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Keywords: we know little about the details of the relationship between temperature and size. Here, this issue was studied in the
Biological conservation Chinese giant salamander (Andrias davidianus), one of the largest extant amphibians and a flagship species of conser-
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Organ heterogeneity body growth when compared to their 15 °C counterparts when fed with red worm. This predicts a drastic decrease

Transcriptomics in adult body size with warming. However, a fish diet (more abundant lipid and protein) improved the growth perfor-

Warming mance at 25 °C. The underlying mechanism was studied. Warm-acclimated larvae had enlarged livers but shortened
tails (fat depot). Their livers suffered from energy deficiencies and decreased protein levels, even when protein synthe-
sis and energy metabolism were transcriptionally upregulated. This could be a direct explanation for their poor growth
performance. Further analyses revealed a metabolic disorder resembling mammal glycogen storage disease in warm-
acclimated larvae, indicating deficiency in glycogen catabolism. This speculation is consistent with their increased
lipid and amino acid catabolism and explained the poor energy conditions of the warm-acclimated larvae. Addition-
ally, a deficiency in glycogen metabolism explains the different efficiency of worm and fish diets in supporting the
growth of warm-acclimated larvae, even when both diets were provided sufficiently. In conclusion, our results suggest
that the relationship between temperature and body size can be flexible, which is a significant finding in terms of the
TSR. The underlying metabolic and nutrient mechanisms were revealed. This knowledge can help deepen our under-
standing of the consequences of warming and can contribute to the conservation of A. davidianus.
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1. Introduction

Climate change poses a great challenge to the health and productivity of
ecosystems. The past century has seen a 1.1 °C rise in the global average
temperature, and global warming of 2 °C will be exceeded unless extreme
reductions in CO, and other greenhouse gas emissions occur in the coming
decades (IPCC, 2021). Global warming may affect the distribution, phenol-
ogy, and adaptation of animals (Hughes, 2000). Although animals may en-
gage in behavioral thermoregulation (e.g., finding shelter and migration) to
avoid adverse environmental temperatures (Ortega et al., 2016; Ye et al.,
2021), they may still experience prolonged periods of time at sub-
optimum temperatures, especially those with limited migration capacity,
e.g., the amphibians (Gunderson and Stillman, 2015; Kearney et al.,
2009). Increasing evidence indicates that reduced body size is the third uni-
versal ecological response to global warming in animals (Baudron et al.,
2014; Daufresne et al., 2009; Sheridan and Bickford, 2011). Body size is a
fundamental biological trait that shapes many physiological and ecological
properties (e.g., fecundity, population growth rate, competitive interac-
tions) (Fryxell et al., 2020). For example, a change in size structure has
top-down and bottom-up effects in ecosystems (Brose et al., 2012), and
the loss of large predators will have great consequences on trophic control
and the biomass structure in food webs (DeLong et al., 2015). The standard
water loss rate through evaporation is negatively correlated with body mass
in amphibians (Heatwole et al., 1969), and thus a reduction in body size is
likely to make these desiccation-sensitive animals more vulnerable to ex-
tinction. Thus, revealing the mechanisms that link body size and environ-
mental temperatures has great implications for biological conservation in
the context of global climate change.

There are several explanations for the negative relationships between
temperature and body size within non-extreme temperature scopes (tem-
peratures allowing an organism to develop and reach maturity). When
food is limited, the metabolic demands, which are exponentially increased
with temperature (Gillooly et al., 2001), likely contribute to the reduced
body size in ectotherms at higher temperatures (Sheridan and Bickford,
2011). This is because the energy must be divided between metabolic main-
tenance, growth, storage and reproduction (Heino and Kaitala, 2001; Zhu
etal., 2021b), and the increased energy demands for cellular and metabolic
homeostasis at higher temperatures likely limit the resource availability for
somatic growth. Thus, increased food intake and shifted feeding behavior
are proposed to be potential adaptive strategies to warming in ectotherms
(Johansen et al., 2015). However, even when food is available, reduced
body size at maturity is still observed in ectotherms at higher temperatures
(Bizer, 1978; Fischer and Fiedler, 2002; Ghosh et al., 2013). This phenom-
enon has been dubbed the temperature-size rule (TSR) (Atkinson, 1994).
The TSR states that higher temperatures increase the growth rate (increase
in somatic mass) and development rate (differentiation from egg to adult)
simultaneously, while decreasing the adult body size (Ohlberger, 2013).
This is because temperature can affect development independently of
growth (Davidowitz and Nijhout, 2004; Kuparinen et al., 2011), and devel-
opment has stronger temperature dependence than growth (Forster et al.,
2011). Although the TSR describes the general variation trend of body
size with an increase in of temperature, our limited understanding of the
molecular mechanisms involved makes it difficult to assess the degree
and flexibility of body size reduction at higher temperatures. Thus, there
is an urgent need for knowledge on the mechanistic links between the tem-
perature and growth rate, which will greatly improve our ability to predict
the responses of species to future climate warming (Gardner et al., 2011).

Given that the thermal properties of some organ systems or cellular pro-
cesses can constitute the initial limitation for the thermal performance of
the whole organism (Eliason Erika et al., 2011; Lemieux et al., 2010), it is
essential to reveal the critical organs or cellular processes that may con-
strain growth at non-extreme temperatures in order to understand the rela-
tionship between body size and temperature. One of the best known
hypotheses is that the cardiovascular capacity can't keep up with the in-
crease in oxygen requirements caused by an increase in temperature
(Portner, 2002; Portner and Farrell, 2008). This means that decreased
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aerobic scope at higher temperatures may be a physiological cause for the
reduced growth rate, as a bigger body size may cause greater restrictions
in terms of oxygen availability (Atkinson et al., 2006; Forster et al.,
2012). However, whether the aerobic scope is a single unifying principle
that explains the thermal limitation of physiological performance is still
controversial (Claésson et al., 2016; Grans et al., 2014; Lefevre, 2016). It
is possible that the molecular processes shaping the thermal responsiveness
of somatic growth may vary with species due to their different evolutionary
trajectories. Revealing these biological processes will not only lead us to a
mechanistic understanding of the relationship between body size and tem-
perature but may also provide us with some clues as to how to manipulate
the response of a species to temperature changes, which has great signifi-
cance for species conservation.

