
Forest Pathology. 2022;52:e12758.	 wileyonlinelibrary.com/journal/efp	   | 1 of 6
https://doi.org/10.1111/efp.12758

© 2022 Wiley-VCH GmbH.

1  |  INTRODUC TION

Yeast growth is limited under high external osmolarity, and the high-
osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) 
pathway from Saccharomyces cerevisiae is a comprehensively under-
stood osmoresponsive system (Hohmann,  2002). In this pathway, 
two independent upstream branches converge on the MAPK kinase 
Pbs2. Activated Pbs2 phosphorylates the core MAPK Hog1, which 
is the homologue of mammalian p38 stress-activated protein kinase 
(SAPK). S. cerevisiae Hog1 is responsible mainly for the accumulation 
of glycerol in the presence of high osmolarity (Albertyn et al., 1994). 
In response to osmostress, S. cerevisiae Hog1 is rapidly activated 
and then imported into the nucleus to conduct multiple types of 
transcription regulation (Alepuz et al.,  2001; Capaldi et al.,  2008; 
Nadal & Posas,  2010; Ni et al.,  2009; Proft & Struhl,  2002; 
Zapater et al.,  2007). Moreover, Hog1 affects mRNA stability for 
osmostress-upregulated genes (Saito & Posas, 2012). Activated by 

osmostress, S. cerevisiae Hog1 modulates a rapid and transient delay 
at various stages of the cell cycle to enable cells to adapt before 
cell-cycle progression (Adrover et al., 2011; Alexander et al., 2001; 
Clotet et al., 2006; Escote et al., 2004; Yaakov et al., 2009; Zapater 
et al., 2005).

The importance of the budding yeast Hog1 homologues in the 
high osmolarity response is well established in many plant patho-
genic fungi. Hog1 homologue deletion mutants display growth de-
fects in response to high osmotic stress in many phytopathogenic 
fungi (Dixon et al., 1999; Kojima et al., 2004; Mehrabi et al., 2006; 
Segmuller et al., 2007; Wang et al., 2016; Zheng et al., 2012, 2016). 
Among Magnaporthe oryzae, Fusarium graminearum and Ustilaginoidea 
virens, the accumulation of the main compatible solute or compati-
ble solutes under hyperosmotic conditions is controlled by the 
Hog1 MAP kinase pathway (Dixon et al., 1999; Zheng et al., 2012, 
2016). ClOsc1 from Colletotrichum lagenarium is phosphorylated 
and accumulates in the nucleus under high osmotic stress (Kojima 
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Abstract
The obligate biotrophic pathogen Melampsora larici-populina, responsible for poplar 
foliar rust disease, causes annual epidemics and severe damages to poplar plantations 
worldwide. Flexible responses to external osmotic pressure changes are important 
for the growth and survival of pathogens. In a previous study, we suggested that the 
Hog1-type MAPK MlpHog1 in M. larici-populina may play a role in infectious growth 
and responses to various environmental stresses. In the present study, we analysed 
its biological characteristics. MlpHog1 displayed a conserved coding sequence pat-
tern among five strains from different regions of China. MlpHog1 restored the Hog1-
orthologue mutant defects responding to hyperosmotic stress in both Saccharomyces 
cerevisiae and Magnaporthe oryzae. Transient expression in wheat protoplasts revealed 
that MlpHog1 is localized in the cytoplasm and nucleus. These results indicate that 
MlpHog1 plays a positive role in responding to osmotic stress in the poplar rust M. 
larici-populina.
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et al.,  2004), and similarly, increased phosphorylation of a stress-
activated MAPK from Botrytis cinerea (BcSak1) is detected in mycelia 
treated with 0.8 M NaCl (Segmuller et al., 2007).

