DOI: 10.1111/1365-2745.13988

RESEARCH ARTICLE

Journal of Ecology

Elevated CO₂ alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis

Zhaoguo Wang¹ | Chuankuan Wang¹ | Shirong Liu²

¹Center for Ecological Research, Key Laboratory of Sustainable Forest Ecosystem Management - Ministry of Education, Northeast Forestry University, Harbin, China

²Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China

Correspondence Chuankuan Wang Email: wangck@nefu.edu.cn

Funding information

National Key Research and Development Program of China, Grant/Award Number: 2021YFD2200401

Handling Editor: Alessio Collalti

Abstract

- The elevated CO₂ concentration (eCO₂) is expected to improve plant water relations and carbon (C) uptakes, with a potential to mitigate drought stress. However, the interactive effects of eCO₂ and drought on plant physiology and growth are not clear.
- 2. We performed a meta-analysis on the interactive effects of eCO₂ and drought on plant water relations, photosynthesis, biomass production and allocation.
- 3. We found that eCO₂ did not lead to the conservation of soil water, but improved leaf water status under drought conditions as evidenced by a higher leaf relative water content (LRWC) and a less negative midday leaf water potential, resulting from reduced stomatal conductance (g_c) and increased root to shoot ratio. Elevated CO_2 retarded the response of g_s to drought, which may be mediated by the decrease in leaf abscisic acid concentration under eCO_2 and drought. Drought imposed stomatal limitations on photosynthesis (A), which was alleviated by eCO_2 via increasing intercellular CO_2 concentration (C_i). This led to a stronger A response to eCO_2 under drought, supporting the 'low C_i effect'. However, no interaction of eCO₂ and drought was detected on plant biomass production. Intrinsic water use efficiency (iWUE) increased proportionally with eCO₂, while plant-scale WUE was less responsive to eCO₂. C₃ plants had advantages over C₄ plants in terms of A and biomass production under eCO₂ and wellwatered conditions rather than under eCO₂ and drought conditions. Drought caused a greater reduction in biomass for woody plants than for herbs. Plants growing in pots showed greater decreases in the physiology and biomass under drought than those growing in field.
- 4. Synthesis. These findings suggest that eCO₂ can alleviate the adverse impacts of drought on plant water relations and C sequestration, and are of significance in the prediction of plant growth and ecosystem productivity under global changes.

KEYWORDS

biomass, drought, elevated CO_2 , gas exchange, global change ecology, water potential, water use efficiency

 ${\ensuremath{\mathbb C}}$ 2022 The Authors. Journal of Ecology ${\ensuremath{\mathbb C}}$ 2022 British Ecological Society.

1 | INTRODUCTION

The concentration of atmospheric carbon dioxide (CO_2) , which accounts for approximately 80% of the greenhouse trace gases, plays an important role in global climate regulation (Lashof & Ahuja, 1990). Elevated CO_2 (eCO₂) would inevitably cause climate warming, inducing more frequent and intense drought events (Dai, 2013; Spinoni et al., 2020). Elevated CO_2 and drought stress interactively affect plant physiology and growth in different ways, but the combined effects are far from clear (Becklin et al., 2017; Pan et al., 2022), which introduce uncertainty in the assessment of plant responses in future global change scenarios.

Drought stress has various effects on plant physiology. One immediate response of plants to drought stress is the reduction in stomatal conductance (g_s) to prevent water loss (Buckley, 2019). It is well known that stomatal closure during drought is a consequence of negative feedbacks such as hydraulic and chemical signalling [e.g. abscisic acid (ABA); Buckley, 2019; Flexas & Medrano, 2002]. The decrease in CO₂ availability at the level of the chloroplast due to the smaller g_s under drought would inevitably inhibit photosynthesis (A). In addition, there are non-stomatal limitations that restrict A in the face of water deficit (Flexas & Medrano, 2002). The drought induced decrease in A may cause carbon (C) limitation to plant growth (McDowell et al., 2008). In contrast, it is suggested that plant growth and A are decoupled in water-limited environments because plant growth is sink-limited under drought (Muller et al., 2011).

On the other hand, eCO₂ may interact with drought stress through the 'water saving effect' and/or the 'low intercellular CO₂ concentration (C_i) effect'. The 'water saving effect' depicts that a lower g_s under eCO₂ reduces plant transpiration, resulting in a higher soil water content (SWC; Duursma & Medlyn, 2012), which has been observed in both grasslands and forests (Leuzinger & Körner, 2007; Morgan et al., 2004). For example, Niklaus et al. (1998) showed that eCO₂ increased SWC, which would delay the onset of drought stress. However, Paudel et al. (2018) showed that SWC under eCO2 was typically higher than that under ambient CO₂ concentration (aCO₂), but the difference diminished when exposed to drought. There is also evidence that eCO₂ slowed down the rate of soil drying in the shorter term but not in the longer term (Parvin, Uddin, Tausz-Posch, et al., 2019). These discrepancies may suggest that the net effect of eCO₂ on SWC depends on the relative importance of the reduction in g_s and the increases in leaf area and leaf temperatures (Gray et al., 2016; Jiang et al., 2021). A meta-analysis is needed to synthesize whether and under what conditions a positive effect of eCO₂ on SWC occurs.

Another potential mechanism underlying the interaction between eCO_2 and drought is the 'low C_i effect' (Duursma & Medlyn, 2012; Kelly et al., 2016). It states that the drought-induced reduction in C_i makes A operate on the steep initial linear phase of the A-CO₂ curve (Ellsworth et al., 2012), and thus the relative response of A to eCO_2 would become more pronounced under water-limited conditions (Duursma & Medlyn, 2012; Idso & Idso, 1994; Kelly et al., 2016). The enhanced A under eCO_2 , together with the potential 'water saving

effect', is expected to amplify the relative response of biomass to eCO_2 under drought conditions (Duursma & Medlyn, 2012; Kelly et al., 2016); but the experimental evidence for this expectation is equivocal, with some experiments for it (Morgan et al., 2004; Ottman et al., 2001) while others against it (Gray et al., 2016; Kelly et al., 2016).

By reducing g_s and increasing A, eCO₂ induces a proportional increase in the intrinsic water use efficiency (iWUE; Medlyn et al., 2011; Walker et al., 2021; Wang & Wang, 2021). Evidence from tree rings also suggests that iWUE increased with eCO₂ (van der Sleen et al., 2015). The higher iWUE under eCO₂ slows the rate of soil moisture depletion (Peñuelas et al., 2011), which may enhance the ability of plant drought resistance (Blum, 2009). However, it is unclear whether such phenomena would maintain under drought conditions. For example, an intercomparison study (De Kauwe et al., 2013) showed that ecosystem models disagreed with one another in how drought affected the proportional relationship between iWUE and eCO₂. In addition, it is also controversial whether the eCO2-induced enhancement in iWUE is scale dependent. For example, Barton et al. (2012) reported that the WUE of a Eucalyptus saligna forest was enhanced equally at both leaf scale and canopy scale, whereas Kelly et al. (2016) showed that the whole-plant WUE of Eucalyptus seedlings was less responsive to eCO₂ than the leafscale WUE. Therefore, it is needed to determine whether drought would modulate the response of iWUE to eCO₂ and how the sensitivity of WUE would change from the leaf level to the plant level.

Decades of experiments manipulating CO2 and water availability provide evidence that the magnitude and direction of plant responses may depend on plant functional groups as well as experimental factors. Plants with different photosynthetic pathways are demonstrated to have different responses of A to eCO₂ under ample soil-water supply (Hasegawa et al., 2018; Leakey et al., 2006; Leakey et al., 2009). Specifically, eCO₂ stimulates the A of C₃ plants regardless of water availability, whereas it does not stimulate the A of C₄ plants until the onset of drought stress. This discrepancy is because C₃ plants and C₄ plants have different mechanisms to concentrate CO₂ (Wand et al., 1999). Similarly, previous meta-analyses have shown that woody plants are more responsive to eCO₂ than herbaceous plants (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007). Recently, Pan et al. (2022) reported that the above-ground net primary productivity of woody systems showed a stronger enhancement than that of grasslands under eCO₂.

With regard to experimental factors, whether plants are grown in pots or in field may affect A response to eCO_2 , because pot size may restrict root sink strength, leading to a photosynthetic acclimation (Arp, 1991). Experimental duration also affects growth responses to eCO_2 probably due to declining nitrogen (N) availability as experiments progress (Norby et al., 2010). Experimental protocols [e.g. free-air CO₂ enrichment (FACE), open-top chamber (OTC)] have been demonstrated to influence the above-ground biomass response to eCO_2 (de Graaff et al., 2006). Furthermore, drought treatments (e.g. withholding watering, imposing drying-rewetting cycles and keeping a constantly lower SWC) may affect plant responses to drought and their interaction with eCO_2 (He & Dijkstra, 2014). Generalizing the patterns associated the variation in plant responses and testing whether they can be explained by functional groups and/or experimental factors can enhance the predictive power in global change scenarios (Ainsworth & Long, 2005; Ainsworth & Rogers, 2007).