The Chinese giant salamander (Andrias davidianus) is one of the largest
extant amphibian species and has been crowned as a living fossil (Gao and
Shubin, 2003). This species was once widely distributed in central and
southern China (Fei et al., 2006; Wang et al., 2017), but its wild populations
have declined dramatically due to habitat degradation, pollution, and over-
exploitation in recent decades (Jiang et al., 2021; Zhao et al., 2020). The
Chinese giant salamander has been evaluated as Critically Endangered
(IUCN, 2016), and it is now a flagship species for biological conservation
in China (Jiang et al., 2016; Zhao et al., 2022). According to laboratorial
studies, A. davidianus larvae are sensitive to temperature variations (Hu
etal, 2019; Zhang et al., 2014; Zhu et al., 2021a). Their empirical optimal
temperature for growth is 15-21 °C (Chen et al., 1999; Hu et al., 2019).
When the water temperature is higher than 25-28 °C or lower than 7 °C,
their feeding behavior changes and their growth rate begins to decline
(Hu et al.,, 2019; Mu et al., 2011; Wang, 2004). The thermal regimes of
wild A. davidianus are seasonally variable. For example, the monthly
mean temperature of a natural A. davidianus habitat in Henan province
varies from 1.5 °C in January to 25-26 °C in July (Ge and Zheng, 1994;
Wang et al., 2002). Field observations suggest that the occurrence of
A. davidianus negatively correlates with temperature within the range of
19-25 °C (unpublished data). These results suggest that A. davidianus prefer
cooler temperatures. However, future global warming will likely increase
the amount of time they spend at higher temperatures, which potentially
constitutes a challenge to their long-term survival and fitness in the wild
(Zhang et al., 2020; Zhao et al., 2020). Moreover, given that Chinese
giant salamanders are top predators in their habitats, the climatic influence
on their survival and body size are likely to have a top-down cascading ef-
fect on the prey density in natural communities (Rudolf, 2012). Thus,
studying the influence of warming on these animals has great significance
for ecological and biological conservation.

In this study, the growth traits were tracked and compared for
A. davidianus larvae raised at the empirical optimum temperature (15 °C)
and a temperature near the maximum values in their natural habitats (25
°C, sub-optimum) (Ge and Zheng, 1994). Although both temperatures are
within the thermal scope of their wild habitats, warming will likely change
the relative proportion of exposure time to these two temperatures. Multi-
organ transcriptomics and metabolomics, along with physiological and bio-
chemical analyses, were conducted to reveal the organ systems and cellular
processes that may limit the thermal performance of A. davidianus larvae.
Our main were to reveal the following (1) The influence of warming on
the growth rate and body traits of A. davidianus larvae. We speculated
that warming would unequally affect the developmental and growth rates
in these animals. (2) The molecular mechanisms underlying the relation-
ship between the temperature and growth traits of A. davidianus larvae.
Given that this animal exhibits remarkable heterogeneity in response to
cold at both the organ and molecular levels (Zhu et al., 2022b), we hypoth-
esized that the thermal adaptability of A. davidianus larvae would be
constrained by some critical molecular processes. (3) Whether the influence
of temperature on body size is plastic. Since food composition can shape the
thermal tolerance limits of A. davidianus larvae (Zhao et al., 2022), we spec-
ulated that nutrients may also be a critical factor in determining their
growth performance at higher temperatures. The results are expected to
deepen our understanding of the fate of this important species in the future.
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More importantly, they may extend our knowledge of thermal physiology
theories and provide some new insights into biological conservation.

2. Methods and materials
2.1. Animals

The farm (102°10’05” E, 29°52’36” N) for A. davidianus artificial culture
is located in Hongya County, Sichuan province in China, where the larvae
were maintained at 15 + 1.14 °C (water temperature). These animals
yearly breed in August and September, and their eggs hatch in August, Sep-
tember, and October. The larvae grow for 3-5 years to reach their sexual
maturity. We studied the morphological development of A. davidianus em-
bryos and larvae in 2018-2020. The early development stages, from fertil-
ized egg to the formation of fifth digit in hindlimb, lasts approximate 70
days in the artificial farm (Fan et al., 2022). After this period, there were
no longer typical morphological traits to finely distinguish the change in de-
velopmental stages, but the body mass and length of the larvae were still re-
corded aperiodically (with an interval of dozens of days, e.g., 172, 243,
277, and 342 days after hatching, d.a.h). For each timepoint, several indi-
viduals (n = 3-7) were sacrificed after being euthanized in a 0.1 % w/v
MS-222 solution and dissected to measure the relative size of some typical
organs (e.g., liver) (Supplementary data 1). All protocols in this study were
reviewed and approved by the Animal Ethical and Welfare Committee of
Chengdu Institute of Biology, Chinese Academy of Science, China. (permit:
CIB20160305 and 20,191,105), in compliance with the ARRIVE guidelines
2.0 (Percie du Sert et al., 2020) and Guide for the Care and Use of Labora-
tory Animals (8th edition) published by National Research Council (US)
Committee for the Update of the Guide for the Care and Use of
Laboratory Animals (2011).

