ice-water phase. Model simulations 
should be used to assess the potential consequences of decreased mean 
Ta by taking into account the anomalies in LAI, VPD, and other 
variables. 

5. Conclusion 

The chained impacts of earlier vegetation activity and summer 
drought could substantially influence broad ecological processes. 
Currently, these effects on the TP remain elusive yet. We demonstrated 
that earlier spring partially compensated for summer carbon loss caused 
by drought and may exacerbate the summer water deficit. However, 
decreasing evaporative cooling caused by water deficit did not result in a 
rise in summer mean Ta. Decreasing mean Ta could buffer the passive 
impacts of drought on carbon uptake. Our findings emphasize the 
importance of knock-on effects of vegetation activity and summer 
drought in driving the carbon and water cycles on the TP. Notably, more 
research is needed to fully comprehend the underlying mechanisms and 
potential consequences of decreased mean Ta during the summer 
drought. They may be favorable to accurately anticipate the response of 
ecological processes to summer drought in the future. 
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