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Abstract. Water clarity serves as a sensitive tool for understanding the spatial pattern and historical trend in
lakes’ trophic status. Despite the wide availability of remotely sensed data, this metric has not been fully ex-
plored for long-term environmental monitoring. To this end, we utilized Landsat top-of-atmosphere reflectance
products within Google Earth Engine in the period 1984–2018 to retrieve the average Secchi disk depth (SDD)
for each lake in each year. Three SDD datasets were used for model calibration and validation from different field
campaigns mainly conducted during 2004–2018. The red / blue band ratio algorithm was applied to map SDD
for lakes (> 0.01 km2) based on the first SDD dataset, where R2

= 0.79 and relative RMSE (rRMSE)= 61.9 %.
The other two datasets were used to validate the temporal transferability of the SDD estimation model, which
confirmed the stable performance of the model. The spatiotemporal dynamics of SDD were analyzed at the five
lake regions and individual lake scales, and the average, changing trend, lake number and area, and spatial dis-
tribution of lake SDDs across China were presented. In 2018, we found the number of lakes with SDD < 2 m
accounted for the largest proportion (80.93 %) of the total lakes, but the total areas of lakes with SDD of < 0.5
and > 4 m were the largest, both accounting for about 24.00 % of the total lakes. During 1984–2018, lakes in
the Tibetan–Qinghai Plateau region (TQR) had the clearest water with an average value of 3.32± 0.38 m, while
that in the northeastern region (NLR) exhibited the lowest SDD (mean 0.60± 0.09 m). Among the 10 814 lakes
with SDD results for more than 10 years, 55.42 % and 3.49 % of lakes experienced significant increasing and
decreasing trends, respectively. At the five lake regions, except for the Inner Mongolia–Xinjiang region (MXR),
more than half of the total lakes in every other region exhibited significant increasing trends. In the eastern region
(ELR), NLR and Yungui Plateau region (YGR), almost more than 50 % of the lakes that displayed increase or
decrease in SDD were mainly distributed in the area range of 0.01–1 km2, whereas those in the TQR and MXR
were primarily concentrated in large lakes (> 10 km2). Spatially, lakes located in the plateau regions generally
exhibited higher SDD than those situated in the flat plain regions. The dataset is freely available at the National
Tibetan Plateau Data Center (https://doi.org/10.11888/Hydro.tpdc.271571, Tao et al., 2021).
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1 Introduction

Lakes and reservoirs are important aquatic habitats and
serve as freshwater water sources for drinking, indus-
trial and agricultural uses (Pekel et al., 2016; Tranvik et
al., 2009; Wetzel, 2001). More than 26 000 lakes (with area >

0.01 km2) and 78 000 reservoirs are distributed across China
(Song et al., 2018a), providing multiple ecosystem services
(S. L. Feng et al., 2019; Lehner and Doll, 2004; Tranvik et
al., 2009; Yang and Lu, 2014). Over the last 4 decades, China
has made considerable achievements with respect to socio-
economic development but has also faced increasing water
pollution challenges due to, among other contributing fac-
tors, agricultural nonpoint pollution, wastewater discharge,
urban expansion and increased water consumption (Han et
al., 2016; Qin et al., 2010; Tong et al., 2017). Eutrophication
and algal bloom proliferation are the clearest manifestations
of these water quality problems, and major efforts have been
made (afforestation, conversion of cropland to grassland or
wetland) to mitigate these impacts and restore the ecological
integrity of inland water systems (Huang et al., 2016; Ma et
al., 2020; Tong et al., 2020).

Across the country, the number of stations dedicated to
the monitoring of water quality in lakes (59) and reservoirs
(52) is very limited in comparison to the national inventory
of lakes and reservoirs (SOEE, 2018). Water resource man-
agers in China clearly need better assessment tools to mon-
itor inland water quality (Rosenzweig et al., 2011). Com-
monly expressed as the Secchi disk depth (SDD) (Carlson,
1977), water clarity provides both a practical and a com-
prehensive measure of the trophic state of aquatic ecosys-
tems (Olmanson et al., 2008; Richardson et al., 2010). How-
ever, traditional SDD measurements are limited in terms of
their suitability for monitoring large water bodies exhibiting
strong spatiotemporal dynamics (Kloiber et al., 2002; Song et
al., 2020). Although a Secchi disk apparatus is easy to oper-
ate in the field, water clarity monitoring in lakes or reservoirs
(herein lakes) located in remote areas can be nearly impos-
sible without aquatic vehicles and may not yield data with
sufficient spatial and temporal frequency for trend analysis
(Kloiber et al., 2002; Olmanson et al., 2008).

The abundance of optically active constituents (OACs;
phytoplankton, non-algal particles and CDOM) is related to
the trophic status of aquatic ecosystems and also contributes
to water clarity and water surface reflectance, which can be
captured by spaceborne sensors (Gordon et al., 1983; Lee et
al., 2015). Remote sensing has been widely used for moni-
toring the spatiotemporal dynamics of SDD at regional and
national scales. Available methods for SDD estimation us-
ing remote sensing data can be grouped into three categories:
analytical, semi-analytical and empirical algorithms (Doron
et al., 2007; Lee et al., 2015; G. Liu et al., 2020; McCul-
lough et al., 2013; Olmanson et al., 2008, 2011). The first two

methods are difficult to apply to large-scale studies (provin-
cial and national scales) due to the complex theoretical mod-
els and parameterization processes and expensive equipment
required (Cao et al., 2017; Giardino et al., 2007). The last
group of methods is widely used to retrieve SDD at multiple
scales due to its simplicity and operability (Duan et al., 2009;
L. Feng et al., 2019; McCullough et al., 2012; Olmanson et
al., 2011; Shen et al., 2020).