2.2. Laboratorial culture and thermal acclimation

Larvae of the giant salamander were collected from the artificial farm
mentioned above. In the laboratory, these larvae were fed daily with red
worms (larvae of Chironomus sp.). The photoperiod was maintained at 12
L:12D. Independent thermal acclimation experiments were conducted in
2018, 2019, and 2020. The larvae were randomly divided into two thermal
groups and acclimated at 15 + 0.5 °C (control group, empirical optimum)
or 25 = 0.5 °C (warm group, upper thermal limit allowing for robust
growth and near to the maximum temperature of their natural habitats).

For the acclimation in 2018, A. davidianus larvae hatched from a single
clutch were collected at approximately the 100th d.a.h (n = 35 and 33 for
control and warm group, respectively). For each thermal group, the larvae
were placed into two plastic containers (42 X 30 X 10 cm, water depth =
5 cm; 16-18 individuals per container). The acclimation lasted for 330
days. The larvae were fed daily with sufficient commercial red worms for
the first 260 days, then the diet was replaced with fish fry for the subse-
quent 70 days. The water was replaced daily before feeding. It should be
mentioned that the red worm is empirically recommended as an optimum
diet for the larvae at the first age, as it is better for larvae growth than
other diets (e.g., fish fry and chicks) in farms (approximate 15 °C). The var-
iations in BM and TOL were recorded (Supplementary data 1), and the body
condition was estimated with the scaled mass index. At the 80th day after
acclimation, 15 larvae from each group were euthanized by immersion in
a 0.1 % w/v MS-222 solution (2000 mL) at their respective temperature
for >10 min (Zhu et al., 2022a) and then decapitated for dissection. The tis-
sue samples were weighed and collected for transcriptomics, metabolo-
mics, and biochemical analyses.

For the acclimation in 2019, A. davidianus larvae hatched from a single
clutch were collected at approximately the 140th d.a.h. Each thermal group
included 60 individuals, which were equally divided into three plastic con-
tainers (29 x 20 X 9.7 cm, with 3.5 L tap water) as three parallel replicates
(20 individuals per container). The larvae were fed with sufficient commer-
cial red worms daily throughout the treatment. The water was replaced
daily before feeding. The acclimation lasted for 128 days. Their body
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mass (BM, g), total length (TOL, cm), tail length (from the cloaca to the
tail-tips; cm), and snout-vent length (SVL, cm) were recorded 5, 26, 33,
41, 48,55, 63,70, 76, and 95 days after acclimation. The relative tail length
was calculated as the ratio of tail length to SVL or TOL. The body condition

was estimated using the scaled mass index with the equation sM; = M; x

bsma
<LL—'?> (Peig and Green, 2009), where M; and L; are the BM and TOL of

individual i, respectively; bsua is the scaling exponent estimated by the
standardized major axis (SMA) regression on In-transformed BM and TOL
(calculated using the smatr package in R) (Warton et al., 2012); Lyean iS
the arithmetic mean value of TOL; and sM,; is the predicted BM for individ-
ual i when the L; is standardized to Ly,ca,. The absolute growth rate (g/d)
was defined as daily average increment in total BM of the larvae from the
same container. The daily food intake (g/d) was recorded every few days
(see the detailed timepoints in Supplementary data 1). Food intake was
defined as the total amount of food consumed by all individuals in a
given container, and it was measured by calculating the difference between
the initial and remnant food mass (wet mass) of a given day. The food
conversion rate was calculated as the ratio of growth rate (g/d) to daily
food intake (g/d).

For the acclimation in 2020, 150 larvae (hatching from a single clutch)
were collected from the farm at their 120th d.a.h. These larvae were di-
vided into five groups (n = 30 per group) to examine the influences of ac-
climation temperatures and diet types on their thermal limits (Zhao et al.,
2022). Among them, there were two worm-fed groups acclimated to 15
and 25 °C, respectively. For these two groups, larvae were fed with suffi-
cient commercial red worms daily throughout the treatment, and the
water was replaced daily before feeding. These larvae were continued to
be acclimated at their respective temperature after being measured for ther-
mal limits at the 30th day of acclimation. After being acclimated for 160
days, ten larvae of each group were euthanized by immersion in a 0.1 %
w/v MS-222 solution and sacrificed to measure body mass, total length,
and organ mass (Supplementary data 1).

2.3. Transcriptional analyses

The larvae were collected on the 80th day after acclimation (2018).
After being weighed and euthanatized using MS-222 (described above),
the larvae were dissected to collect the brain, heart, liver, gill, forelimb, dor-
sal skin, and tail (1 cm from the cloaca site). The brain, heart, liver, gill, and
fore limb were weighed to study the developmental allometry between
groups. Then, these tissue samples were stored at —80 °C. The high-depth
transcriptomes (>20 g for each sample) of single tissues were obtained
using the second-generation sequence technology (n = 3 per tissue per
group). In detail, the total RNA of each sample was extracted and purified
using TRIzol (Invitrogen, Carlsbad, CA, USA) following the manufacturer's
instructions. After being purified with poly-T oligo-attached magnetic
beads, the mRNAs were fragmented. First-strand cDNA was synthesized
using random hexamer primers. Second-strand cDNA synthesis was subse-
quently performed using DNA Polymerase I and RNase H. The remaining
overhangs were converted into blunt ends via exonuclease/polymerase ac-
tivities. After adenylation of the 3’ ends of the DNA fragments, adaptors
were ligated to the products. Then, PCR was performed with a HIFI DNA
polymerase, universal PCR primers, and Index (X) primer. The library prep-
arations were sequenced on an Illumina HiSeq 2500 platform (PE150 strat-
egy) from Annoroad (Beijing). For each sample, >20 g sequence data were
obtained. The reads were queried against our whole length transcriptome
(reference genome) (Zhu et al., 2022b) with RSEM and Bowtie2 (see the
gene expression table in Supplementary data 2). The data of the control
group were published in our previous study concerning the cold adaptation
of A. davidianus (Zhu et al., 2022b). Differently expressed genes (DEGs)
were identified by Student t-test and Benjamini and Hochberg's correction
at a threshold of p < 0.05, or g < 0.05. Functional enrichment analyses
were conducted by querying DEGs against the KEGG database (based on
KOBAS 3.0, with default parameters).
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2.4. Untargeted metabolomics