Poplar leaf rust disease caused by Melampsora larici-populina re-
sults in threats to poplar plantations worldwide, including planta-
tions in many regions of China (Pinon & Frey, 2005; Tian et al., 2000). 
Using resistant poplar cultivars is the most effective and environ-
mentally friendly approach to control this disease. However, simi-
lar to other rust diseases, it is difficult to control because rapidly 
evolved races lead to the breakdown of poplar resistance (Tian 
et al., 2000). Our ability to control poplar leaf rust disease will ben-
efit from understanding the molecular mechanism of development 
and pathogenesis. In recent years, accompanied by genome release 
and transcriptome analyses, researches on the function of interested 
genes from M. larici-populina, especially effectors, have yielded 
much progress (Duplessis, Cuomo, et al., 2011; Duplessis, Hacquard, 
et al., 2011; Hacquard et al., 2012, 2013; Lorrain et al., 2018, 2019). 
11 M. larici-populina candidate effectors are emphasized because 
of specific localization and/or plant protein interactors (Germain 
et al.,  2017; Petre et al.,  2015; Petre, Lorrain, et al.,  2016; Petre, 
Saunders, et al.,  2016). A set of candidate effectors in M. larici-
populina has been characterized. Mlp124478 has a virulence activity 
and remodels transcription by binding DNA to suppress normal tran-
scriptional responses to pathogens (Ahmed et al., 2018). Mlp124357 
increases plant susceptibility to bacterial and oomycete pathogens 
and associates with AtPDI-11 likely acting as a helper protein re-
cruited by Mlp124357 to enhance plant susceptibility (Madina 
et al., 2020). Mlp37347 accumulates exclusively at plasmodesmata, 
increases plasmodesmatal flux and reduces plasmodesmatal cal-
lose deposition, also could promote Hyalonoperospora arabidopsidis 
growth in infection assays (Rahman et al., 2021).

Positive responses to extracellular stresses are important for 
normal growth of the pathogen and further plant infection. There 
were few reports on how the HOG pathway responds to hyperos-
motic stress in M. larici-populina. Previously, we conducted the mo-
lecular characterization of the Hog1-type MAPK gene, MlpHog1 (Yu 
et al., 2016), and here we explored its potential function in response 
to osmotic stress.

2  |  MATERIAL S AND METHODS

2.1  |  Polymorphism analysis of MlpHog1 among 
different M. larici-populina strains

Four Chinese M. larici-populina (Mlp) strains from different regions 
(Cao et al.,  2012), including Zst (Heilongjiang Province, Northeast 
China), Bq (Beijing, North China), Nm (Inner Mongolia Autonomous 
Region, Northwest China) and Sb052 (Sichuan Province, Sorthwest 
China), were selected to assay coding region polymorphisms of 
MlpHog1. MlpHog1 fragments were amplified from urediospore 
cDNA of the four strains with TransStart FastPfu DNA polymer-
ase (TransGen, Beijing) and primers H1-F/R (Yu et al.,  2016). PCR 

fragments were inserted into the pMD19-T vector (TaKaRa, Japan) 
and sequenced at AuGCT Biotech Company (Beijing, China) to ob-
tain the coding sequences of MlpHog1 from the four Mlp strains.

2.2  |  Complementation of the S. cerevisiae 
Hog1 mutant

The S. cerevisiae wild-type strain BY4741 and Hog1 deletion mu-
tant strain ΔScHog1 (BY4741 background) were purchased from 
the EUROpean S. cerevisiae Archive (EUROSCARF). The coding se-
quence of MlpHog1 was amplified using the primers MlpH1-YE/F and 
MlpH1-YE/R1 (Table S1). The purified PCR product and pYES2 vec-
tor (Invitrogen Co., CA, USA) were digested with EcoRI and XhoI and 
connected with T4 ligase. The ΔScHog1 strain was transformed with 
the construct pYES2::MlpHog1 and with the empty vector pYES2, ac-
cording to the lithium acetate method (Schiestl & Gietz, 1989). Yeast 
transformants were selected on synthetic medium lacking uracil 
and screened by PCR using the corresponding primers (H1-pYseq/
F1 and Hog1-pYseq/R for the construct pYES2::MlpHog1, and H1-
pYseq/F2 and Hog1-pYseq/R for the empty vector pYES2, Table S1). 
Yeast complementation assays were performed as described previ-
ously (Yu et al., 2014). Serial dilutions of the cell suspension of each 
yeast strain were spotted on yeast peptone galactose medium (YPG; 
1% yeast extract, 2% bactopeptone, 2% galactose) and YPG medium 
supplemented with 0.4 M NaCl and incubated at 30°C for 3 days. 
The experiments were repeated three times.

2.3  |  Complementation of the M. oryzae 
Hog1 mutant

The vector pFL2::MlpHog1 (Yu et al.,  2016) was transformed into 
protoplasts of the M. oryzae Hog1 mutant ΔOSM1 as described pre-
viously (Sweigard et al.,  1992). Geneticin-resistant transformants 
were confirmed by PCR analysis with primers MlpHog1-F/RP27 and 
pFL2 insert/R (Table S1). The diameters of all strains on complete 
medium (CM) plates (the control) and CM plates with 0.4  M NaCl 
(the treatment) were measured after growth at 25°C for 10 days 
and used to calculate the inhibition rate (in%), which was estimated 
as (control diameter-treatment diameter)/(control diameter-plug 
diameter) × 100.