In the past, we faced the challenge of how to handle
and analyze big data at national or global scales, like re-
mote sensing datasets from different satellites. Since 2010,
Google has hosted a big geo-data platform based on cloud
computing, named Google Earth Engine (GEE), which is
time-saving for users, who can conduct scientific research
online (into topics such as vegetation, agriculture, hydrol-
ogy and land cover) without downloading these satellite
images (Amani et al., 2020). The GEE platform mainly
comprises datasets of remote sensing, geophysics and me-
teorology. The remote sensing datasets contain Landsat
(1972–present), Moderate Resolution Imaging Spectrom-
eter (MODIS; 2000–present) and Sentinel (2014–present)
(https://code.earthengine.google.com/, last access: last ac-
cess: 5 January 2022). Remote sensing images are selectively
used to estimate SDD for specific regions according to their
spatial and temporal resolutions, among which the Landsat
images can be used to not only examine the long-term (3–
4 decades) spatiotemporal variation in SDD but also moni-
tor lakes ranging from small to large with its higher spatial
resolution (30 m). Therefore, the GEE platform is an optimal
choice to quickly map SDD long-time-series dynamics based
on Landsat observation across China.

In recent years, a few studies have examined the spa-
tiotemporal dynamics of SDD in lakes across China, but
they have mainly focused on the large lakes and reservoirs
(area > 10 km2) (D. Liu et al., 2020; S. Wang et al., 2020;
Zhang et al., 2021). Smaller lakes (area < 10 km2) are widely
distributed across the country, but our understanding of their
ecological status remains limited. For example, D. Liu et
al. (2020) used an empirical model and the MODIS red
and green bands (2000–2018) within GEE to study SDD
variation in 412 large lakes (area > 20 km2) across China.
S. Wang et al. (2020) applied water color parameters (Forel–
Ule index and hue angle) to MODIS data (2000–2017) and
obtained SDD data for 153 lakes (> 25 km2) across China.
Zhang et al. (2021) built a simple power function model
based on the Landsat red band (2016–2018) to investigate the
spatial distribution of SDD in 641 lakes (≥ 10 km2) across
China. In addition, other investigations of the spatiotempo-
ral variations in SDD have been made using MODIS data for
lakes in the Yangtze Plain (50 lakes, > 10 km2; L. Feng et
al., 2019) and in the Tibetan Plateau (64 lakes, > 50 km2; Pi
et al., 2020). In these studies, the empirical models exhib-
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ited better ability than other models to estimate SDD at large
scales.

In this study, we tuned a recently developed SDD em-
pirical model which has been demonstrated as effective to
map the spatial–temporal dynamics of SDD in surface wa-
ters based on atmospherically corrected Landsat reflectance
products in GEE (Song et al., 2020). The overall purpose of
this study was to map the spatiotemporal variation in SDD in
lakes (> 0.01 km2) across China from 1984 to 2018. Specif-
ically, the objectives were to (1) built a lake SDD estimation
model across China based on extensive in situ measurements,
(2) derive SDD of lakes across China using Landsat data em-
bedded in GEE, and (3) analyze the interannual variability in
SDD at the lake regions’ scale and the individual lake scale.
Such research provides valuable information regarding wa-
ter quality conditions and can inform future water resource
planning and management.

2 Study area

China is a vast and physiographically diverse country en-
dowed with a large number of lakes. Based on broad regional
variations of landforms and climate characteristics, the lakes
in China have been grouped into five regions (Ma et al., 2011)
(Fig. 1a). The Inner Mongolia–Xinjiang lake region (MXR)
and Tibetan–Qinghai Plateau lake region (TQR) are located
in arid or semiarid climates, while the northeastern lake re-
gion (NLR), Yungui Plateau lake region (YGR) and eastern
lake region (ELR) are situated in the Asian monsoon cli-
mate zone. The MXR and TQR have lower annual precipi-
tation, lower temperature and a higher evaporation level than
other three lake regions. Regionally, the lakes’ distribution
sourced from Song et al. (2020) is as follows (in decreas-
ing order): 49 % in the ELR, 22 % in the NLR, 18 % in the
YGR, 8 % in the MXR and 4 % in the TQR (Fig. 1b). How-
ever, on the basis of lake surface area, regional distribution is
slightly different and is in the following order: TQR (41 %)
> ELR (30 %) > MXR (14 %) > NLR (10 %) > ELR (6 %)
(Fig. 1b). The lakes in the plateau region with higher eleva-
tion are less affected by human activities and generally ex-
hibit better ecological conditions than lakes in the other re-
gions (Zhang et al., 2019). In contrast, the lakes in the plain
regions are frequently influenced by anthropogenic activities,
such as urbanization, population growth, agricultural fertil-
izer and wastewater discharge (L. Feng et al., 2019; Tong et
al., 2020).

3 Methods

3.1 Water body mask

Following Song et al. (2020), the lake boundaries (lakes
and reservoirs) with area > 0.01 km2 across China were de-
rived from Landsat 8 Operational Land Imager (OLI) images
mainly acquired in 2016, and detailed description of bound-

ary extraction is available in that study. However, some lakes
in China have changed substantially over time. These lakes
were dealt with separately to obtain their boundaries in each
year during the period 1984–2018. To obtain the informa-
tion of lake area variation (e.g., size and year), we referred
to an analysis on multi-decadal lake area (≥ 1 km2 in size)
changes in China from the 1960s to 2015 (Zhang et al., 2019)
(Fig. S1 in the Supplement). The datasets of lake boundaries
(1960s–2020) have been released by the National Tibetan
Plateau Data Centre. As for the reservoirs, we mainly viewed
and compared the Landsat natural color images on the web-
site of Earthdata Search (https://search.earthdata.nasa.gov/,
last access: 5 January 2022) and historical images embed-
ded in Google Earth to confirm the changing region, respec-
tively. For the small lakes with area < 1 km2 obtained from
the study of Song et al. (2020), we assumed their boundaries
remained unchanged during the study period.