The liver, heart, brain, forelimb, and tail (n = 6 per tissue) of accli-
mated larvae (on the 80th day after acclimation) were measured for meta-
bolic profiles. For each sample, 100 mg tissue powder was grinded in liquid
nitrogen and extracted with 1 mL methanol: acetonitrile: water = 2:2:1 (v/
v) (ultrasonication for 30 min X 2 and incubation at — 20 °C for 1 h). After
centrifugation at 12,000g for 15 min (4 °C), the supernatants were trans-
ferred into new tubes and freeze-dried. Samples were dissolved in 100 pL
acetonitrile:water 1:1 (v/v) and analyzed by LC (1290 Infinity LC, Agilent)
coupled with quadrupole-time-of-flight mass spectrometry (Triple TOF
5600+, AB SCIEX). The C18 HILIC column (ACQUITY UPLC HSS T3 1.8
pm, 2.1 mm X 100 mm, Waters) was equilibrated with 95 % (v/v) solvent
A (25 mM ammonium acetate and 25 mM ammonium hydroxide in water).
Separation was performed with 40-95 % solvent B (acetonitrile) at 0.3 mL/
min as follows: 0-0.5 min, 95 % B; 0.5-7 min, decreasing B from 95 % to
65 %; 7-8 min, decreasing B from 65 % to 40 %; 8-9 min, 40 % B; 9-9.1
min, increasing B from 40 % to 95 %; 9.1-12 min, 95 % B. Metabolite
data were obtained in both positive and negative ion modes with the fol-
lowing settings: ion source gas 1, 60; ion source gas 2, 60; curtain gas: 30;
source temperature: 600 °C; ion spray voltage floating, = 5500 V; TOF MS
scan m/z range: 60-1200 Da; product ion scan m/z range: 25-1200 Da;
TOF MS scan accumulation time, 0.15 s/spectrum; product ion scan accu-
mulation time, 0.03 s/spectrum. The MS/MS spectra were acquired by
information-dependent acquisition with high sensitivity as follows:
declustering potential, + 60 V; collision energy, 30 eV. The data of control
group were published in our previous study concerning the cold adaptation
of A. davidianus (Zhu et al., 2022b). The data were processed using XCMS
(http://metlin.scripps.edu/download/). The metabolites were identified
by querying a standard library with an MS/MS spectrum. The relative abun-
dances/concentrations of metabolites are presented as the ion intensities of
their molecular ion peaks (see the metabolite abundance table in Supple-
mentary data 3). Differently expressed metabolites were screened by Stu-
dent's t-test and Benjamini and Hochberg's (BH) correction at a threshold
of p < 0.05, or g < 0.05.

2.5. Biochemical analyses

The larvae (n = 10 per group) were collected on the 160th day after ac-
climation. After being weighed and euthanatized via the method described
above, the larvae were dissected to collect the brain, liver, and heart. After
adding 500 pL 0.1 M PBS (pH 7.4), approximately 50 mg of tissues was ho-
mogenized by a tissue grinder, followed by centrifugation at 1000g for
15 min (4 °C). The supernatant was ready for triglyceride and soluble pro-
tein determination. The remaining supernatant (300 pL) was mixed with
600 pL of 10 % trichloroacetic acid (TCA, w/v). After centrifugation at
1000g for 15 min, 300 pL of supernatant was transferred into a new tube
containing 1200 pL of 95 % ethanol and allowed to rest overnight. After
centrifugation at 1000g for 15 min, the precipitate was dissolved in 50 pL
of water to form a glycogen solution.

2.5.1. Tissue protein level

The protein content in the liver, brain, and heart (n = 10 per tissue per
group) was measured using a BCA protein assay kit (Solarbio Life Science,
China). For each sample, 20 pL of supernatant was added to 200 puL BCA
working solution and incubated at 37 °C for 30 min. The optical density
of the mixtures at 562 nm was determined. The standard curve was con-
structed with a gradient dilution of 5 mg/mL BSA.

2.5.2. Tissue triglyceride level

The GPO-PAP method was used for the determination of the triglyceride
level in the liver and blood (n = 10 per tissues per group). The triglyceride
assay kit was purchased from Nanjing Jiancheng Bioengineering Institute,
China. The reaction system included 2.5 pL of supernatant and 250 pL of re-
agent mixture (Tris-HCl, 100 mM,; lipase =3000 U/L; ATP, 0.5 mM,; glyc-
erol kinase, =1000 U/L; glycerol 3-phosphate oxidase, =5000 U/L;
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peroxidase, =1000 U/L; 4-aminoprotepyrine, 1.4 mM; p-chlorophenol, 3
mM). After incubation at 37 °C for 10 min, the optical density at 510 nm
of the mixtures was determined. A glycerol solution (2.26 mM) was used
to generate a standard curve.