To comprehensively assess the interactive effects of eCO₂ and drought on plant physiology and growth, we performed a metaanalysis based on 226 papers published from 1983 to 2022 worldwide to evaluate the effects of eCO₂, drought and their interaction on plant water status, photosynthesis, WUE, biomass production and allocation. We hypothesized that eCO₂ would result in higher SWC due to its negative effect on g_{c} (H1); drought would reduce A due to stomatal limitation, whereas eCO₂ would stimulate A by increasing C_i, leading to a greater increase in A in drought treatment than in well-watered treatment (H2); iWUE would increase in response to eCO₂, which would not differ between different watering treatments, but it would decrease when scaled to the plant level (H3); the responses of C_4 plants to eCO_2 would be more strongly modulated by drought than those of C_3 plants (H4); woody plants would show a greater response to the drought \times eCO₂ interaction than herbs (H5); and pot experiments would be more restricted by drought, and less responsive to eCO₂ than field experiments (H6).

2 | MATERIALS AND METHODS

2.1 | Literature searching and data compiling

We searched the Web of Science and China National Knowledge Infrastructure using the following key words: "elevated CO2" or "CO₂ enrichment" or "increasing CO₂"+"drought" or "water stress" or "reduced precipitation" + "plant responses". The studies had to meet the following criteria for selection: (1) Factorial experiments had four treatments: aCO₂ and well-watered treatment; aCO₂ and drought treatment; eCO₂ and well-watered treatment; eCO₂ and drought treatment. (2) Experimental and control plots were established within the same site, that is, same microclimate, vegetation and soil among the treatments. And (3) observations that received other treatments (e.g. warming) were excluded (Figure S1). In total, 226 papers worldwide published from 1983 to 2022 met the criteria and were included in this synthesis (Figure S2; Reference S1). The dataset included 166 plant species from 45 families, among which there were 145 C₃ species from 42 families, 18 C₄ species from 2 families and 3 CAM species from 2 families. Most sites were located in Europe (77 studies), followed by North America (65 studies), Asia (45 studies), Oceania (27 studies), South America (9 studies) and Africa (2 studies; Figure S2).

The response variables extracted included the following: leaf relative water content (LRWC, %), predawn leaf water potential ($\Psi_{predawn}$, MPa), midday leaf water potential ($\Psi_{midday'}$, MPa), WUE at the plant level (WUE_{plant}, mg/g and g/L), SWC (%), stomatal conductance (g_s , mol H₂O m⁻² s⁻¹), photosynthesis (A, µmol CO₂ m⁻² s⁻¹),

intrinsic WUE [iWUE = A/g_s , µmol CO₂ (mol H₂O)⁻¹], intercellular CO₂ concentration (C_i , µmol mol⁻¹), ratio of C_i to atmospheric CO₂ concentration (C_i : C_a), leaf ABA concentration (mg/g), above-ground biomass (g), below-ground biomass (g), total plant biomass (g), root to shoot ratio (R/S) and leaf area (cm²). Above-ground biomass and below-ground biomass were directly obtained from the original papers or derived from R/S and plant biomass, and vice versa. Notably, to maximize the power of this meta-analysis, we included both volumetric and gravimetric SWC from both field and pot experiments. For the field experiments, the measurements of SWC were taken at 0–1.8 m depths (Albert et al., 2011; Manderscheid et al., 2014; Wall et al., 2001).

The mean and standard deviation (SD) of each treatment were extracted from the tables or figures of the original papers using GetData Graph Digitizer 2.26. If a mean and a standard error (SE) were given, the SD was calculated as:

$$SD = SE\sqrt{n},$$
 (1)

where *n* is the sample size. If a mean and a confidence interval (CI) were available, the SD was calculated as:

$$SD = (CI_{u} - CI_{l}) \sqrt{n/2Z_{\alpha/2}}, \qquad (2)$$

where CI_u and CI_l are the upper and lower limits of 95% Cl, respectively; and $Z_{\alpha/2}$ is the Z score at $\alpha = 0.05$. In the cases that there were no SE, SD or Cl, SDs were assigned as 1/10 of the means (Luo et al., 2006).

The information on species and experimental factors was also collected wherever possible. If the response variables were reported over time, only the observations over the longest treatment duration were collected. However, the last points of some variables were almost zero in some studies; in these cases, the points before the zero points were used. For studies where same plant species had multiple eCO₂ levels and/or drought intensities, we considered them as separate observations. Therefore, the dataset contained some repeated data entries from the same study, and corresponding multiple eCO₂ or drought treatments with the same aCO₂ or well-watered treatments. The non-independent observations were tackled using the 'shifting the unit of analysis' approach (Cheung, 2015; Liang et al., 2020) in Section 2.3. In our database, species were categorized by photosynthetic pathways (C3 plant and C4 plant, C3 herb and C_4 herb, C_3 grass and C_4 grass, and C_3 crop and C_4 crop) and plant growth forms (woody plant and C₃ herb, tree and shrub, and C₃ grass and C₂ forb).

We also assessed the effects of experimental protocol (e.g. FACE, growth chamber and OTC), growth condition (in pot vs. in field), pot size [small (\leq 10 L) vs. big (>10 L)], drought duration [short-term (0–30 days), medium-term (31–90 days) and long-term (>90 days) treatments] and drought manipulation type on plant responses to eCO₂ and drought. However, multiple individuals were planted in one pot in some experiments, which were excluded from the analysis of the effect of pot size on plant responses.

Journal of Ecology 2839

Experiments using growth chamber, greenhouse and glasshouse were all lumped into growth chamber. Drought manipulation was grouped into three types: keeping a constant SWC throughout the experimental duration (Type I), undergoing drying-rewetting cycles (Type II) and withholding water supply and allowing SWC decreasing over time (Type III).

2.2 | Meta-analysis

The aCO₂ and well-watered treatments were considered as the baselines for the eCO₂ and drought treatments, respectively. The respective response ratios to CO₂ and water manipulation (r_c and r_w , respectively) were calculated as:

for eCO₂ effect in well – watered treatment:
$$r_c^{W} = \frac{\overline{X}_{C_eW}}{\overline{X}_{C_aW}};$$
 (3)

for eCO₂ effect in drought treatment:
$$r_c^{\rm D} = \frac{\overline{X}_{\rm C_e \rm D}}{\overline{X}_{\rm C_a \rm D}};$$
 (4)

for drought effect in aCO₂ treatment:
$$r_{\rm w}^{\rm aCO_2} = \frac{\overline{X}_{\rm C_a D}}{\overline{X}_{\rm C_a W}};$$
 (5)

for drought effect in eCO₂ treatment:
$$r_{w}^{eCO_{2}} = \frac{\overline{X}_{C_{e}D}}{\overline{X}_{C_{e}W}}$$
; (6)

where \overline{X} represents the mean, C_e and C_a represents eCO_2 and aCO_2 treatments, and W and D represents well-watered and drought treatments, respectively. Following Jiang et al. (2020), the interactive response ratio to eCO_2 and drought (r, i.e. the interactive effect of drought and eCO_2) was calculated as:

$$r = \frac{\overline{X}_{C_e D}}{\overline{X}_{C_a D}} / \frac{\overline{X}_{C_e W}}{\overline{X}_{C_a W}},$$
(7)

which was linearized as:

$$\ln(r) = \ln\left(\frac{\overline{X}_{C_e D}}{\overline{X}_{C_a D}}\right) - \ln\left(\frac{\overline{X}_{C_e W}}{\overline{X}_{C_a W}}\right).$$
(8)

This interaction term is equivalent to the difference between the $\log eCO_2$ response ratio at drought treatment and the $\log eCO_2$ response ratio at well-watered treatment. The variance of r (v) was calculated as:

$$v = \frac{SD^{2}_{C_{e}D}}{n_{C_{e}D}\overline{X}^{2}_{C_{e}D}} + \frac{SD^{2}_{C_{e}W}}{n_{C_{e}W}\overline{X}^{2}_{C_{e}W}} + \frac{SD^{2}_{C_{a}D}}{n_{C_{a}D}\overline{X}^{2}_{C_{a}D}} + \frac{SD^{2}_{C_{a}W}}{n_{C_{a}W}\overline{X}^{2}_{C_{a}W}}, \quad (9)$$

where n_{C_eD} , n_{C_eW} , n_{C_aD} , and n_{C_aW} are the sample sizes of eCO₂ and drought treatment, eCO₂ and well-watered treatment, aCO₂ and drought treatment, and aCO₂ and well-watered treatment, respectively.