We extracted the boundaries of these changing lakes us-
ing Landsat images during 1984–2018. The cloudless top-of-
atmosphere (TOA) image of each path and row was down-
loaded from the GEE platform and processed to obtain the
modified normalized difference water index (MNDWI) as
follows:

MNDWI=
(
Rrc, Green−Rrc, SWIR

)/(
Rrc, Green−Rrc, SWIR

)
, (1)

where Rrc, Green and Rrc, SWIR are the Rayleigh scattering re-
flectance in the green band and shortwave infrared (SWIR)
band, respectively. First, we used the MNDWI, combined
with tasseled cap transformation (TC) and a density slic-
ing with multi-threshold approach, to build a decision tree
for extracting water body boundaries using the ENVI soft-
ware package (Rokni et al., 2014; Xu, 2006). Then, Land-
sat images acquired during 1984–2018 were classified into
water and non-water areas (Feyisa et al., 2014; X. Wang
et al., 2020). The extracted water bodies were subsequently
converted into polygons with contiguous pixels and stored
in shape file format using ArcGIS 10.4 (Esri Inc., Redlands,
CA, USA). According to the shoreline features, we divided
water bodies into lakes, reservoirs and rivers. By referring to
the Global Reservoir and Dam database (Lehner et al., 2011),
Chinese Reservoirs and Dams database (Song et al., 2018b),
and high-resolution images from Google Earth, we distin-
guished rivers and reservoirs from water bodies mainly by
visual interpretation. The shape file of lakes and reservoirs
(herein lakes) was used as a water mask to extract the SDD
map derived from the Landsat imageries (Fig. 1a).

The impact of land contamination on water remains a chal-
lenge in terms of accurately retrieving water quality param-
eters (Jensen, 2006; Hou et al., 2017; D. Liu et al., 2020;
S. Wang et al., 2020). Jensen (2006) pointed out that the
different surface objects have different reflectances to the
NIR band. For instance, land and vegetation can largely re-
flect the NIR band strongly absorbed by water, especially for
shallow lakes or reservoirs. In our study, a 1-pixel (2-pixel)
buffer inward of water boundary was removed for lakes with
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Figure 1. The geographical distribution of lakes with water clarity (SDD) records of more than 10 years (lake area > 0.01 km2; N = 11336)
in different lake regions across China (a). The percentage distribution of lakes, based on the number of lakes and lake surface area in the five
lake regions, is shown in the pie charts. The left one (green box) is based on all lakes extracted from Landsat images (b), while the lower left
corner one (red box) is based on lakes with SDD records of more than 10 years (c).

an area ≤ 1 km2 (> 1 km2) in order to avoid the influence
of adjacent land on water bodies that can result in mixed
land–water pixels. The determination of the number of pixels
buffered was referenced to the method proposed in the study
of Wang et al. (2018), who made a comparison of water-
leaving reflectance in the transects selected from the land–
water boundaries to identify a suitable buffer distance. This
method has been demonstrated to be effective in other stud-
ies related to SDD estimation (D. Liu et al., 2020; S. Wang
et al., 2020).

3.2 SDD in situ data collection across China

We used three SDD datasets for model calibration and valida-
tion (Fig. 2a). To assemble the first dataset (IGA-04-19), we
conducted 37 field campaigns from April 2004 to Septem-
ber 2018; surveyed 361 water bodies; and collected 2293
samples from lakes and reservoirs across China (Table S1 in
the Supplement), most of which were collected in late sum-
mer and early autumn. The second dataset was assembled
from field campaigns (2007–2009) conducted by researchers
from the Nanjing Institute of Geography and Limnology,
Chinese Academy of Sciences. The third dataset (229 sam-
ples) was collected by different research groups during the
1980s–1990s and included records for which the data collec-
tion date was not available. The spatial distribution of these
three groups samples is shown in Fig. 2a. At each station,
Secchi disk depth (SDD, in cm) was determined to repre-
sent water clarity and was taken as the depth from the wa-
ter surface where a black–white Secchi disk can no longer

be seen under water. For the first two datasets, SDD data
derived from field surveys (2004–2018) were matched with
the TOA reflectance data collected by Landsat satellites over-
passing a lake/reservoir within 7 d of a field site visit, and the
average reflectance of pixels within a 3× 3 window match-
ing a sampling point was extracted for bands 1–5 (Kloiber
et al., 2002). After matching the in situ SDD with images,
altogether, 1301 and 340 pairs of data were obtained based
on the first and second SDD datasets, respectively. For the
third dataset, the cloud-free TOA images whose dates were
closest to the time recorded on the lake survey reports were
selected to match the measured SDD, which were between
May and October during the period of field survey. Finally,
229 matchups were found by expanding the time window be-
tween the third dataset of SDD and images.