2.5.3. Tissue glycogen level

The liver glycogen was measured by anthrone (n = 10 per group). The
reaction system of glycogen measurement included 5 pL of glycogen solu-
tion, 85 pL of water and 400 pL of 0.2 % anthrone in 80 % sulfuric acid.
After incubation at 95 °C for 15 min and cooling at room temperature, the
optical density of the mixtures at 626 nm was determined. Soluble starch
(2 mg/mL) was used to generate a standard curve.

2.5.4. Identification of adipose tissue

Euthanatized larvae (n = 3) had their abdomens dissected and im-
mersed in 500-fold water diluted 10 % (w/v) dithizone-ethanol solution
(with 2 % (v/v) ammonia for solubilization) for >30 min. Tissues rich in
fat would be stained with a dark green color, while other tissues were
stained with an orange to red color (Zhu et al., 2019).

2.6. Statistical analyses

Statistical analyses were conducted on SPSS v25.0 (SPSS Inc., Chicago,
USA). Kolmogorov-Smirnov and Shapiro-Wilk tests were conducted to
check the deviation of the data from normal distribution. As larvae from
the same container were repeatedly measured and they could not be distin-
guished from each other, the influence of temperature on body traits
(i.e., weight, length, body condition, and relative tail length) and food in-
take were analyzed using a linear mixed model (LMM). To fit LMMs, the
values of body traits at each timepoint were taken as the averages of the in-
dividuals from the same plastic container to avoid pseudo-replicates. We
are interested in the variations of body traits with time, as well as the poten-
tial interactive effects between temperature and time, and thus we treat the
time as a fixed factor in LMM. The LMM was built and optimized according
to the information criteria (e.g., AIC and BIC values), e.g., whether the in-
teractions between temperature and time kept in the final models. How-
ever, the use of average values in the LMM results in a significant loss of
the degree of freedom, and thus we can't fully use the individual replica-
tions. Thus, the Mann-Whitney U test was also used to examine the inter-
group differences at the individual level, but only for data collected at
some crucial points (e.g., at the end of acclimation or diet shift). For the
growth data collected at 2018, the number of parallels (n = 2) does not
reach the lowest requirement for LMM (normal distribution of the data),
and thus only Mann-Whitney U test was also conducted to examine the in-
tergroups differences at individual level. The diffslope function (simba
package in R) (Jurasinski and Retzer, 2012) and piecewise linear regression
were used to examine the influence of diet shift on the growth performance
of larvae at their respective temperature. The piecewise linear regressions
were conducted on 1stOpt software (7D-Soft High Technology Inc.,
China). The differences in organ mass between groups were analyzed
with ANCOVA, with BM as a covariate. The biochemical indexes were ana-
lyzed with Mann-Whitney U test or Kruskal-Wallis test. The graphs were
generated by GraphPad Prism 5 or ggplot2 in R (Wickham, 2009).

3. Results
3.1. Growth at higher temperature

For acclimation in 2019 (Fig. 1a), the warm-acclimated group showed a
higher growth rate of body mass (p < 0.01 for the interactive effect), but a
significant difference (p < 0.05, simple effect analysis and Mann-Whitney U
test) in BM was observed until the 95th day after acclimation (Fig. 1b).
There was no difference in TOL between the groups (p > 0.05 for the tem-
perature and interactive effects; Fig. 1¢). The warm-acclimated larvae had a
higher body condition score after 33 days of acclimation (p < 0.05, simple
effect analysis; Fig. 1d). The warm group consumed much more food than
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Fig. 1. Influences of temperature on body traits of A. davidianus. (a) Experimental design. (b) Influence of warming on growth of body mass (BM) (b), total body length (TOL)
(c), and body condition (d). (e-f) Difference in daily food intake (e) and food conversion rate (f) between thermal groups. (g-h) Influence of warming on the ratio of tail length
to TOL () and SVL (h) of A. davidianus larvae. The dots denote the values of each individual (for panel b—d and g-h) or parallel/container (for panel ef) at the corresponding
timepoint, while the lines denote the linear fitting of the values from the same parallel/containers, with the 95 % confidence interval being presented in gray. The colors of the
lines and dots denote the thermal groups (red, warming group; green, control group), while the dot shapes and line types are used to distinguish values from different parallel/
containers. The tables below present the results of the LMM. If there is a significant interactive effect between temperature and time, simple effects analysis is conducted to
examine the intergroup difference for each timepoint. In this case, asterisks are used to denote significant intergroup difference at the corresponding timepoints. Note that the
asterisks are not applied to denote the results of simple effect analysis on daily food intake (panel e), because the timepoints of food intake data are too dense to make a clear
labeling. Simple effect analyses indicate significant differences in food intake at day 2, as well as all the timepoints after five days of acclimation. A ‘#’ denotes significant
intergroup difference (p < 0.05) at the corresponding timepoints examined by Mann-Whitney U test. (i) A photograph presenting the distribution of fat in the tail tissue

(cross section). The tail is stained with anthrone, which highlights the tissue rich in fat with a dark green color. The red arrow denotes the fat tissue in the tail.

the control group (Fig. 1e), but its food conversion rate was lower (p < 0.05,
simple effect analysis; Fig. 1f). The relative tail length decreased in warm-
acclimated larvae (p < 0.01 for the temperature, LMM and Mann-
Whitney U test; Fig. 1g-h), and this organ is the primary fat depot (Fig. 1i).