To check how normalizing plant responses to eCO_2 with the magnitude of the CO_2 treatments influences the results of the

response ratio, we also calculated a β -factor for each response variable following previous meta-analyses (Walker et al., 2021; Wang & Wang, 2021). Specifically, the β -factor was calculated as:

$$\beta = \ln(\overline{X_t} / \overline{X_c}) / \ln(eCO_2 / aCO_2), \qquad (10)$$

where $\overline{X_t}$ and $\overline{X_c}$ are means of a concerned variable in the treatment and control groups, respectively. The variance of the β -factor (v_{β}) was calculated as:

$$\mathbf{v}_{\beta} = \left(\frac{S_t^2}{n_t \overline{X_t^2}} + \frac{S_c^2}{n_c \overline{X_c^2}}\right) / \left(\ln(\mathrm{eCO}_2/\mathrm{aCO}_2)\right)^2. \tag{11}$$

Comparing the results of the β -factor and those of the response ratio (Figures S13–S17; Table S13), we found that the β -factors of eCO₂ for almost all the 16 response variables at both well-watered and drought treatments were consistently 38.8%–42.0% greater than the corresponding response ratios (Table S13), except for the R/S ratio and ABA concentration at well-watered treatments (they were not significantly affected by eCO₂). Considering (1) the normalization of plant responses to drought was impossible because the degree of drought treatments in some studies cannot be determined; (2) the β -factors and response ratios had the same direction but with relatively consistent differences in the magnitude, which maintained the conclusions; and (3) a clarity of presentation, we only reported the response ratios in the main text, and kept the β -factors in the supporting information.

2.3 | Independence and weights

The 'shifting the unit of analysis' approach (Cheung, 2015) was used to tackle the non-independent observations described above. The initial weight (w) of each observation was calculated as:

$$w = 1/v.$$
 (12)

The weight of non-independent r (w') was adjusted by the total number (n') of a given variable of the same species from the same study (Liang et al., 2020):

$$w' = w / n'. \tag{13}$$

A random effect model was applied to estimate the mean and the 95% CI of the log-transformed response ratios for each variable, which were weighted by the variance of individual studies. Significant responses were recognized if the 95% CI did not overlap with zero. The between-group heterogeneity was compared by the omnibus test, with the effects of moderators considered being significant for p < 0.05. The meta-analysis was conducted with the *Metafor* function in R package.

We checked possible publication bias and data quality using the funnel plots and leave-one-out function. The variables were largely independent of the influence of publication bias and outliers (Figures S3 and S4).

3 | RESULTS

3.1 | Responses of plant water relations

Drought treatment reduced LRWC (-24.7% to -18.0%) and Ψ_{midday} (-45.0% to -37.2%; Figure 1a), while eCO₂ stimulated LRWC (7.9%) and Ψ_{midday} (16%) under drought conditions rather than under well-watered conditions (Figure 1b). The drought × eCO₂ interaction on LRWC (8.6%) and Ψ_{midday} (9.5%) were positive (Figure 1c). Drought treatment reduced $\Psi_{predawn}$ (-59.5% to -57.6%) and SWC (-57.4% to -55.6%; Figure 1a), while eCO₂ had no significant effect on $\Psi_{predawn}$ and SWC (Figure 1b). Both drought treatment (10.9%-16.5%; Figure 1a) and eCO₂ (37.6%-43.4%) enhanced WUE_{plant} (Figure 1b). There were no significant interactions between drought and eCO₂ on $\Psi_{predawn}$, SWC and WUE_{plant} (Figure 1c).

3.2 | Responses of leaf gas exchanges

Overall, drought and eCO_2 decreased g_s by 55.9%-61.1% (Figure 2a) and 19.7%-29.2% (Figure 2b), respectively. However, the drought × eCO_2 interaction increased g_s by 10.7% (Figure 2c). Drought reduced A by 38.2%-42.2% (Figure 2a), whereas eCO_2 increased A by 37.2%-46.3% (Figure 2b); and their interaction increased A by 7.1% (Figure 2c). Drought increased iWUE (22.5%-26.0%), but decreased C_i (-14.5% to -10.9%) and $C_i:C_a$ (-9.8% to -9.2%; Figure 2a). eCO_2 enhanced iWUE (84.2%–88.9%) and C_i (59.0%–65.8%), but had no significant effect on $C_i:C_a$ (Figure 2b). The drought $\times eCO_2$ interaction had no significant effect on iWUE, C_i and $C_i:C_a$ (Figure 2c). eCO_2 increased iWUE proportionally at both well-watered ($\beta = 1.06$) and drought ($\beta = 1.03$) treatments (Figure S13; Table S13). Drought treatment enhanced leaf ABA concentration by 180.3% and 62.5% under aCO_2 and eCO_2 , respectively (Figure 2a), whereas eCO_2 had no significant effect on leaf ABA concentration under well-watered conditions but decreased it under drought conditions (-38.4%; Figure 2b). The drought $\times eCO_2$ interaction decreased leaf ABA concentration by 38.7% (Figure 2c).

3.3 | Responses of biomass production and allocation

Drought treatment decreased above-ground biomass (-48.1% to -46.2%), below-ground biomass (-38.2% to -35.2%) and total plant biomass (-43.4% to -43.0%; Figure 3a), whereas eCO_2 increased above-ground biomass (29.1%-33.4%), below-ground biomass (33.1%-39.8%) and total plant biomass (31.7%-33.8%; Figure 3b). The drought $\times eCO_2$ interaction was neutral for above-ground biomass and total plant biomass, but was positive for below-ground biomass (5.6%; Figure 3c). Drought treatment stimulated R/S (20.8%-27.0%), while eCO_2 stimulated it under drought conditions (5.4%) but not under well-watered conditions (Figure 3a). The effect of drought and eCO_2 interaction was positive on R/S (6.0%; Figure 3c). Drought treatment decreased leaf area (-42.1% to -41.0%), whereas eCO_2 increased it (18.6%-19.8%; Figure 3b). The drought $\times eCO_2$ interaction was neutral on leaf area (Figure 3c).

FIGURE 1 Effects of elevated CO₂ (eCO₂) and drought (D) on plant water relations. (a) The effect of D at ambient CO₂ (aCO₂) and eCO₂. (b) The effect of eCO₂ at well-watered treatment (W) and D. (c) The interactive effect of eCO₂ and D. Response variables are: leaf relative water content (LRWC), predawn leaf water potential ($\Psi_{predawn}$), midday leaf water potential (Ψ_{midday}), water-use efficiency at the plant level (WUE_{plant}), and soil water content (SWC). The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The numbers on the right represent the numbers of observations included

FIGURE 2 Effects of elevated CO₂ (eCO₂) and drought (D) on plant leaf gas exchanges. (a) The effect of D at ambient CO_2 (a CO_2) and e CO_2 . (b) The effect of eCO₂ at well-watered (W) and D. (c) The interactive effect of eCO₂ and D. Response variables are: stomatal conductance (g_{c}) , photosynthesis (A), intrinsic water-use efficiency (iWUE = A/g_{c}), intercellular CO_2 concentration (C_i), the ratio of C_i to atmospheric CO_2 concentration ($C_i:C_2$) and leaf abscisic acid concentration (ABA). The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The numbers on the right represent the numbers of observations included

FIGURE 3 Effects of elevated CO_2 (e CO_2) and drought (D) on plant biomass production and allocation. (a) The effect of D at ambient CO_2 (a CO_2) and e CO_2 . (b) The effect of e CO_2 at well-watered treatment (W) and D. (c) The interactive effect of e CO_2 and D. Response variables are: above-ground biomass (AGB), belowground biomass (BGB), total plant biomass (TB), root to shoot ratio (R/S) and leaf area (LA). The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The numbers on the right represent the numbers of observations included

Journal of Ecology | 2841

3.4 | The effect of C_3 and C_4 photosynthetic pathway on plant responses

The positive effect of eCO₂ on Ψ_{midday} was stronger for C₄ plants than for C₃ plants at the drought treatment (p = 0.05; Figure 4b; Table S1). The eCO₂-induced increase in WUE_{plant} in C₄ plants was significantly smaller than that in C₃ plants under well-watered conditions (p < 0.001; Figure 4a), but was similar to under drought conditions (p > 0.05; Figure 4b); drought treatment had a positive effect on the WUE_{plant} response to eCO₂ for C₄ plants instead of C₃ plants (p = 0.01; Figure 4c; Table S1). Under well-watered conditions, the effects of eCO₂ on A (p = 0.005), above-ground biomass (p < 0.001), below-ground biomass (p = 0.03), total plant biomass (p = 0.02) and leaf area (p = 0.01) were positive for C₃ plants but not for C₄ plants (Figure 4a), whereas under drought conditions, comparable positive effects of eCO₂ were observed for C₃ plants and C₄ plants (p > 0.05; Figure 4b); the interactions between eCO₂ and drought on A (p = 0.04), above-ground biomass (p = 0.006) and leaf area (p = 0.05) were positive for C₄ plants rather than for C₃ plants, with the difference being significant (Figure 4c; Table S1). Additionally, the responses of C₃ herbs and C₄ herbs (Figure S5; Table S2), C₃ grass and C₄ grass (Figure S6; Table S3) and C₃ crop and C₄ crop (Figure S7; Table S4) to eCO₂ and drought generally mirrored those of C₃ plants and C₄ plants.