3.3 Acquisition and processing of Landsat imagery data

To track the dynamics of lake SDD in the past 35 years,
all available Landsat Thematic Mapper (TM)/Enhanced The-
matic Mapper Plus (ETM+)/OLI images of TOA across
China were used in this study (∼ 82000 images, > 60 TB
of data) via the GEE platform. The number of images used
for the SDD estimate in a specific year spanned a large range,
from 371 in 1984 to 4784 in 2018 (Fig. 2b), with more im-
ages available when two satellites operated simultaneously in
space to acquire Landsat imagery. In this study, based on the
GEE platform, the TOA images were mainly collected dur-
ing the ice-free season (May to October) from 1984 to 2018
in the TQR, MXR, NLR and ELR but not in the YGR (from
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Figure 2. Location of the sampled water bodies (lakes or reservoirs) and Landsat Worldwide Reference System 2 (WRS-2) path/row based
on © Google Earth images across China (a). Number of Landsat scenes used in ice-free season from 1984 to 2018 (b).

January to December) due to lack of good-quality images.
The pixel_qa band, as a pixel quality control band generated
from the CFMask algorithm, was selected to mask out the
land and snow/ice and to remove cloud contamination (cloud
cover > 60 %) on the GEE platform, thus minimizing the po-
tential impact of cloud on SDD estimation accuracy. Landsat
imagery atmospheric correction is a key step for water qual-

ity inversion (Wang et al., 2009), particularly for monitor-
ing of temporal variation at a large scale. The TOA products
within GEE were produced using the equations developed
by Chander et al. (2009), and the function of these equations
was to convert calibrated digital numbers to absolute units
of TOA reflectance. A description of Landsat TOA products
is available on the GEE platform (https://developers.google.
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com/earth-engine/datasets/catalog/landsat, last access: 5 Jan-
uary 2022). More than 98.35 % of the pixels within China
had a total of qualified observations > 35 in the past 35 years,
and the majority of images had more than three scenes of
good observations for each year.

3.4 Model for SDD estimation and mapping in GEE

Model development was a key step in this study. For the
first matchup dataset, i.e., 1301 pairs of in situ SDD and
TOA, we divided the valid data into four groups, with three
groups used to calibrate the model (N = 976) and one group
(N = 325) used for model validation. Based on a previous in-
vestigation, the red and blue (or green) band ratio was found
to improve the performance of reflectance-based water qual-
ity models in terms of both their spatial and their temporal
transferability (Kloiber et al., 2002; Olmanson et al., 2008;
Song et al., 2020). Thus, by trying the band combination, the
red / blue band ratio algorithm using the first matched dataset
was employed in this study to map SDD of water bodies and
was mathematically expressed as

Ln(SDD)=−5.6828× (Red/Blue)+ 7.8413. (2)

Then, combining the aforementioned image-processing
methods, Eq. (1) was applied to the TOA images from 1984
to 2018 to estimate the SDD in the lakes with an area >

0.01 km2 over China via the GEE platform. The annual mean
SDDs at the pixel scale were obtained by averaging all avail-
able estimated results, and then the lake-based annual mean
SDDs were further worked out. During the calculations, we
only took into consideration lakes with SDD results of more
than 10 years. Finally, 10 814 lakes (size > 0.01 km2) were
examined for the interannual dynamics of SDD (Fig. 1c).

3.5 Statistical analysis

The SDD estimation model performance was assessed using
the determination coefficient (R2), RMSE, relative RMSE
(rRMSE) and mean absolute error (MAE).

RMSE=

√∑N
i=1
(
Yestimated, i −Yobserved, i

)2
N

, (3)

rRMSE= 100×
RMSE

Yobserved, i

, (4)

MAE=

∑N
i=1

∣∣Yestimated, i −Yobserved, i

∣∣
N

, (5)

where N refers to the number of water samples, i refers to the
current water sample number, Yobserved, i refers to the in situ
SDD measurements, Yobserved, i refers to the average of ob-
served Y and Yestimated, i refers to the estimated SDD from
the Landsat data.

Once the annual mean SDD maps were generated, the av-
erage SDD for each pixel within a lake was calculated for the

observation period (1984–2018). For each lake region and
individual lake, the spatiotemporal dynamics in SDD were
analyzed, including the variations in the average, changing
trend, number of lakes and lake surface area. The interannual
changing trend was assessed at the 5 % significance level
and the slope from linear regression analysis between SDD
values and years. These analyses were conducted with the
IBM SPSS software. Based on the analysis of interannual
change trend in SDD, the lakes in China were divided into
three types – lakes with SDD showing significant increas-
ing (Type I, p < 0.05 and slope > 0), significant decreas-
ing (Type II, p < 0.05 and slope < 0) and non-significant
(Type III, p > 0.05) trends from 1984–2018.

4 Validation of SDD estimation model

The estimation model of lake SDD across China was built
using three-quarters of the first matched dataset (976 sam-
ples), for which the R2, RMSE, rRMSE and MAE were
0.79, 100.3 cm, 61.9 % and 57.7 cm, respectively (Fig. 3a).
Then, we used 325 samples (one-quarter of the first matched
dataset) to validate the model, and the validation results in-
dicated stable performance by showing comparative errors
(R2
= 0.80; RMSE= 92.7 cm; rRMSE= 57.6 %; MAE=

54.9 cm; Fig. 3b). Further, the second and the third datasets
were both used to validate model performance with a ma-
jor focus on testing the temporal transferability of the
model (Fig. 3c, d). The second dataset (340 samples), col-
lected as part of the Chinese lakes survey conducted by
the Nanjing Institute of Geography and Limnology, also in-
dicated a good model performance (R2

= 0.78; RMSE=
74.7 cm; rRMSE= 59.1 %; MAE= 42.6 cm; Fig. 3c). The
third dataset (229 samples) was assembled by the first lake
surveys conducted in the 1980s and was used to validate
the model performance for SDD derived from historical re-
motely sensed data. Our results also demonstrated a sta-
ble performance for lake SDD before the 1990s (R2

=

0.81; RMSE= 61.8 cm; rRMSE= 50.6 %; MAE= 40.3 cm;
Fig. 3d). Comparison of validation results for these differ-
ent periods and datasets demonstrated the stable performance
of the SDD model (Fig. 3). Therefore, the estimation of
SDD using images acquired by Landsat series of sensors pro-
vides a reliable method to examine historical trends in SDD
through time series analysis.