For the experiment conducted in 2018 (Fig. 2a), the red worm diet was
replaced with a fish diet on the 260th day after acclimation, which had
2.62-fold higher lipid, 1.26-fold higher protein, and 10-fold lower carbohy-
drate content than the worm diet per unit mass (Fig. 2b). Similar results
were obtained when the larvae were fed red worm. Significant intergroup
differences were observed for neither BM nor TOL even after 257 days of
acclimation (p > 0.05, Mann-Whitney U test; Fig. 2c—d). A higher body

condition scores was again observed in warm group (p < 0.01; Fig. 2e).
After the diet shift, the warm group showed accelerated growth in BM
and TOL (p < 0.01, differences in the slopes), as is shown by an inflection
in the relationship between time and body index (piecewise linear regres-
sion, Fig. 2f). The control larvae showed no significant changes (p > 0.05
for the differences in slopes) in growth of BM after diet shift, and their
growth in TOL was even decreased (p < 0.01 for the differences in slopes).
Additionally, significant differences in BM and TOL were observed after 9
and 24 days, respectively (simple effect analysis and Mann-Whitney U
test; Fig. 2c—d). These results suggest that the relationship between body
size and temperature was affected by factors other than food abundance.
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3.2. Organ heterogeneity in response to warm acclimation

The warm-acclimated group had smaller gills and better developed fore-
limb than the control group at the 80th day after acclimation (180 d.a.h)
(Fig. 3a), despite their BM being comparable (Fig. S1). The gills of the
warm-acclimated group disappeared completely after 300 days of acclima-
tion (400 d.a.h), while those of the control group did not (Fig. S2). These
results suggest an accelerated metamorphosis at a higher temperature.
Under farm conditions (15 * 1.14 °C), the hepatosomatic index of
A. davidianus larvae did not vary with development during 172-342 d.a.h
(Fig. S3). Warm-acclimated larvae had drastically enlarged livers, and this
phenomenon was repeatedly observed in two independent treatments
(Fig. 3a).

Combined transcriptomics and metabolomics were conducted to study
the molecular responses to warming. At the transcriptional level, the limb
and liver had the greatest and smallest numbers of DEGs, respectively

(Fig. 3b). Most of the DEGs showed downregulation at 25 °C in most organs,
which was suggestive of thermal acclimation. At the metabolic level, the
heart and limb had more differently expressed metabolites (DEMs) than
other organs (Fig. 3b). The majority of the DEGs and DEMs were organ-
specific (Fig. S4), suggesting prominent organ heterogeneity in thermal
responses.

3.3. Metabolic limitations at higher temperatures

There were 199 DEGs (at a threshold of p < 0.05) shared by more than
four organs. They highlighted the transcriptional regulation of protein
translation and processing processes under heat stress, including
spliceosome, propanoate metabolism, ribosome, RNA transport, and pro-
tein processing in endoplasmic reticulum (Fig. S5-a). Functional enrich-
ment analyses were also conducted for the DEGs of each organ. Protein
translation and processing (i.e., spliceosome, protein processing in
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heterogeneity in the thermal responses.

endoplasmic reticulum, and ribosome) and oxidative phosphorylation were
enriched by upregulated DEGs in multiple organs even at a higher temper-
ature (Fig. 4a). Despite the transcriptional upregulation, we observed de-
creased protein levels in the livers of the warm-acclimated group
(Fig. 4b). These results suggest that the protein synthesis was likely
constrained in the warm-acclimated larvae, at least in the liver.

There were 50 DEMs (at a threshold of p < 0.05) shared by more than
three organs. Warm-acclimated larvae had increased N-acetyl-L-tyrosine,
acetylcholine, 3alpha-mannobiose, and lysyl-cysteine in all five organs
(Fig. S5-b). The shared DEMs highlighted variations in glycerophospholipid
metabolism and amino acid metabolism (Fig. S4). To reveal the metabolic
pathways that differed between the groups most significantly, the DEMs
meeting foldchange >4 were screened out for each organ (Fig. 5a). The

nucleotide metabolism was highlighted (Fig. 5b). The purines, pyridines,
and nucleoside levels showed overall upregulation in warm-acclimated lar-
vae. The brain, heart, and liver showed additional changes in the levels of
nucleoside phosphates. Specifically, most identified nucleoside phosphates
decreased in the brain; all the identified nucleoside monophosphates
(i.e., AMP, GMP, and UMP) increased in the heart; most identified nucleo-
side diphosphates and triphosphates (e.g., ADP and GDP) decreased in the
liver, while the AMP level increased (Fig. 5c). This variation pattern is a
sign of energy deficiency (Hardie et al., 2016).

The TCA cycle and its upstream glycolysis and beta oxidation are critical
pathways in energy metabolism. The liver, heart, and brain of warm-
acclimated larvae had decreased level of TCA cycle intermediates, and
the liver showed an additional reduction in glycolytic metabolites
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(i.e., fructose 1,6-biphosphate and glyceraldehyde) and beta oxidation me-
tabolites (i.e., stearoyl-carnitine and palmitoyl-carnitine) (Fig. 5d). This
was not a result of the proactive transcriptional downregulation of these
pathways (Fig. S6). Interestingly, warm-acclimated larvae had increased
glycogen levels in their livers (Fig. 5e), in contrast to the variations in gly-
colytic intermediates. This suggested that the metabolic flux throughout
glycolysis was suppressed in larvae from the warm group (Fig. 5f). Mean-
while, the triglyceride (TAG) levels in the blood and liver were unchanged
(Fig. 5e). The larvae from the warm group had increased levels of carnitine
and acetyl-carnitine in multiple organs (Figs. S5-b and 6), which was sug-
gestive of increased lipid catabolism (Houten et al., 2020). Additionally,
the organs of the warm group had decreased aspartate but increased
arginosuccinate, which are the substrate and product, respectively, of a crit-
ical step in urea cycle (Fig. S5-b). This was accompanied by increased or-
ganic acids from amino acid catabolism (e.g., 2-methyl-3-hydroxybutyric

acid and methyl-acetoacetic acid) (Fig. S5-b). This suggests an increase in
the amino acid catabolism at a higher temperature (Fig. 6).