3.5 | The effect of plant growth form on plant responses

Within C₃ functional groups, plants showed different responses to drought and eCO₂. Decreases in Ψ_{midday} caused by drought were greater for herbs than for woody plants at both aCO₂ (p = 0.04; Figure 5a; Table S5) and eCO₂ treatments (p = 0.02; Figure 5b; Table S5). The drought-induced reductions in g_s (p = 0.04) and C_i (p = 0.04) were significantly greater for herbs than for woody plants

FIGURE 5 Comparisons of the responses of C_3 herbs and woody plants to drought (D) and its interaction with elevated CO_2 (eCO₂). (a) The effect of D at ambient CO_2 (aCO₂). (b) The effect of D at eCO₂. (c) The interactive effect of eCO₂ and D. The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The asterisks indicate significant differences in the responses between herbs and woody plants (*p < 0.05; **p < 0.01; ***p < 0.001). The numbers on the right represent the numbers of observations included. Refer to Figures 1–3 for the abbreviations

at eCO₂ (Figure 5b; Table S5). The decreases in above-ground biomass, below-ground biomass and total plant biomass in response to drought were stronger for woody plants than for herbs regardless of CO₂ treatments (p < 0.05; Figure 5a and b; Table S5). Compared with herbs, A of woody plants showed a larger response to eCO₂ (p = 0.04; Table S5). However, woody plants and herbs showed no significant differences in their responses to the combination of drought and eCO₂ (p > 0.05; Figure 5c; Table S5). Under well-watered conditions, no significant difference in g_s response to eCO₂ was detected between grass and forbs (p > 0.05; Figure S8a; Table S6); however, under drought conditions, a decrease in g_s was observed for forbs but not for grass, although the difference was insignificant (p = 0.1; Figure S8b; Table S6). The drought × eCO₂ interaction was positive on g_s for grass but was neutral for forbs (p = 0.005; Figure S8c; Table S6). There was a positive interaction

between drought and eCO_2 on g_s for shrubs rather than for trees, with the difference being significant (P = 0.05; Figure S9c; Table S7).

3.6 | The effect of experimental factors on plant responses

Experimental factors influenced the individual effects of drought and eCO₂ rather than their interactive effects on plants. Specifically, drought duration significantly affected the responses of $\Psi_{predawn}$, WUE_{plant}, A, above-ground biomass, below-ground biomass, total plant biomass and leaf area (Figure 6; Table S8). The negative effect of drought duration on $\Psi_{predawn}$ at aCO₂ treatment weakened with increasing drought durations (p = 0.04; Figure 6a; Table S8). Similar patterns were observed for A at

FIGURE 6 Effects of drought durations on plant responses to drought (D) and its interaction with elevated CO_2 (eCO₂). (a) The effect of D at ambient CO_2 (a CO_2). (b) The effect of D at eCO₂. (c) The interactive effect of eCO₂ and D. The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The asterisks indicate significant differences in the responses among the drought durations (**p*<0.05; ***p*<0.01; ****p*<0.001). The numbers on the right represent the numbers of observations included. Refer to Figures 1-3 for the abbreviations

previous studies (Parvin, Uddin, Fitzgerald, et al., 2019; Robredo et al., 2007). It has been shown that the 44% decrease of g_s in response to eCO₂ outweighed the 24% increase of leaf area, resulting in a slower soil water depletion under drought (Parvin, Uddin, Fitzgerald, et al., 2019); similar patterns of g_s and leaf area responses to eCO₂ were observed in this study, which, however, did not translate into a higher SWC regardless of watering regimes, as recently reported by Jiang et al. (2021). A possible explanation is that eCO₂ enhances leaf temperature, which may partially counteract the reduction in plant transpiration due to the reduced g_s caused by eCO₂ (Gray et al., 2016). Additionally, it has been shown that the conservation of soil moisture induced by eCO2 mainly occurred at shallow soil layers (Manderscheid et al., 2014). However, soil evaporation is mainly from the upper soil layer, which likely speeds up the consumption of the soil water saved by the reduced transpiration under eCO₂ (Manderscheid et al., 2018). A process-based modelling also showed that eCO₂ did not increase soil moisture in spite of decreasing transpiration, but increased evaporation (Kellner et al., 2019). These findings suggest that changes in leaf area, leaf temperature and soil evaporation may collectively counter-

act the benefits of eCO_2 on soil water savings (Wilson et al., 1999). Although no 'water saving effect' was detected, we found that eCO₂ improved leaf water status indicated by a higher LRWC under the combination of eCO₂ and drought stress. The improved leaf water status of droughted plants under eCO2 has been shown to be accompanied by increases in $\Psi_{\rm midday}$ and $\Psi_{\rm predawn}$ (Robredo et al., 2007). However, a less negative $\Psi_{\rm midday}$ rather than $\Psi_{\rm predawn}$ was observed in the present study. This is consistent with the finding of Atwell et al. (2007) that the improved water status only occurred during daylight hours, suggesting that the effect of eCO₂ was a result of decreased transpiration rather than increased SWC (Field et al., 1995). Given that a higher eCO₂induced increase in LRWC was observed only when drought occurred, the decreased sensitivity of g_s to eCO₂ caused by drought suggests that there may be other mechanisms that contributed to the improved leaf water status. For example, root biomass production was preferentially stimulated by eCO₂ when plants were subjected to water stress, leading to a higher R/S. This proportionally larger investment of C in root growth may allow plants to have more extensive root systems and improve

Table S8). The negative effect of drought at eCO_2 on total plant biomass was weakest in the short-term treatment (p = 0.04; Figure 6b; Table S8). The drought \times eCO₂ interaction increased leaf area only in the short-term treatment (p = 0.03; Figure 6c; Table S8). Above-ground biomass, below-ground biomass and total plant biomass in experiments using GC and OTC responded more strongly to eCO₂ than those using FACE under well-watered conditions (p < 0.05; Figure 7a; Table S9). The decreases in Ψ_{predawn} , A, above-ground biomass, below-ground biomass and total plant biomass in response to drought were stronger in pot than in field experiments regardless of CO₂ treatments (p < 0.05; Figure 8a,b; Table S10). The drought-induced reduction in g_c was stronger in pot than in field experiments at eCO_2 (p = 0.04; Figure 8b; Table S10) rather than at aCO₂ (p > 0.05; Figure 8a; Table S10). Drought decreased Ψ_{midday} to a greater extent in the experiments using big pots than in those using small pots at aCO_2 (p = 0.03; Figure S10a; Table S11), and there was positive interaction between drought and eCO_2 on Ψ_{midday} in the experiments using big pots but not small pots (p < 0.001; Figure S10c; Table S11). The negative effects of drought on g_{c} , A, above-ground biomass, below-ground biomass and total plant biomass were strongest in Type III drought manipulation at both aCO₂ and eCO₂ compared with Type I and Type II manipulations (p < 0.05; Figure S11a; Table S12).

both aCO_2 (p = 0.03; Figure 6b; Table S8) and eCO_2 (p = 0.02; Figure 6b;

Table S8). The drought-induced increase in WUE_{plant} was observed in short term but disappeared in medium- or long-term drought under

 eCO_2 (p = 0.02; Figure 6b; Table S8). The mean effect size for above-

ground biomass and below-ground biomass decreased the most in the

long-term treatment regardless of CO_2 treatments (p < 0.05; Figure 6a,b;

DISCUSSION 4

4.1 | eCO₂ improves plant water relations without increasing SWC

We found that drought stress caused marked reductions in SWC regardless of CO₂ concentrations, resulting in a decrease in soil water availability. This is inconsistent with our expectation (H1) and some

FIGURE 7 Effects of experimental protocols on plant responses to elevated CO_2 (e CO_2) and its interaction with drought (D). (a) The effect of e CO_2 at well-watered treatment (W). (b) The effect of e CO_2 at D. (c) The interactive effect of e CO_2 and D. The effect size is calculated as a percentage response (%). FACE, free-air CO_2 enrichment; GC, growth chamber; OTC, open top chamber. The error bars represent 95% confidence intervals. The asterisks indicate significant differences in the responses among the experimental protocols (*p < 0.05; **p < 0.01; ***p < 0.001). The numbers on the right represent the numbers of observations included. Refer to Figures 1–3 for the abbreviations

FIGURE 8 Effects of growth conditions on plant responses to drought (D) and its interaction with elevated CO_2 (eCO₂). (a) The effect of D at ambient CO_2 (aCO₂). (b) The effect of D at eCO₂. (c) The interactive effect of eCO₂ and D. The effect size is calculated as a percentage response (%). The error bars represent 95% confidence intervals. The asterisks indicate significant differences in the responses between the growth conditions (*p < 0.05; **p < 0.001). The numbers on the right represent the numbers of observations included. Refer to Figures 1-3 for the abbreviations

their water acquisition (Idso & Idso, 1994; Wullschleger et al., 2002). These findings suggest that stomatal control and morphological adjustments jointly improve leaf water status under eCO_2 and drought (Jiang et al., 2021), and eCO_2 consequently mitigates the impacts of drought stress on plants even without changing SWC (De Kauwe et al., 2021).