5 Spatial distribution of SDD in lakes in 2018

Figure 4a shows the spatial distribution of the annual mean
SDD of lakes across China in 2018, demonstrating remark-
able spatial variation, with lakes in the plateau regions gen-
erally exhibiting higher SDD than those situated in the flat
plain regions. Based on their mean SDD, all lakes across
China in 2018 were divided into six levels, i.e., < 0.5, 0.5–
1, 1–2, 2–3, 3–4 and > 4 m, with 26.4 %, 25.7 %, 28.8 %,
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Figure 3. Model calibration and validation for SDD estimation with the Landsat TOA reflectance product acquired by different Landsat
sensors: (a) model calibration with three-quarters of the total number of samples from the first dataset, (b) model validated with one-
quarter of the total number of samples from the first dataset, (c) model validated with the second dataset independently collected during
the limnological survey (2007–2009) and (d) model validated with the third dataset collected in the first lake environmental survey during
1985–1990.

12.5 %, 4.3 % and 2.3 % of lakes in each SDD level, respec-
tively (Fig. 4b). Although the number of lakes with SDD <

2 m was more numerous (80.9 % of lakes), the total area of
lakes with SDD of < 0.5 and > 4 m was the largest, account-
ing for 24 % and 24.3 % of the total area in each category,
respectively (Fig. 4c).

Regarding the annual mean SDD in the five lake regions,
the top three regions were the TQR (3.37 m), YGR (2.35 m)
and MXR (1.92 m), followed by the ELR (1.50 m) and NLR
(0.69 m) (Fig. 4d). Except for the YGR, lakes with SDD <

2 m were most common, accounting for 96 % (NLR), 82.8 %
(ELR), 80.5 % (MXR) and 77.6 % (TQR) of all lakes in the
other regions, respectively (Fig. 4e). In the YGR, the lakes
with SDD in the 1–3 m range had a wide distribution, and
the total proportion of lakes with SDD < 3 m was 85.4 % in
this region (Fig. 4e). Spatially, the lakes were widely scat-
tered over the ELR, except for the northern and western sec-
tions of that region (i.e., northern and southern of Hebei
province, northeast of Henan province, northwest of Shan-
dong province, and west of Hubei and Hunan provinces). The
lakes in the NLR were located in the northwest and southwest
of the region. In the YGR, the lakes were clustered in the
southern and northeast of the region (i.e., mid-east of Sichuan

province and most of Yunnan and Guangxi provinces). A
large number of lakes were inventoried in the TQR, including
a collection of large lakes situated in the mid-west and east-
ern sections of the region, particularly in northwest Tibet and
in the western and eastern sections of Qinghai province. In
the MXR, the lakes were mainly distributed in the mid-east
and mid-west of Inner Mongolia and parts of the western and
northern Xinjiang Uygur Autonomous Region.

6 Interannual dynamics of lake SDD during
1984–2018

6.1 Temporal average and trend in lake SDD

Similarly to the spatial pattern of SDD estimates obtained
in 2018, the multi-year average SDD values in each lake re-
gion also revealed similar trends; i.e., the lakes located in
the plateau region were more transparent than lakes from
other physiographic regions (Fig. 5a). During 1984–2018,
the lakes in the NLR exhibited the lowest SDD (mean
0.60± 0.09 m), followed by the ELR (mean 1.23± 0.17 m).
The MXR showed intermediate SDD values (mean 1.63±
0.38 m), and the YGR exhibited higher SDD (mean 2.35±
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Figure 4. Annual mean SDD of lakes (> 0.01 km2) across China in 2018. (a) Spatial distribution of lakes with SDD values. (b) Proportion
of the lake number with SDD values for six levels (i.e., < 0.5, 0.5–1, 1–2, 2–3, 3–4 and > 4 m). (c) Proportion of the lake area for six SDD
levels. (d) Annual mean SDDs in the five lake regions. (e) Proportion of the lake number at different SDD levels in the five lake regions.

0.21 m). Lakes in the TQP had the clearest water (mean SDD
3.32± 0.38 m; Fig. 5a). As shown in Fig. 5a, mean annual
SDD estimates in the five lake regions were in agreement
with in situ-measured SDD.

Regarding the interannual change trend, with the excep-
tion of the TQR, results for the other four lake regions indi-
cated a significant (p < 0.05) increasing trend in SDD during
the study period (Fig. 5b). At the scale of individual lakes,
55.4 % (5993 out of 10 814) and 3.5 % (377 out of 10 814) of
lakes experienced statistically significant (p < 0.05) increas-
ing and decreasing trends, respectively, and the remaining
lakes (41.1 %, 4444 out of 10 814) displayed no significant
change (Fig. 5c). Among the five lake regions, except for
the MXR, more than half of all lakes exhibited significant
increasing trends (Fig. 5c). Ranked by the total number of
lakes exhibiting a significant increase in SDD, the lake re-
gions can be ordered as follows: TQR (61.7 %, 618 out of
1002), ELR (57.1 %, 3396 out of 5943), YGR (54.6 %, 829
out of 1517) and NLR (51.3 %, 784 out of 1528). As for the
lakes with decreasing SDD values, the NLR had the highest
number of such lakes (8.4 %, 128 out of 1528) followed by
the MXR (7 %, 58 out of 824) (Fig. 5c).