4. Discussion
4.1. Plastic relationship between temperature and body size in A. davidianus

Global warming likely threatens the survival of wild A. davidianus (Zhao
et al., 2020). Although these animals may avoid adverse heat waves via be-
havioral thermoregulation, the increased exposure to sub-optimum temper-
atures can still have numerous chronic effects on their life traits and
population dynamics. Reduced body size in the adult stage is the one of
the most well-known outcomes of warming in ectotherms within non-
extreme temperature ranges (van Rijn et al., 2017), due to their being
more temperature dependent than their growth (Forster et al., 2011).
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Warm-acclimated A. davidianus exhibited accelerated metamorphosis in
the form of earlier gill absorption (Figs. 3a and S2). Moreover, we observed
increased progesterone levels in the warm group on the 80th day after ac-
climation (Figs. 3d and 5b). Progesterone is the metabolic intermediate in
sex hormone synthesis, and it plays important roles in gametogenesis in
both females and males of all vertebrates (Chishti et al., 2013; Hanocq
etal., 1974; Miura et al., 2006). Increased progesterone level is a sign of ac-
celerated sexual maturation in larvae at higher temperatures. In addition,
the warm-acclimated larvae showed little increase in their growth rate
when they were fed red worm. Thus, as was predicted by the TSR, we
should expect a dramatic reduction in the body size of adult A. davidianus
if their primary prey is red worm. However, our results indicated that a
fish diet rich in lipid could improve the growth performance at 25 °C effec-
tively (Fig. 2b). Although warming would still cause adult A. davidianus to
be smaller, the degree of body size reduction would be less dramatic. These
results suggest that the relationship between temperature and the body size
of A. davidianus can be flexible, which is an important discovery in the con-
text of the TSR. In practice, however, it should be noted that the prey rich in

lipids may also be susceptible to warming, which may constitute a potential
limitation in terms of the thermal adaptation of A. davidianus.

4.2. Biological constraints of the growth performance at higher temperatures

On the whole-organism level, warm-acclimated larvae had a reduced
food conversion rate. This could be partly explained by the need for in-
creased resource investment into metabolic maintenance (e.g., increased
energy consumption for maintaining iron homeostasis and accelerated pro-
tein turnover) at a higher temperature (Gillooly et al., 2001). It should be
pointed out that the food conversion rate decreased with development
(Fig. 1f), and this could potentially contribute to the lower food conversion
rate of warm-acclimated larvae due to their higher developmental rate. The
decreased food conversion rate with development can also be explained by
the diversion of resources from somatic growth to other physiological func-
tions (e.g., sexual maturity and reproduction). The reduced food conversion
rate is likely the result of both the direct and indirect effects of warming
from the perspective of resource allocation. Although a reduction in
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resource allocation to growth has been considered a major cause for
reduced body size at higher temperatures if food is limited (Sheridan and
Bickford, 2011), it might not fully explain our observations as sufficient
food was provided. This means that some additional factors likely
constrained the growth performance of warm-acclimated A. davidianus
larvae.

At the organ level, warm-acclimated larvae had reduced relative tail
lengths and enlarged livers. It should be noted that the relative tail length
of A. davidianus larvae decreases with development (Fig. 1g-h). Thus,
their accelerated development may be a reason for the shorter tail of the
warm-acclimated larvae. The relative tail length of the individuals who de-
veloped at 25 °C after only 55 days was shorter than those of their counter-
parts who developed at 15 °C after 95 days (Fig. 1g-h; the statistical results
are not presented). Thus, it is possible that direct heat stress may also con-
tribute to the reduced tail length at a higher temperature. The tail is not
only a major locomotive organ but also the primary fat depot of
A. davidianus (Li et al., 2010; Li et al., 1992). Accordingly, a shorter tail po-
tentially means reduced fat storage. This is consistent with the increased
lipid catabolism at 25 °C (Fig. 6). Such a morphological change likely im-
pacts the locomotive capacity of A. davidianus and reduces their tolerance
to starvation during non-feeding seasons (e.g., winter). Given that the rela-
tive liver size of A. davidianus did not vary with development 172-342 d.a.h
(Fig. S3), the large liver observed in warm-acclimated larvae is likely the re-
sult of thermal effects. The liver enlargement of warm-acclimated larvae
was accompanied by increased hepatic glycogen levels (Fig. 4b). Interest-
ingly, this phenomenon resembles the symptoms of glycogen storage dis-
ease (GSD) in mammals. GSD is typically caused by a deficiency of the
enzymes involved in glycogen metabolism, resulting in the accumulation
of hepatic glycogen and the enlargement of the liver (Ozen, 2007). As the
endogenous glucose production is suppressed, the falling insulin levels per-
mit the catabolism of tissue protein and fat storage in GSD (Roach, 2002).
This is exactly what we observed in the warm-acclimated A. davidianus lar-
vae. In contrast to glycogen accumulation, we observed a severe decrease in
the intermediates of energy metabolism in the liver. For example, the acyl-
carnitines decreased in the liver but remained unchanged or even increased
in other organs (Fig. 5d). This means that the liver likely suffered from hav-
ing a tight energy budget. The liver is responsible for the synthesis of a large
amount of protein, including albumin, the most abundant protein in blood
serum. Given that protein synthesis accounts for the largest proportion of
the cellular energy budget (Hochachka et al., 1996), it is not surprising
that the protein level decreased in the liver of warm-acclimated larvae.
These results suggested that the liver was likely more sensitive to warming
than other organs in A. davidianus larvae. Considering the central role of the
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liver in vertebrate metabolism, a metabolic problem that affects it directly
might constitute a limitation for the somatic growth of A. davidianus larvae.