4.2 | eCO₂ alleviates adverse effects of drought on photosynthesis

We found that the drought-induced reduction in g_s was concurrent with the increase in leaf ABA concentration, suggesting that ABA may be involved in regulating stomatal closure under drought stress (Comstock, 2002). However, the drought-induced enhancement in leaf ABA concentration was less pronounced when plants were exposed to eCO_2 . This negative interaction between drought and eCO_2 has been suggested to delay stomatal response to drought (Li et al., 2020), which was supported by our finding that the response of g_s to drought was reduced by eCO_2 . Similar responses have been observed in *Lycopersicon esculentum* (Liu et al., 2019), *Fagus sylvatica* and *Castanea sativa* (Heath, 1998). The smaller reduction in g_s caused by drought at eCO_2 was also in accordance with the aforementioned finding that LRWC and Ψ_{midday} were increased by eCO_2 at drought conditions. This result indicates that eCO_2 indirectly impacted leaf

water status through its effect on g_s , which, in turn, affected the response of g_s to drought. However, eCO₂ changed the magnitude of g_s response to drought but not the direction, suggesting that SWC may play an important role in stomatal control, and that stomata respond to the factors that influence plant water status (Buckley, 2019).

Following the decreased g_s under drought, there was a decrease in C_i , suggesting that drought imposed stomatal limitation on A (Flexas & Medrano, 2002). In contrast, eCO₂ alleviated stomatal limitation by stimulating C_i , resulting in a more pronounced enhancement in A under drought treatment than under well-watered treatment; this provides evidence for the 'low C_i effects' hypothesis (Ellsworth et al., 2012; Kelly et al., 2016). In addition, the less sensitive of g_c to drought for plants growing under eCO₂ may be another reason for the positive interaction between drought and eCO₂ on A. However, the eCO₂-induced stimulation of biomass was independent of water availability. This is likely because the growth response to eCO₂ increases with decreasing soil moisture only when eCO₂ produces relatively wet soil (Fatichi et al., 2016; Morgan et al., 2004; Ottman et al., 2001). Given that no 'water saving effect' was detected in this study, it is logical that there was no positive interaction between drought and eCO₂ on biomass.

4.3 | eCO₂ increases WUE, but the magnitude is scale dependent

At the leaf level, iWUE increased under eCO₂ as a consequence of the reduced g_e and enhanced A, in line with previous meta-analyses (Ainsworth & Long, 2005; Wang & Wang, 2021). It has been suggested that the impact of eCO₂ on WUE was lower in plants under drought (De Kauwe et al., 2013; Robredo et al., 2007). However, drought did not affect the response of iWUE to eCO₂, which, combined with the finding of the proportional increase in iWUE with eCO₂ regardless of water availability, supports the optimal stomatal behaviour theory that g, and A are well coupled to maximize C uptake and minimize water loss (Medlyn et al., 2011; Walker et al., 2021; Wang & Wang, 2021). Similarly, it has been observed that when the eCO_2 -induced stimulation of A was greatest, the reduction in g_2 was smallest, suggesting a tight coupling between A and g_{ς} (Pastore et al., 2019). Such an iWUE response to eCO₂ has been suggested to be regulated by three mechanisms, that is, maintaining a constant C_i , $C_i - C_a$ and C_i : C_a (Saurer et al., 2004). The present meta-analysis extends previous empirical findings and model simulations by showing that A and g_s are regulated in a way to keep the $C_i:C_a$ constant in response to eCO₂, which is independent of soil water availability; this suggests a consistent and moderate contribution of eCO₂ to the increase in iWUE (Ainsworth & Long, 2005; De Kauwe et al., 2013; Peñuelas et al., 2011).

At the individual level, there was also an eCO_2 -stimulated WUE_{plant} , suggesting that the higher biomass production was not accompanied by a proportional increase in water use; this is in line with the large-scale evidence that increased terrestrial C uptake by eCO_2 does not cause an enhancement in water use because of the

increased WUE (Cheng et al., 2017). It has been shown that eCO_2 improved WUE_{plant} to a greater extent in drought treatment than in well-watered treatment (Qiao et al., 2010). However, no interaction between eCO_2 and drought was detected in this study, likely because of the lack of positive interaction between eCO_2 and drought on plant biomass.

There is evidence that the sensitivity of WUE to eCO₂ decreased from leaf to plant levels (Centritto et al., 1999; Kelly et al., 2016; Knauer et al., 2017), which was confirmed by the present study. This is likely because additional feedbacks may play a role in scaling up iWUE to the whole-plant level (Centritto et al., 1999; De Kauwe et al., 2013; Field et al., 1995; Knauer et al., 2017). First, the aforementioned larger leaf area under eCO₂ would reduce the physiological effects of eCO₂ on plant water use (Field et al., 1995). Second, the response magnitude of plant/stand-scale WUE to eCO₂ also depends on the coupling between the leaf and the atmosphere (De Kauwe et al., 2013). For example, Kelly et al. (2016) attributed the discrepancy between the responses of iWUE and WUE_{plant} of Eucalyptus seedlings to eCO₂ to the weak coupling between plants and the surrounding air. Third, the difference in leaf-to-air vapour pressure deficit and responses of A and g_s to eCO₂ can change vertically within canopies owing to changes in light availability (Barton et al., 2012).

4.4 | Factors affecting plant responses to drought and eCO₂

The interactive effect of drought and eCO₂ on A may depend on photosynthetic pathway (Leakey et al., 2006). Our study showed that the photosynthetic advantage of C₃ plants over C₄ plants under eCO₂ diminished with the onset of drought stress, which is consistent with the finding that the response of A to eCO₂ was more positive under reduced rainfall compared with ambient rainfall for C4 grass but not for C_3 grass (Pastore et al., 2020). The distinct responses of C_3 and C_4 plants to the combination of eCO2 and drought may be associated with the unique CO2-concentrating mechanism of C4 plants. Compared with C_3 plants, the initial slope of the A/C_i curve of C_4 plants is much steeper, and A is CO₂ saturated at a lower C_i and thus is less responsive to eCO₂ (Leakey, 2009). However, when C₄ plants are exposed to drought, the reduction in g_s may decrease the operating C_i to a value below the inflexion point of the A/C_i curve, and A becomes more sensitive to eCO₂ (Leakey et al., 2009). Similarly, drought provoked a more pronounced WUE_{plant} response of C_4 plants to eCO_2 . This finding supports a model simulation that a stronger enhancement in WUE_{plant} of Zea mays caused by eCO₂ occurred in drought treatment than in the wet treatment (Kellner et al., 2019). The benefits of eCO₂ on A and WUE_{plant} of C₄ plants under water-limited environments may explain why the biomass of C_4 plants was enhanced only when eCO₂ and drought were combined (Leakey et al., 2006; Manderscheid et al., 2014; Ottman et al., 2001).

There were also significant differences in plant response to eCO_2 and drought among C_3 functional groups. The negative

effects of drought on plant biomass of herbs were less than those of woody plants, which is generally consistent with the viewpoint that compared with woody plants, herbs have more strategies (e.g. dehydration escape; Kooyers, 2015) to cope with drought and thus are more drought tolerant (Volaire, 2018). Contrarily, woody plants exhibited significantly greater increases in A in response to eCO_2 than herbs, which is in line with previous findings that woody plants responded more strongly to eCO_2 (Ainsworth & Long, 2005).

Unexpectedly, the interaction between drought and eCO_2 on plants hardly changed with experimental factors such as drought manipulation type, experimental protocol, growth condition, drought duration, etc., which, however, mediated the individual effects of drought and eCO₂ on plants. For example, we found that the physiology and biomass production were more strongly constrained by drought for plants growing in pots than those growing in field. This is consistent with a previous meta-analysis that the effects of precipitation changes on root biomass in pot experiments did not mirror those in field experiments (Wang et al., 2020). Our finding implies that plants growing in pots were less drought tolerant than those growing in field, likely because pot size impacted root growth and development (Poorter et al., 2012); rooting volume, fine-root area and activity determine the capacity of the root system to take up water (Wullschleger et al., 2002). In addition, the negative effect of drought on plant biomass worsened as drought prolonged, possibly because the plant growth became C limited over long-term drought (Duan et al., 2013). Additionally, experimental protocol affected plant responses to eCO₂. Specifically, plant biomass in FACE experiments was less responsive to eCO₂, similar to the result by de Graaff et al. (2006). We also found that drought caused the greatest reductions in g_s , A and biomass for Type III manipulation; this suggested that plant physiology and growth were severely impaired when the water supply was totally withheld (Type III), whereas recurrent mild droughts (Type II) may increase plant drought resistance (Backhaus et al., 2014; Bréda et al., 2006).