Among the three types of lake – lakes with SDD show-
ing significant increasing (Type I), significant decreasing
(Type II) and non-significant (Type III) trends from 1984 to

2018, the lake SDDs in Type I, Type II and Type III were
mainly concentrated in 0.5–3, 0–2 and 0–3 m, respectively;
the corresponding proportions were 81.11 % (4861 out of
5993), 80.11 % (302 out of 377) and 85.13 % (3783 out of
4444) of the total number of lakes, respectively (Fig. 5d–f).
At the five lake regions’ scale, regardless of the lake type,
the distributions of lake SDDs in the NLR, TQR and MXR
appeared similar, while those in the ELR and YGR differed
from these three lake regions. The former group was mainly
distributed in 0–2 m; the latter ranged 0.5–3 m (ELR) and 1–
4 m (YGR), respectively (Fig. 5d–f).

6.2 Lake SDDs versus lake sizes in China

The annual mean SDD and lake area were both separated into
six levels, and the proportions of lakes with different areas in
each SDD category are shown in Fig. 6. In terms of the num-
ber of different lake areas in the five lake regions, the lakes
with annual mean SDD values in the ELR, NLR and YGR
were dominated by the area range of 0.01–1 km2, followed
by that of 1–10 km2. In the MXR, the lakes were mainly
dominated by the area range of 1–10 km2, followed by that
of 0.01–1 km2 (Fig. 6a–f). In the TQR, when the SDDs were
< 2 m, the lakes covering the area range of 1–10 km2 were
in the majority (Fig. 6a–c); when the SDDs were > 2 m, the

Earth Syst. Sci. Data, 14, 79–94, 2022 https://doi.org/10.5194/essd-14-79-2022



H. Tao et al.: An annual inland water clarity dataset of China 87

Figure 5. The interannual dynamics of lake SDDs in China during 1984–2018. (a) Multi-year average SDD values of the modeled and
in situ SDDs in the five lake regions. (b) Interannual trends of mean lake SDDs in five lake regions based on the 5 % significant level and
slope representing the coefficient of simple linear regression. (c) Number of lakes with SDD showing statistically significant (p < 0.05)
increasing (Type I) and decreasing (Type II) trends and non-significant (Type III) trends. Proportions of lake numbers with different SDD
values (< 0.5, 0.5–1, 1–2, 2–3, 3–4 and > 4 m) for (d) lakes with SDD showing significant increasing trend, (e) lakes with SDD showing
significant decreasing trend and (f) lakes with SDD showing no significant trend.

lakes with the area range > 10 km2 occupied a dominant po-
sition, especially for lakes with the area range of 10–50 and
100–500 km2 (Fig. 6d–f).

Among the three types of lake in each SDD category, there
is a similarity in the distribution of lakes with different sizes
between Type I and Type III, while that of Type II was dif-
ferentiated from these two types of lake (Fig. 6). In the ELR,
NLR and YGR, more than 50 % of the lakes ranged 0.01–
1 km2 among the lakes of Type I and Type III. The lakes of
Type II, located in the three lake regions and with SDD val-
ues of 0.5–1 m in the ELR and of < 0.5 and 2–3 m in the
NLR, were dominated by the area size of 1–10 km2, while
the remaining lakes were mostly with the area range of 0.01–
1 km2 (Fig. 6a–f). In the MXR, the number of lakes covering

the area range of 1–10 km2 across the three types of lake was
much larger than that of other sizes among the lakes with
SDDs in the range 0–3 m (Fig. 6a–d). When the lake SDDs
were > 3 m in this lake region, most of the three types of
lake were dominated by the lakes covering the area range of
0.01–1 km2, apart from the lakes of Type III with SDD val-
ues > 4 m, where the proportion of lakes with the area range
of 1–10 km2 was slightly higher than that with the area range
of 0.01–1 km2 (Fig. 6e–f).

The distribution of the three types of lake with different
lake sizes in the TQR differed from those in the other four
lake regions. For the lakes of Type I and Type III in the TQR,
when the SDDs ranged 0–2 m, the proportions of lakes cover-
ing the area range of 1–10 km2 were the largest, somewhere
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Figure 6. Proportions of lake numbers in different areas in the six SDD categories. The six SDD categories are (a) < 0.5 m, (b) 0.5–1 m,
(c) 1–2 m, (d) 2–3 m, (e) 3–4 m and (f) > 4 m. The SDD values are the average of estimated results in each lake during 1984–2018. In the five
lake regions, the lakes are further divided into three types – lakes with SDD showing significant increasing (Type I), significant decreasing
(Type II) and non-significant (Type III) trends during 1984–2018.

between 49.64 % and 81.12 % (Fig. 6a–c). When the SDDs
ranged 2–3 m, the lakes with the area range of 10–50 km2 in
Type I and of 100–500 km2 in Type III had the largest pro-
portions of numbers, accounting for 40.43 % and 35.00 %,
respectively (Fig. 6d). When the SDDs exceeded 3 m, the
lakes covering the area range of 100–500 km2 were dominant
in the two types of lake, followed by the area range of 10–
50 km2 (Fig. 6e–f). For the lakes of Type II in the TQR, the

lakes with SDDs in the < 0.5 m category were distributed in
the area range of 10–50 km2, followed by that of 50–100 km2

(Fig. 6a). When SDDs were in the 0.5–1 m category, the
numbers of lakes with the area range of 1–10 and 10–50 km2

were the largest, where the corresponding percentages were
40.00 % (Fig. 6b). When SDDs were in the 1–2 m category,
there were two kinds of lake whose areas were in the range
of 0.01–1 and 50–100 km2, and their numbers were the same
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(Fig. 6c). When SDDs were in the 3–4 m category, only the
lakes with the area range of 1–10 km2 existed (Fig. 6e).