Since the differences in developmental stages between thermal groups
can also cause prominent molecular changes, the mere quantitative varia-
tions in gene expression or metabolite levels cannot be considered the out-
come of direct thermal stress, unless the changes show clear signs of
metabolic disorder or they contradict other changes. At the molecular
level, protein synthesis and energy production were transcriptionally up-
regulated in multiple organs even at higher temperature (Fig. 4). This im-
plies that the activity of these two processes most likely constrained the
overall metabolic intensity at a higher temperature from the perspective
of homeostasis. This speculation is supported by the decreased hepatic pro-
tein level (Fig. 4b) and increased nucleoside monophosphate levels
(Fig. 5¢), which are signs of energy deficiency (Hardie et al., 2016). As pro-
tein synthesis and energy production have central roles in determining cell
growth (Dai and Zhu, 2020; Hietakangas and Cohen, 2009), their activity
could directly cause the poor growth performance of worm-fed larvae at a
higher temperature. Furthermore, the energy status of warm-acclimated
larvae was likely constrained by the metabolic flux throughout the up-
stream catabolic processes, as these larvae had decreased glycolytic and
TCA cycle intermediates and increased NAD, which is a critical substrate
of catabolism (Fig. 6). Most importantly, the inverse variation trend be-
tween glycolytic metabolites and glycogen levels indicates deficient glyco-
gen metabolism in the warm-acclimated larvae (Fig. 5f). This is consistent
with the increased lipid and amino acid metabolism at a higher tempera-
ture (Fig. 6). Such a metabolic switch likely tightened the trade-off in re-
source allocation between biosynthesis and maintenance, and explains
the energy status, shortened tail (fat depot), and poor growth performance
in warm-acclimated larvae (Fig. 7a). Moreover, the deficient glycogen me-
tabolism may explain the different outcomes in terms of the growth rate
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larvae. (a) Deduced mechanism underlying the poor growth performance of
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between fish and worm diets, even when both were provided sufficiently.
The worm diet contains much more carbohydrate, which, once converted
to glycogen, cannot be efficiently mobilized at a higher temperature. It
means that the larvae needs to consume more worms than fish diet to
reach the same cellular energy status at a higher temperature. However, in-
creasing the consumption of worms may not be possible for larvae as it
likely aggravates the hepatic glycogen accumulation and affects its physio-
logical functions (Burda and Hochuli, 2015). Taken together, our results
suggest that warming likely impacts the glycogen metabolism of
A. davidianus larvae, and the resulting metabolic shift to lipids and amino
acids constrained their body growth at a higher temperature (Fig. 7a).

4.3. Conservation implications in the context of global warming

Although the TSR suggest that ectotherms' body size will be reduced as
aresult of rising of temperatures, it does not account for the flexibility of the
relationship between body size and temperature. In this study, A. davidianus
larvae at higher temperature exhibit decreased food conversion rate and de-
ficiency in glycogen metabolism. This means that both the food abundance
and nutrient composition can shape the variation in body size with temper-
ature (Fig. 7b). Further studies should focus on the influence of warming on
the food/prey preferences (with different nutrient compositions) of
A. davidianus to assess whether these animals can undergo behavior regula-
tion to improve their metabolic and physiological performance in warmer
conditions. From a conservation perspective, increasing the prey diversity
in their habitats would be beneficial to A. davidianus, and this approach
may be applied in practice, e.g., translocation and reintroduction. Further-
more, prey abundance and diversity in their wild habitats should be taken
into consideration when assessing the population dynamics of
A. davidianus in the future.

Further molecular studies are required to identify the enzymes that con-
strains its glycogen metabolism at higher temperatures. Since A. davidianus
has been classified into several genetic clades (Yan et al., 2018), it would be
interesting to study whether there were differences in the growth perfor-
mance and glycogen metabolic capacity between clades. This knowledge
would be useful for evolutionary and conservation biology.

5. Conclusion

In this study, we compared the growth performance of A. davidianus lar-
vae at two typical temperatures (15 °C, empirical optimum; 25 °C, subopti-
mal and near the highest temperature in their wild habitats) to investigate
how warming will affect the body size of the largest extant amphibian. We
found that the relationship between the temperature and the growth rate
varied with the food type. When larvae were fed red worms, the increase
in the growth rate at a higher temperature was limited. In combination
with accelerated development, we might expect to see a drastic reduction
in the body size of adult A. davidianus. However, when fed fish fry, which
is rich in lipid and had less carbohydrate, the growth performance of
A. davidianus improved greatly at a higher temperature, implying a samller
reduction in body size. This suggests that the relationship between temper-
ature and body size may be flexible in this species, which is an important
discovery in the context of the TSR. The underlying mechanisms were re-
vealed. Our results suggest that warming causes symptoms resembling gly-
cogen storage disease (e.g., enlarged liver) in A. davidianus larvae. The
defects in glycogen metabolism limited the metabolic flux throughout gly-
colysis, and this was accompanied by increased mobilization of lipids and
amino acids to support energy metabolism. Such a metabolic switch
tightens the trade-off in resource allocation and thus limits somatic growth
at higher temperatures. Additionally, glycogen accumulation in the liver
prevents the excessive consumption of a diet rich in carbohydrate, which
may explain the different outcomes of individuals fed a worm or fish diet,
though both were provided sufficiently. These results indicate that both
the food abundance and nutrient composition can influence the variation
in body size with warming in A. davidianus. These findings could have
great significance for the conservation of this important amphibian.
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