2.4  |  Subcellular localization analysis

Triticum aestivum Suwon 11 plants were used for protoplast trans-
formation and grown in a glasshouse for approximately 2–3 weeks. 
The coding sequence of MlpHog1 was amplified with the primers 
H1-163F and H1-163R1 (Table  S1), and the purified PCR product 
and pCaMV35S::GFP vector were digested with Pst I and Xba I and 
finally connected with T4 ligase. The fusion expression construct 
pCaMV35S::MlpHog1-GFP and empty vector pCaMV35S::GFP were 
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separately transformed into T. aestivum protoplasts through the 
polyethyleneglycol(PEG)-calcium method, as described previously 
(Zhu et al., 2018). After incubation overnight, transformed protoplasts 
were examined with an FV1000 confocal laser microscope (Olympus, 
Tokyo, Japan). The experiments were repeated three times.

3  |  RESULTS

3.1  |  MlpHog1 shows a conserved coding sequence 
pattern

To identify the intraspecific sequence polymorphism in MlpHog1, we 
gained the coding sequences of other four Chinese Mlp strains from 
different regions, including Zst, Bq, Nm and Sb052, and compared 
them with that of the Chinese Mlp strain Wh03 (Shaanxi Province, 
Northwest China) obtained previously (Yu et al., 2016). Interestingly, 
no sequence variations in the coding sequences were present among 
these five Mlp strains, suggesting that MlpHog1 may be highly con-
served in strains from different regions of China.

3.2  |  Complementation of S. cerevisiae Hog1 
mutant with MlpHog1 restores adaptation to 
hyperosmotic stress

We transformed the MlpHog1 gene into the yeast Hog1 mutant 
ΔScHog1 to test whether MlpHog1 could complement this mu-
tant. All strains displayed similar growth under normal conditions 
(Figure 1). After adding exogenous 0.4 M NaCl, the growth of the 
mutant ΔScHog1 and the mutant carrying the empty vector pYES2 
were significantly inhibited (Figure  1), which was in accordance 
with other studies (Dixon et al.,  1999). However, transformants 
with pYES2::MlpHog1 displayed obvious growth, similar to wild-
type BY4741 (Figure  1). These results indicated that the pheno-
typic defect in response to high osmotic pressure was well rescued 
by genetic complementation of the yeast mutant ΔScHog1 with M. 
larici-populina MlpHog1.

3.3  |  MlpHog1 partially complements the M. oryzae 
OSM1 mutant

The MlpHog1 gene was transformed into the M. oryzae Hog1 mutant 
ΔOSM1 to analyse the function of MlpHog1. The resultant transfor-
mants showed identical phenotypes and only data regarding H1-11 
are provided here. When exposed to hyperosmotic stress (0.4  M 
NaCl), the growth of the mutant ΔOSM1 was more sensitive than 
that of the wild-type Guy11; however, vegetative growth inhibi-
tion of the transformant H1-11 was significantly decreased com-
pared with ΔOSM1 (p =.05) (Figure 2). This observation shows that 
MlpHog1 could partially complement M. oryzae OSM1 mutant de-
fects in response to hyperosmotic stress.

3.4  |  Subcellular localization of MlpHog1 in plant 
protoplasts

The pCaMV35S::MlpHog1-GFP fusion construct was transformed 
into T. aestivum protoplasts to conduct the subcellular localization 
assay. When the MlpHog1-GFP fusion protein was transiently ex-
pressed in T. aestivum protoplasts, fluorescence was distributed in 
the cytoplasm and nucleus of protoplasts, while GFP protein as a 
control displayed fluorescence in the cytomembrane, cytoplasm and 
nucleus of protoplasts (Figure 3), suggesting that MlpHog1 is local-
ized in the cytoplasm and nucleus in wheat plants.