6.3 Spatial distribution of lakes with different SDD
values

The spatial distributions of lakes and the number of lakes and
areas of the three types of lake in five lake regions are pre-
sented in Fig. 7. In the SDD of < 0.5 m category (Fig. 7a),
the NLR had the largest lake numbers and areas of the three
types of lake, accounting for 34.51 % and 33.20 % in Type I,
63.19 % and 48.17 % in Type II, and 44.46 % and 34.38 %
in Type III of the number of lakes and areas in the lake re-
gion, respectively. Spatially, the lakes in Type I and Type III
were mainly distributed in the central section of the ELR,
the western section of the NLR, the mid-west of the TQR
and the mid-east of the MXR, while those in Type II were
concentrated on the western section of the NLR and eastern
section of the MXR.

In the SDD of the 0.5–3 m categories (Fig. 7b–d), the lakes
of Types I and III were the most numerous in the ELR, but the
largest total lake areas of the five lake regions were different
between these two types of lake. Specifically, in the lakes of
Type I, the total lake areas in the TQR were the largest, with
percentages of 36.38 % (SDD 0.5–1 m), 44.14 % (SDD 1–
2 m) and 61.03 % (SDD 2–3 m), respectively (Fig. 7b–d). Re-
garding the lakes of Type III, the ELR (TQR) had the largest
proportion of lake area when SDD was 0.5–2 m (2–3 m). The
percentages of lake area when SDD was 0.5–2 m in the ELR
were 76.80 % (SDD 0.5–1 m) and 46.90 % (SDD 1–2 m),
while that in the TQR was 46.65 % (SDD 2–3 m) (Fig. 7b–
d). For the lakes of Type II, the region that had the largest
proportions of lake number and area was inconsistent in each
SDD category (0.5–3) m. When the SDDs were in the range
of 0.5–1 m, the NLR had the largest lake number, while the
MXR had the highest percentage of lake area (Fig. 7b). When
the SDDs ranged from 1–2 m, the number of lakes and area
in the ELR were the largest (Fig. 7c). When the SDDs were
around 2–3 m, the lake number in the NLR was the largest
and the total lake area in the ELR was the largest (Fig. 7d).
Spatially, lake distributions of Types I and III with the SDD
range of 0.5–2 m were concentrated in most places of the
ELR, the northwest and southeast of the NLR, the southern
section of the YGR, the mid-west of the TQR, and the mid-
east and the northern section of the MXR (Fig. 7b–c). When
these two types of lake SDD were in the range of 2–3 m,
they were distributed in the central and southeast coast of the
ELR, the central and southwest of the YGR, and the western
section of the TQR (Fig. 7d). For Type II of lakes with SDD
falling in the range 0.5–3 m, their distributions were scattered
over part of the central and southeast coast of the ELR and
southwest of the YGR (Fig. 7b–d).

In the SDD of 3–4 m category (Fig. 7e), the regions that
had the most lakes for each of the three types of lake were
the YGR (Type I, 53.56 %), ELR (Type II, 48.00 %) and

ELR (Type III, 53.19 %), respectively. The regions that had
the largest lake area were the TQR (Type I, 63.51 %), YGR
(Type II, 90.06 %) and TQR (Type III, 75.22 %), respectively.
Spatially, the lakes of Types I and III were concentrated at the
junction of the ELR, YGR and MXR; the southeast coast of
the ELR; the southern section of the YGR; and the western
section of the TQR. The lakes of Type III were mainly dis-
tributed in the part of the southeast coast of the ELR and the
southern section of the YGR.

Regarding the SDD of > 4 m category (Fig. 7f), the TQR
had the largest lake number and area in the lakes of Type I,
accounting for 39.19 % of the number of lakes and 87.34 %
of the total lake area. For the lakes of Type II, a few lakes
existed in the MXR and YGR. For the lakes of Type III, the
YGR had the most lakes and the TQR had the largest total
lake area, accounting for 40.28 % of the number of lakes and
87.00 % of the total lake area, respectively. Spatially, the dis-
tributions of these lakes were similar to those of the lakes
with an SDD range of 3–4 m.

7 Comparison with past studies and uncertainties

Several past studies have examined the spatiotemporal vari-
ation in SDD in lakes across China (or parts of China), but
these investigations were mainly based on MODIS images
to estimate SDD in large lakes (> 10 km2) and primarily fo-
cused on the period after 2000 (L. Feng et al., 2019; D. Liu
et al., 2020; Pi et al., 2020; S. Wang et al., 2020). Therefore,
it becomes a challenge to compare these past results with
the results of the present study due to differences in the pe-
riod of interest, the resolution of the satellite images and lake
size (> 0.01 km2 in our study). Zhang et al. (2021) adopted
an empirical model to retrieve the SDD of lakes (> 10 km2)
across China based on Landsat surface reflectance products
(2016–2018) within GEE. Because of the similarity of meth-
ods and images used in Zhang et al. (2021) and the present
study, there is a unique opportunity to compare lake SDD es-
timation models across China proposed by these two studies.
To that end, we used available in situ SDD data (2019–2020)
collected at monitoring stations in Lake Taihu and Lake Di-
anchi to assess the accuracy of the two models. As shown
in Fig. 8 and demonstrated by statistical parameters (higher
R2, lower RMSE, rRMSE and MAE), the estimation model
proposed by our study exhibited better performance to re-
trieve SDD in both Lake Taihu (Fig. 8c) and Lake Dianchi
(Fig. 8d).