5 | CONCLUSIONS

To detect whether eCO_2 can alleviate the negative effects of drought stress, we performed a worldwide synthesis on the interactive effects of eCO_2 and drought on plant water status, photosynthesis, WUE, biomass production and allocation. Our analysis showed that eCO_2 little affected SWC, but improved leaf water status under drought conditions (e.g. a higher LRWC and a less negative Ψ_{midday}) by reducing g_s and increasing R/S. Elevated CO_2 enhanced WUE regardless of soil water availability, which was jointly driven by a lower g_s response (associated with leaf ABA levels) and a higher A response to eCO_2 under drought, consistent with the optimal stomatal behaviour, but the magnitude of the eCO_2 -induced enhancement in WUE decreased from the leaf to individual scales. eCO_2 reduced the magnitude of the effect of

drought on g_s, but did not change the direction. The lower g_s under drought caused stomatal limitations on A, while eCO₂ alleviated stomatal limitations by increasing C_i , which resulted in a greater A response to eCO_2 and drought, supporting the 'low C_i effect' hypothesis. However, the magnitude of the increase in plant biomass caused by eCO₂ did not vary with water availability. The advantages of eCO₂ on C₃ plants over C₄ plants under well-watered conditions diminished under drought conditions. Compared with C₃ herbs, drought caused a greater reduction in biomass of woody plants. The negative effect of drought on plant biomass increased as drought prolonged. Plants growing in pots were less drought tolerant than those growing in field. The eCO₂-induced increase in biomass was observed in growth chamber and OTC experiments rather than in FACE experiments. These findings suggest that eCO₂ can alleviate the adverse impacts of drought by improving plant water status and A; they enhance our understanding of plant responses to and feedbacks on global changes.

Nevertheless, we realized several limitations in this study. First, although we found that eCO₂ improved plant water status, of which the exact mechanisms remain uncertain. One potential candidate is that eCO_2 may affect the rooting depth and vertical distribution of roots, which determine the water acquisition capacity of roots (Nadal-Sala et al., 2021; Wullschleger et al., 2002). Second, eCO₂ often increases non-structural carbohydrates, which may allow plants to increase osmotic adjustment and maintain a higher water potential (Miranda-Apodaca et al., 2018). Third, although normalizing plant responses to eCO₂ with the magnitude of CO₂ treatments did not change the directions of the responses, it increased the magnitudes by 38.8%-42.0% on average; nevertheless, the current dataset denied the normalization to drought and its interaction with eCO₂. Fourth, eCO₂ can also impact plant water supply through its effect on plant hydraulic conductance, with the specific effects depending on species and plant growth form (Domec et al., 2017). However, few data are available for synthesizing interactive effects of eCO₂ and drought on those aspects; the number of observations for SWC was also smaller than those of plant physiological variables, which may limit the power of this meta-analysis. Clearly, these limitations call for more studies, particularly on exploring responses of plant root characteristics (e.g. root length, root distribution), hydraulics (e.g. osmotic adjustment, plant hydraulic architecture) and SWC to the combination of eCO₂ and drought.

AUTHOR CONTRIBUTIONS

Zhaoguo Wang and Chuankuan Wang designed the study. Zhaoguo Wang collected and analysed the data. Zhaoguo Wang and Chuankuan Wang drafted the manuscript. Zhaoguo Wang, Chuankuan Wang and Shirong Liu were involved in the revision.

ACKNOWLEDGEMENTS

We thank all the researchers whose data were used in this metaanalysis, Dr. Alessio Collalti and the anonymous reviewers for their valuable comments. This work was financially supported by the National Key Research and Development Program of China (2021YFD2200401).

CONFLICT OF INTEREST

The authors declare there are no conflicts of interest.

PEER REVIEW

The peer review history for this article is available at https://publo ns.com/publon/10.1111/1365-2745.13988.

DATA AVAILABILITY STATEMENT

The database used in this meta-analysis is available from the Dryad Digital Repository https://doi.org/10.5061/dryad.zs7h44jcz (Wang et al. 2022).

ORCID

Zhaoguo Wang 🕩 https://orcid.org/0000-0003-3381-0205 Chuankuan Wang 🖻 https://orcid.org/0000-0003-3513-5426

REFERENCES

- Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO₂ enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO₂. New Phytologist, 165, 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
- Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising [CO₂]: Mechanisms and environmental interactions. *Plant Cell and Environment*, 30, 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
- Albert, K. R., Ro-Poulsen, H., Mikkelsen, T. N., Michelsen, A., van der Linden, L., & Beier, C. (2011). Interactive effects of elevated CO₂, warming, and drought on photosynthesis of *Deschampsia flexuosa* in a temperate heath ecosystem. *Journal of Experimental Botany*, 62, 4253–4266. https://doi.org/10.1093/jxb/err133
- Arp, W. J. (1991). Effects of source-sink relations on photosynthetic acclimation to elevated CO₂. Plant Cell and Environment, 14, 869–875. https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
- Atwell, B. J., Henery, M. L., Rogers, G. S., Seneweera, S. P., Treadwell, M., & Conroy, J. P. (2007). Canopy development and hydraulic function in *Eucalyptus tereticornis* grown in drought in CO₂-enriched atmospheres. *Functional Plant Biology*, 34, 1137–1149. https://doi. org/10.1071/fp06338
- Backhaus, S., Kreyling, J., Grant, K., Beierkuhnlein, C., Walter, J., & Jentsch, A. (2014). Recurrent mild drought events increase resistance toward extreme drought stress. *Ecosystems*, 17, 1068–1081. https://doi.org/10.1007/s10021-014-9781-5
- Barton, C. V. M., Duursma, R. A., Medlyn, B. E., Ellsworth, D. S., Eamus, D., Tissue, D. T., Adams, M. A., Conroy, J., Crous, K. Y., Liberloo, M., Löw, M., Linder, S., & McMurtrie, R. E. (2012). Effects of elevated atmospheric CO_2 on instantaneous transpiration efficiency at leaf and canopy scales in *Eucalyptus saligna*. *Global Change Biology*, 18, 585–595. https://doi.org/10.1111/j.1365-2486.2011.02526.x
- Becklin, K. M., Walker, S. M., Way, D. A., & Ward, J. K. (2017). CO₂ studies remain key to understanding a future world. New Phytologist, 214, 34–40. https://doi.org/10.1111/nph.14336
- Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. *Field Crops Research*, 112, 119–123. https://doi. org/10.1016/j.fcr.2009.03.009

- Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. *Annals of Forest Science*, 63, 625–644. https://doi.org/10.1051/ forest:2006042
- Buckley, T. N. (2019). How do stomata respond to water status? New Phytologist, 224, 21–36. https://doi.org/10.1111/nph.15899
- Centritto, M., Magnani, F., Lee, H. S. J., & Jarvis, P. G. (1999). Interactive effects of elevated [CO₂] and drought on cherry (*Prunus avium*) seedlings II. Photosynthetic capacity and water relations. *New Phytologist*, 141, 141–153. https://doi.org/10.1046/j.1469-8137.1999.00327.x
- Cheng, L., Zhang, L., Wang, Y.-P., Canadell, J. G., Chiew, F. H. S., Beringer, J., Li, L., Miralles, D. G., Piao, S., & Zhang, Y. (2017). Recent increases in terrestrial carbon uptake at little cost to the water cycle. *Nature Communications*, 8, 110. https://doi.org/10.1038/s41467-017-00114-5
- Cheung, M. W. L. (2015). Meta-analysis: A structural equation modeling approach. John Wiley & Sons Inc.
- Comstock, J. P. (2002). Hydraulic and chemical signalling in the control of stomatal conductance and transpiration. *Journal of Experimental Botany*, 53, 195–200. https://doi.org/10.1093/jexbot/53.367.195
- Dai, A. (2013). Increasing drought under global warming in observations and models. Nature Climate Change, 3, 52–58. https://doi. org/10.1038/nclimate1633
- de Graaff, M.-A., van Groenigen, K.-J., Six, J., Hungate, B., & van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO₂: A meta-analysis. *Global Change Biology*, 12, 2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x
- De Kauwe, M. G., Medlyn, B. E., & Tissue, D. T. (2021). To what extent can rising [CO₂] ameliorate plant drought stress? *New Phytologist*, 231, 2118–2124. https://doi.org/10.1111/nph.17540
- De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. C., Hickler, T., Jain, A. K., Luo, Y., Parton, W. J., Prentice, I. C., Smith, B., Thornton, P. E., Wang, S., Wang, Y.-P., Wårlind, D., Weng, E., Crous, K. Y., Ellsworth, D. S., Hanson, P. J., ... Norby, R. J. (2013). Forest water use and water use efficiency at elevated CO₂: A model-data intercomparison at two contrasting temperate forest FACE sites. *Global Change Biology*, *19*, 1759–1779. https://doi.org/10.1111/gcb.12164
- Domec, J.-C., Smith, D. D., & McCulloh, K. A. (2017). A synthesis of the effects of atmospheric carbon dioxide enrichment on plant hydraulics: Implications for whole-plant water use efficiency and resistance to drought. *Plant Cell and Environment*, 40, 921–937. https:// doi.org/10.1111/pce.12843
- Duan, H., Amthor, J. S., Duursma, R. A., O'Grady, A. P., Choat, B., & Tissue, D. T. (2013). Carbon dynamics of eucalypt seedlings exposed to progressive drought in elevated [CO₂] and elevated temperature. *Tree Physiology*, 33, 779–792. https://doi.org/10.1093/ treephys/tpt061
- Duursma, R. A., & Medlyn, B. E. (2012). MAESPA: A model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to CO₂ × drought interactions. *Geoscientific Model Development*, 5, 919–940. https://doi.org/10.5194/gmd-5-919-2012
- Ellsworth, D. S., Thomas, R., Crous, K. Y., Palmroth, S., Ward, E., Maier, C., DeLucia, E., & Oren, R. (2012). Elevated CO₂ affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: A synthesis from Duke FACE. *Global Change Biology*, 18, 223–242. https://doi.org/10.1111/j.1365-2486.2011.02505.x
- Fatichi, S., Leuzinger, S., Paschalis, A., Langley, J. A., Barraclough, A. D., & Hovenden, M. J. (2016). Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO₂. Proceedings of the National Academy of Sciences of the United States of America, 113, 12757–12762. https://doi.org/10.1073/ pnas.1605036113