4  |  DISCUSSIONS

In the current study, we found no coding single nucleotide poly-
morphism (cSNP) of MlpHog1 among five Mlp strains from differ-
ent regions of China. In comparing the coding sequence of MlpHog1 
between the Chinese strain Wh03 and the French reference strain 
98AG31, only three cSNPs, including nucleotide loci 222,465 and 
468, are present, and all three are synonymous cSNPs. Similarly, 
Krantz et al. identified the HOG pathway components in 20 fun-
gal species by a comparative genomics approach and found that 

F I G U R E  1 Complementation of the Saccharomyces cerevisiae Hog1 mutant with Melampsora larici-populina MlpHog1. Serial dilutions of 
cell suspensions from all yeast strains, including wild-type BY4741, ΔScHog1, ΔScHog1 (pYES2) and ΔScHog1 (pYES2::MlpHog1) were spotted 
onto yeast peptone galactose (YPG) plates containing no additions (the control) and 0.4 M NaCl (the treatment). Yeast cells were incubated 
at 30°C for 3 days
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Cdc42 and Hog1 were the most highly conserved among 40 proteins 
linked to this pathway (Krantz et al., 2006). However, for one Fus3/
Kss1-type MAPK from Puccinia striiformis f. sp. tritic, 32 cSNPs with 
abundant types exist among six different Chinese Pst races (Guo 
et al., 2011).

In our previous study, partial complementation of the hyperos-
motic stress response defect of the F. graminearum Hog1 mutant 
by the MlpHog1 gene demonstrated the functional conservation 
between MlpHog1 and FgHog1 (Yu et al., 2016). Unfortunately, at 
present, this poplar rust fungus still cannot be genetically manip-
ulated to understand the function of genes of interest in M. larici-
populina, even in a host-induced RNAi system (Qi et al.,  2018). 
We continued to analyse the function of MlpHog1 during osmotic 
stress by means of the other two fungal systems. In response to 
hyperosmotic stress, MlpHog1 expression restores the growth de-
fect in the S. cerevisiae Hog1 mutant and partially complements the 

M.oryzae OSM1 mutant defect, indicating the functional conser-
vation between MlpHog1 and ScHog1 and also between MlpHog1 
and OSM1. Thus, we demonstrate that MlpHog1 could rescue the 
Hog1-orthologue mutant defects responding to hyperosmotic 
stress in the three fungal systems.

Following osmostress the budding yeast Hog1 is rapidly ac-
tivated and then imported into the nucleus to phosphorylate its 
nuclear substrates (Saito & Posas, 2012). By observing GFP signals 
of the FgHog1-GFP transformant, it was suggested that FgHog1 is 
activated and localized to the nucleus by a 0.3 M NaCl treatment 
(Zheng et al.,  2012). Similar observation was made for the C. la-
genarium Hog1-related MAPK ClOsc1 (Kojima et al.,  2004). In the 
current study, T. aestivum protoplasts with the MlpHog1-GFP fusion 
construct were incubated in the W5 solution overnight to maintain 
the homeostasis of protoplasts and induce transient expression. W5 
solution contains 0.15 M NaCl, so we inferred that under NaCl treat-
ment, MlpHog1-GFP signals could be detected in the nucleus.

A higher intracellular osmotic pressure has to be maintained in 
microbial cells relative to the growth medium to generate cell tur-
gor pressure, by which cell extension, growth and division are driven 
(Welsh, 2000). Microorganisms are exposed to highly variable envi-
ronments with diverse stresses, including osmotic stress. Thus, rea-
sonable adjustments to fluctuations in the osmolarity of the growth 
medium are crucial for growth and survival, and microorganisms 
have developed many strategies in response to such fluctuations 
(Welsh, 2000). Overall, analyses of heterologous expression in three 
fungal systems and subcellular localization in wheat protoplasts 
suggest that MlpHog1 from the poplar rust M. larici-populina plays a 
positive role in responding to osmotic stress, helping this rust fungus 
adapt to its environment and exert its pathogenicity.
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F I G U R E  2 Complementation of the Magnaporthe oryzae OSM1 
mutant with Melampsora larici-populina MlpHog1. The inhibition 
rates grown on CM (the control) and CM with 0.4 M NaCl (the 
treatment) were shown from the wild-type (Guy11), the Hog1 
deletion mutant (ΔOSM1) and the transformant H1-11. The mean 
and standard deviation were calculated from three independent 
replicates and analysed with Tukey's HSD test. Different letters 
show statistically significant differences (p = .05). Colonies of all 
the strains were also shown

F I G U R E  3 Subcellular localization of the MlpHog1 protein. 
Green fluorescent protein (GFP) (the control) and MlpHog1-GFP 
fusion proteins were expressed in the wheat protoplasts following 
PEG-mediated transformation. Bar = 10 μm
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