While previous studies have demonstrated the appli-
cation of Landsat series data (Landsat 5 TM/Landsat 7
ETM+/Landsat 8 OLI) and the proposed model can pro-
vide accurate long-term coverage of the SDD of lakes in
China (Zhang et al., 2021; Song et al., 2020; Deutsch et
al., 2018; Bonansea et al., 2015; McCullough et al., 2013),
several systemic errors in SDD results could not be avoided.
On the one hand, the SDD estimation model proposed in
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Figure 7. Spatial distribution of lakes with multi-year average SDD values during 1984–2018. The SDD values were divided into six levels:
(a) < 0.5 m, (b) 0.5–1 m, (c) 1–2 m, (d) 2–3 m, (e) 3–4 m and (f) > 4 m. The lakes were separated into three types of lake – lakes with SDD
showing significant increasing (Type I), significant decreasing (Type II) and non-significant (Type III) trends during 1984–2018. Proportions
of total lake area and lake number in each lake region are shown in the pie charts and histograms, respectively.

this study contained some errors, and the model validation
yielded the following results: R2

= 0.80; RMSE= 92.7 cm;
rRMSE= 57.6 %; MAE= 54.9 cm. On the other hand, dif-
ferent atmospheric correction methods can have diverse ef-
fects on the Landsat images (Bonansea et al., 2015; Lee et

al., 2016). The calibrated TOA reflectance products within
GEE were produced using the equations developed by Chan-
der et al. (2009). Nevertheless, these systemic errors do not
significantly affect the overall trends of the SDD of lakes in
China (Bonansea et al., 2015; Deutsch et al., 2018; Zhang et
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Figure 8. Comparison of different SDD estimation models based on Landsat images within GEE. (a, b) Spatial distribution of monitoring
stations located in Lake Taihu and Lake Dianchi, respectively. The Landsat 8 OLI images used in these two panels come from the Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn, last access: 5 January 2022).
(c–f) The regression line between the measured SDD in Lake Taihu (N = 136) and Lake Dianchi (N = 84) during 2019–2020 and estimated
SDD values that were obtained from the estimation models developed in this study and Zhang et al. (2021), respectively.

al., 2021). In addition, under the influence of climate change
or human activities, such as floods and droughts, urban-
ization, and farmland reclamation, the boundaries for some
small lakes (< 1 km2) may vary greatly, which could cause
the uncertainty in SDD estimation (Yang and Huang, 2021;
Zhang et al., 2019). This is a limitation of the assumption
for small lakes with static boundaries. In the future, further
research on the relationship between the area of small lakes
and the accuracy of SDD simulation would aid in addressing
this limitation.

8 Data availability

The dataset of the water clarity of lakes developed in
this study consists of one shapefile containing the an-
nual mean values of water clarity in each lake (size >

0.01 km2) during 1990–2018, with a temporal resolu-
tion of 5 years. The dataset can now be accessed
through the website of the National Tibetan Plateau Data
Center (http://data.tpdc.ac.cn/en/, last access: 5 January
2022) at https://doi.org/10.11888/Hydro.tpdc.271571 (Tao et
al., 2021).

https://doi.org/10.5194/essd-14-79-2022 Earth Syst. Sci. Data, 14, 79–94, 2022



92 H. Tao et al.: An annual inland water clarity dataset of China

9 Conclusions

As a comprehensive indicator of water eutrophication, en-
compassing nutrient enrichment, algal abundance and sus-
pended sediment, water clarity can serve as a valuable index
for tracking the ecological health of aquatic ecosystems and
guiding the actions of water resource managers. Although
field measurement of water clarity can easily be made with a
Secchi disk apparatus, this approach is not suitable for long-
term time series measurements of lake water clarity at re-
gional and national scales. This information is highly valu-
able and can be extracted from archived satellite data. In situ
water clarity data collected in lakes across China during
2004–2018 were used to calibrate and validate SDD models
that incorporate top-of-atmosphere reflectance products and
Google Earth Engine to map the spatiotemporal dynamics of
SDD over a 35-year time span (1984–2018). The SDD model
was validated using different datasets, and results confirmed
the stable performance and temporal transferability of the
SDD estimation model. Derived SDD estimates were ana-
lyzed at the lake region and at the individual lake scales. Dur-
ing the study period (1984–2018), annual mean SDD values
in the TQR, YGR, MXR, ELR and NLR were 3.32± 0.38,
2.35± 0.21, 1.63± 0.38, 1.23± 0.17 and 0.60± 0.09 m, re-
spectively. Among the 10 814 lakes with > 10 years of SDD
results, 55.4 % and 3.5 % experienced statistically signifi-
cant (p < 0.05) increasing and decreasing trends of water
clarity, respectively. The remaining lakes (41.1 %) displayed
no significant trends. With the exception of the MXR, more
than half of lakes in all the other regions exhibited a signifi-
cant trend of increasing water clarity. In the ELR, NLR and
YGR, most of the lakes displaying either an increase or a de-
crease in SDD tended to be of 0.01–1 km2 in size, whereas
in the TQR and MXR, lakes exhibiting clear trends in SDD
were mostly large lakes (> 10 km2). Spatially, the lakes in
the plateau regions (TQR, YGR) generally exhibited higher
SDD than those situated in the flat plain region. The time se-
ries of water clarity information presented in this study could
aid local, regional and national decision-making on policies
and management for protecting/improving inland water qual-
ity in China. The research approach implemented could also
potentially be used to map water clarity in lakes at the global
scale, an effort that could provide useful information for eval-
uating decadal trends in surface water quality resulting from
the adoption of pollution control policies.
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