- Field, C. B., Jackson, R. B., & Mooney, H. A. (1995). Stomatal responses to increased CO₂: Implications from the plant to the global scale. *Plant Cell and Environment*, 18, 1214–1225. https://doi.org/10.1111/ j.1365-3040.1995.tb00630.x
- Flexas, J., & Medrano, H. (2002). Drought-inhibition of photosynthesis in C₃ plants: Stomatal and non-stomatal limitations revisited. Annals of Botany, 89, 183–189. https://doi.org/10.1093/aob/mcf027
- Gray, S. B., Dermody, O., Klein, S. P., Locke, A. M., McGrath, J. M., Paul, R. E., Rosenthal, D. M., Ruiz-Vera, U. M., Siebers, M. H., Strellner, R., Ainsworth, E. A., Bernacchi, C. J., Long, S. P., Ort, D. R., & Leakey, A. D. B. (2016). Intensifying drought eliminates the expected benefits of elevated carbon dioxide for soybean. *Nature Plants*, *2*, 16132. https://doi.org/10.1038/nplants.2016.132
- Hasegawa, S., Piñeiro, J., Ochoa-Hueso, R., Haigh, A. M., Rymer, P. D., Barnett, K. L., & Power, S. A. (2018). Elevated CO_2 concentrations reduce C_4 cover and decrease diversity of understorey plant community in a *Eucalyptus* woodland. *Journal of Ecology*, 106, 1483– 1494. https://doi.org/10.1111/1365-2745.12943
- He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: A meta-analysis. New Phytologist, 204, 924–931. https://doi.org/10.1111/nph.12952
- Heath, J. (1998). Stomata of trees growing in CO₂-enriched air show reduced sensitivity to vapour pressure deficit and drought. *Plant Cell and Environment*, 21, 1077–1088. https://doi.org/10.1046/j.1365-3040.1998.00366.x
- Idso, K. E., & Idso, S. B. (1994). Plant responses to atmospheric CO₂ enrichment in the face of environmental constraints: A review of the past 10 years' research. Agricultural and Forest Meteorology, 69, 153–203. https://doi.org/10.1016/0168-1923(94)90025-6
- Jiang, M., Caldararu, S., Zhang, H., Fleischer, K., Crous, K. Y., Yang, J., De Kauwe, M. G., Ellsworth, D. S., Reich, P. B., Tissue, D. T., Zaehle, S., & Medlyn, B. E. (2020). Low phosphorus supply constrains plant responses to elevated CO₂: A meta-analysis. *Global Change Biology*, 26, 5856–5873. https://doi.org/10.1111/gcb.15277
- Jiang, M., Kelly, J. W. G., Atwell, B. J., Tissue, D. T., & Medlyn, B. E. (2021). Drought by CO₂ interactions in trees: A test of the water savings mechanism. *New Phytologist*, 230, 1421–1434. https://doi. org/10.1111/nph.17233
- Kellner, J., Houska, T., Manderscheid, R., Weigel, H.-J., Breuer, L., & Kraft, P. (2019). Response of maize biomass and soil water fluxes on elevated CO₂ and drought-From field experiments to process-based simulations. *Global Change Biology*, 25, 2947–2957. https://doi. org/10.1111/gcb.14723
- Kelly, J. W. G., Duursma, R. A., Atwell, B. J., Tissue, D. T., & Medlyn, B. E. (2016). Drought \times CO₂ interactions in trees: A test of the low-intercellular CO₂ concentration (C_i) mechanism. New Phytologist, 209, 1600–1612. https://doi.org/10.1111/nph.13715
- Knauer, J., Zaehle, S., Reichstein, M., Medlyn, B. E., Forkel, M., Hagemann, S., & Werner, C. (2017). The response of ecosystem water-use efficiency to rising atmospheric CO₂ concentrations: Sensitivity and large-scale biogeochemical implications. *New Phytologist*, 213, 1654–1666. https://doi.org/10.1111/nph.14288
- Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous populations. *Plant Science*, 234, 155–162. https://doi.org/10.1016/j.plantsci.2015.02.012
- Lashof, D. A., & Ahuja, D. R. (1990). Relative contributions of greenhouse gas emissions to global warming. *Nature*, 344, 529–531. https://doi. org/10.1038/344529a0
- Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C₄ crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276, 2333–2343. https://doi. org/10.1098/rspb.2008.1517
- Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO₂ effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. *Journal of Experimental Botany*, 60, 2859–2876. https://doi.org/10.1093/jxb/erp096

- Leakey, A. D. B., Uribelarrea, M., Ainsworth, E. A., Naidu, S. L., Rogers, A., Ort, D. R., & Long, S. P. (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO₂ concentration in the absence of drought. *Plant Physiology*, 140, 779– 790. https://doi.org/10.1104/pp.105.073957
- Leuzinger, S., & Körner, C. (2007). Water savings in mature deciduous forest trees under elevated CO₂. *Global Change Biology*, 13, 2498– 2508. https://doi.org/10.1111/j.1365-2486.2007.01467.x
- Li, S., Li, X., Wei, Z., & Liu, F. (2020). ABA-mediated modulation of elevated CO₂ on stomatal response to drought. *Current Opinion in Plant Biology*, 56, 174–180. https://doi.org/10.1016/j. pbi.2019.12.002
- Liang, X., Zhang, T., Lu, X., Ellsworth, D. S., BassiriRad, H., You, C., Wang, D., He, P., Deng, Q., Liu, H., Mo, J., & Ye, Q. (2020). Global response patterns of plant photosynthesis to nitrogen addition: A meta-analysis. *Global Change Biology*, *26*, 3585–3600. https://doi. org/10.1111/gcb.15071
- Liu, J., Hu, T., Fang, L., Peng, X., & Liu, F. (2019). CO₂ elevation modulates the response of leaf gas exchange to progressive soil drying in tomato plants. Agricultural and Forest Meteorology, 268, 181–188. https://doi.org/10.1016/j.agrformet.2019.01.026
- Luo, Y. Q., Hui, D. F., & Zhang, D. Q. (2006). Elevated CO₂ stimulates net accumulations of carbon and nitrogen in land ecosystems: A metaanalysis. *Ecology*, 87, 53–63. https://doi.org/10.1890/04-1724
- Manderscheid, R., Dier, M., Erbs, M., Sickora, J., & Weigel, H.-J. (2018). Nitrogen supply – A determinant in water use efficiency of winter wheat grown under free air CO₂ enrichment. Agricultural Water Management, 210, 70–77. https://doi.org/10.1016/j. agwat.2018.07.034
- Manderscheid, R., Erbs, M., & Weigel, H.-J. (2014). Interactive effects of free-air CO₂ enrichment and drought stress on maize growth. *European Journal of Agronomy*, *52*, 11–21. https://doi.org/10.1016/j. eja.2011.12.007
- McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? *New Phytologist*, 178, 719–739. https://doi. org/10.1111/j.1469-8137.2008.02436.x
- Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V. M., Crous, K. Y., De Angelis, P., Freeman, M., & Wingate, L. (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. *Global Change Biology*, *17*, 2134– 2144. https://doi.org/10.1111/j.1365-2486.2010.02375.x
- Miranda-Apodaca, J., Pérez-López, U., Lacuesta, M., Mena-Petite, A., & Muñoz-Rueda, A. (2018). The interaction between drought and elevated CO₂ in water relations in two grassland species is speciesspecific. *Journal of Plant Physiology*, 220, 193–202. https://doi. org/10.1016/j.jplph.2017.11.006
- Morgan, J. A., Pataki, D. E., Körner, C., Clark, H., Del Grosso, S. j., Grünzweig, J. M., Knapp, A. K., Mosier, A. R., Newton, P. C. D., Niklaus, P. A., Nippert, J. B., Nowak, R. S., Parton, W. J., Polley, H. W., & Shaw, M. R. (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO₂. *Oecologia*, 140, 11–25. https://doi.org/10.1007/s00442-004-1550-2
- Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M., & Gibon, Y. (2011). Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. *Journal of Experimental Botany*, *62*, 1715–1729. https://doi.org/10.1093/jxb/erq438
- Nadal-Sala, D., Medlyn, B. E., Ruehr, N. K., Barton, C. V. M., Ellsworth, D. S., Gracia, C., Tissue, D. T., Tjoelker, M. G., & Sabaté, S. (2021). Increasing aridity will not offset CO₂ fertilization in fast-growing eucalypts with access to deep soil water. *Global Change Biology*, 27, 2970–2990. https://doi.org/10.1111/gcb.15590

- Niklaus, P. A., Spinnler, D., & Körner, C. (1998). Soil moisture dynamics of calcareous grassland under elevated CO₂. *Oecologia*, 117, 201–208. https://doi.org/10.1007/s004420050649
- Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E., & McMurtrie, R. E. (2010). CO₂ enhancement of forest productivity constrained by limited nitrogen availability. *Proceedings of the National Academy of Sciences of the United States of America*, 107, 19368–19373. https://doi.org/10.1073/pnas.1006463107
- Ottman, M. J., Kimball, B. A., Pinter, P. J., Wall, G. W., Vanderlip, R. L., Leavitt, S. W., LaMorte, R. L., Matthias, A. D., & Brooks, T. J. (2001). Elevated CO₂ increases sorghum biomass under drought conditions. New Phytologist, 150, 261–273. https://doi.org/10.1046/j.1469-8137.2001.00110.x
- Pan, Y., Jackson, R. B., Hollinger, D. Y., Phillips, O. L., Nowak, R. S., Norby, R. J., Oren, R., Reich, P. B., Lüscher, A., Mueller, K. E., Owensby, C., Birdsey, R., Hom, J., & Luo, Y. (2022). Contrasting responses of woody and grassland ecosystems to increased CO₂ as water supply varies. *Nature Ecology & Evolution*, *6*, 315–323. https://doi. org/10.1038/s41559-021-01642-6
- Parvin, S., Uddin, S., Fitzgerald, G. J., Tausz-Posch, S., Armstrong, R., & Tausz, M. (2019). Free air CO₂ enrichment (FACE) improves water use efficiency and moderates drought effect on N₂ fixation of *Pisum sativum* L. *Plant and Soil, 436,* 587–606. https://doi.org/10.1007/ s11104-019-03949-7
- Parvin, S., Uddin, S., Tausz-Posch, S., Fitzgerald, G., Armstrong, R., & Tausz, M. (2019). Elevated CO₂ improves yield and N₂ fixation but not grain N concentration of faba bean (Vicia faba L.) subjected to terminal drought. Environmental and Experimental Botany, 165, 161– 173. https://doi.org/10.1016/j.envexpbot.2019.06.003
- Pastore, M. A., Lee, T. D., Hobbie, S. E., & Reich, P. B. (2019). Strong photosynthetic acclimation and enhanced water-use efficiency in grassland functional groups persist over 21 years of CO₂ enrichment, independent of nitrogen supply. *Global Change Biology*, 25, 3031–3044. https://doi.org/10.1111/gcb.14714
- Pastore, M. A., Lee, T. D., Hobbie, S. E., & Reich, P. B. (2020). Interactive effects of elevated CO₂, warming, reduced rainfall, and nitrogen on leaf gas exchange in five perennial grassland species. *Plant Cell and Environment*, 43, 1862–1878. https://doi.org/10.1111/pce.13783
- Paudel, I., Halpern, M., Wagner, Y., Raveh, E., Yermiyahu, U., Hoch, G., & Klein, T. (2018). Elevated CO₂ compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environmental and Experimental Botany, 148, 117–127. https://doi.org/10.1016/j.envexpbot.2018.01.004
- Peñuelas, J., Canadell, J. G., & Ogaya, R. (2011). Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Global Ecology and Biogeography, 20, 597–608. https://doi. org/10.1111/j.1466-8238.2010.00608.x
- Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., & Postma, J. A. (2012). Pot size matters: A meta-analysis of the effects of rooting volume on plant growth. *Functional Plant Biology*, *39*, 839–850. https://doi.org/10.1071/fp12049
- Qiao, Y., Zhang, H., Dong, B., Shi, C., Li, Y., Zhai, H., & Liu, M. (2010). Effects of elevated CO₂ concentration on growth and water use efficiency of winter wheat under two soil water regimes. *Agricultural Water Management*, 97, 1742–1748. https://doi.org/10.1016/j.agwat.2010.06.007
- Robredo, A., Pérez-López, U., de la Maza, H. S., González-Moro, B., Lacuesta, M., Mena-Petite, A., & Muñoz-Rueda, A. (2007). Elevated CO₂ alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis. Environmental and Experimental Botany, 59, 252– 263. https://doi.org/10.1016/j.envexpbot.2006.01.001
- Saurer, M., Siegwolf, R. T. W., & Schweingruber, F. H. (2004). Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. *Global Change Biology*, 10, 2109–2120. https://doi.org/10.1111/j.1365-2486.2004. 00869.x

- Spinoni, J., Barbosa, P., Bucchignani, E., Cassano, J., Cavazos, T., Christensen, J. H., Christensen, O. B., Coppola, E., Evans, J., Geyer, B., Giorgi, F., Hadjinicolaou, P., Jacob, D., Katzfey, J., Koenigk, T., Laprise, R., Lennard, C. J., Kurnaz, M. L., Li, D., ... Dosio, A. (2020). Future global meteorological drought hot spots: A study based on CORDEX data. *Journal of Climate*, *33*, 3635–3661. https://doi. org/10.1175/icli-d-19-0084.1
- van der Sleen, P., Groenendijk, P., Vlam, M., Anten, N. P. R., Boom, A., Bongers, F., Pons, T. L., Terburg, G., & Zuidema, P. A. (2015). No growth stimulation of tropical trees by 150 years of CO₂ fertilization but water-use efficiency increased. *Nature Geoscience*, *8*, 24– 28. https://doi.org/10.1038/NGEO2313
- Volaire, F. (2018). A unified framework of plant adaptive strategies to drought: Crossing scales and disciplines. *Global Change Biology*, 24, 2929–2938. https://doi.org/10.1111/gcb.14062
- Walker, A. P., De Kauwe, M. G., Bastos, A., Belmecheri, S., Georgiou, K., Keeling, R. F., McMahon, S. M., Medlyn, B. E., Moore, D. J. P., Norby, R. J., Zaehle, S., Anderson-Teixeira, K. J., Battipaglia, G., Brienen, R. J. W., Cabugao, K. G., Cailleret, M., Campbell, E., Canadell, J. G., Ciais, P., ... Zuidema, P. A. (2021). Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO₂. New Phytologist, 229, 2413–2445. https://doi.org/10.1111/nph.16866
- Wall, G. W., Brooks, T. J., Adam, N. R., Cousins, A. B., Kimball, B. A., Pinter, P. J., LaMorte, R. L., Triggs, J., Ottman, M. J., Leavitt, S. W., Matthias, A. D., Williams, D. G., & Webber, A. N. (2001). Elevated atmospheric CO₂ improved Sorghum plant water status by ameliorating the adverse effects of drought. *New Phytologist*, 152, 231– 248. https://doi.org/10.1046/j.0028-646X.2001.00260.x
- Wand, S. J. E., Midgley, G. F., Jones, M. H., & Curtis, P. S. (1999). Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO₂ concentration: A meta-analytic test of current theories and perceptions. *Global Change Biology*, *5*, 723–741. https://doi. org/10.1046/j.1365-2486.1999.00265.x
- Wang, P., Huang, K., & Hu, S. (2020). Distinct fine-root responses to precipitation changes in herbaceous and woody plants: A meta-analysis. *New Phytologist*, 225, 1491–1499. https://doi.org/10.1111/nph.16266
- Wang, Z., & Wang, C. (2021). Responses of tree leaf gas exchange to elevated CO_2 combined with changes in temperature and water availability: A global synthesis. *Global Ecology and Biogeography*, 30, 2500–2512. https://doi.org/10.1111/geb.13394
- Wang, Z., Wang, C., & Liu, S. (2022). Data from: Elevated CO₂ alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. *Dryad Digital Repository*, https://doi. org/10.5061/dryad.zs7h44jcz
- Wilson, K. B., Carlson, T. N., & Bunce, J. A. (1999). Feedback significantly influences the simulated effect of CO₂ on seasonal evapotranspiration from two agricultural species. *Global Change Biology*, *5*, 903– 917. https://doi.org/10.1046/j.1365-2486.1999.00280.x
- Wullschleger, S. D., Tschaplinski, T. J., & Norby, R. J. (2002). Plant water relations at elevated CO₂-implications for water-limited environments. *Plant Cell and Environment*, *25*, 319–331. https://doi. org/10.1046/j.1365-3040.2002.00796.x

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Wang, Z., Wang, C., & Liu, S. (2022). Elevated CO₂ alleviates adverse effects of drought on plant water relations and photosynthesis: A global meta-analysis. *Journal of Ecology*, 110, 2836–2849. <u>https://doi.</u> org/10.1111/1365-2745.13988