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Aquatic plants are an important ecological group in the arctic flora; however,

their evolutionary histories remain largely unknown. In order to deepen our

understanding of the evolution of these plants, we explored the

phylogeographical structure of an aquatic boreal plant Hippuris vulgaris in a

broad geographical sampling from Eurasia and North America using the

chloroplast intergenic spacer psbA-trnH and seven nuclear microsatellite

loci. Two closely-related species H. lanceolata and H. tetraphylla were also

included because of their taxonomic controversy. Both chloroplast DNA

sequences and nuclear microsatellite data revealed three genetic lineages

with distinct distribution ranges. Incongruence between nuclear and

chloroplast DNA lineages occurred in 14 samples from Russian Far East and

Europe caused by inter-lineage hybridization. No private haplotypes or

independent genetic clusters were evident in H. lanceolata or H. tetraphylla,

suggesting that these two species should be considered conspecific ecotypes

of H. vulgaris. Analysis using Approximate Bayesian Computation-Random

Forest approach suggests that Hippuris vulgaris originated in China, followed

by dispersal into Russia plus Northeast China, then successively westwards into

Europe and North America, and finally into the Russian Far East from both

North America and Russia plus Northeast China. This study is the first to

elucidate the historical dispersal processes of a circumarctic aquatic plant

across the entirety of its range.
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Introduction

The diversity and distributions of Arctic flora have been

strongly influenced by millennia of expansive climate changes

that led to repeated range contractions, evolution in distinct

refugia, and large-scale dispersal (Abbott and Brochmann,

2003). The present distributions of the Arctic flora, which for

many species are extensive, have therefore been influenced by

their evolutionary histories (Brochmann and Brysting, 2008), the

locations of glacial refugia (Westergaard et al., 2011), and

dispersal patterns (Eidesen et al., 2013). Floristic analyses have

indicated multiple origins of numerous arctic taxa, including in

situ evolution of indigenous elements in the Arctic, range

expansions from adjacent saline coastal and forest habitats,

glacial dispersal across Beringian land bridges, and migration

from high mountain ranges of the Northern Hemisphere

(Hulteıń, 1937; Tolmachev, 1960; Hedberg, 1992; Murray,

1995; Tkach et al., 2014; Maguilla et al., 2018). Thus, recent

phylogeographical studies on multiple arctic species have

revealed diversified patterns of their origins and formations

(Alsos et al., 2005; Schönswetter et al., 2006; Ikeda et al., 2012;

Winkler et al., 2012; Eidesen et al., 2013; Ikeda et al., 2014; Allen

et al., 2015; Wang et al., 2016). However, these studies have

mostly focused on terrestrial herbs, with less attention paid to

aquatic plants. Aquatic plants comprise a significant group

within the arctic flora (Hoffmann et al., 2010). Compared to

terrestrial herbs, aquatic plants live in distinct habitats with

special environmental conditions and thus are expected to have

different evolutionary histories than terrestrial plants (Cook,

1990). Therefore, additional investigations into aquatic plants

will deepen our overall understanding of the evolutionary

histories of Arctic flora.

In this study, we focused on Hippuris vulgaris

(Plantaginaceae), an aquatic plant of circumboreal distribution

with its range extending into high mountains in Eurasia and

North America (Elven et al., 2019). This species is a rhizomatous

perennial that often grows in shallow waters of lakes, ponds and

rivers. Three previous phylogeographical studies on H. vulgaris

were conducted at different geographical scales: the Qinghai-

Tibetan Plateau (Chen et al., 2013), China (Lu et al., 2016), and

China plus a few sites in Europe and Japan (Dai et al., 2021). All

three studies revealed high genetic diversity in the Qinghai-

Tibetan Plateau, and Dai et al. (2021) inferred the Qinghai-

Tibetan Plateau as the likely area of origin for H. vulgaris.

However, because earlier studies did not include samples from

Russia and North America, the question of how H. vulgaris

attained a circumarctic distribution has not yet been resolved.

Range-wide studies of broadly distributed species are relatively

uncommon, and we thus have an incomplete understanding of

how historical dispersal patterns have facilitated the success of

broadly distributed taxa such as aquatic plants with

circumarctic distributions.
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In this study we substantially increased the range of sampled

H. vulgaris in order to test three competing hypotheses: H.

vulgaris originated in China and from there spread either

eastwards, westwards, or both eastwards and westwards, until

achieving its current circumarctic distribution. Our

phylogeographical analysis of H. vulgaris is based on samples

from Eurasia and North America that were genotyped on the

basis of one chloroplast DNA fragment and seven nuclear

microsatellite loci. Samples of two other putative Hippuris

species, H. lanceolata and H. tetraphylla, were also included

because of their taxonomic controversy. We identify these two

species based on leaf morphology, although the plasticity of leaf

forms suggests that these do not reliably identify taxa (McCully

and Dale, 1961); however, this conclusion has been disputed by

others who maintain that H. lanceolata and H. tetraphylla are

distinct from H. vulgaris (Elven et al., 2019). It has also been

suggested that Hippuris lanceolata is a hybrid between H.

vulgaris and H. tetraphylla, based on its intermediate features

(Tzvelev, 1980). Our aims were therefore to (1) reveal the

phylogeographical structure of H. vulgaris and deduce its

original area and dispersal routes, and (2) explore the genetic

relationships amongH. vulgaris,H. lanceolata andH. tetraphylla

in order to add clarity to the taxonomy of Hippuris.
Materials and methods

Plant materials and DNA extraction

A total of 200 samples -157 ofH. vulgaris, 33 ofH. lanceolata

and 10 ofH. tetraphylla - were collected from 200 sites in Eurasia

and North America. Some were collected in the field from 2017

to 2019, whereas others were from earlier collections that had

been preserved on herbarium sheets (Supplementary Table 1).

Samples were assigned to species based on their morphological

characteristics (Supplementary Figure 1). Total genomic DNA

was extracted from silica-dried leaves and herbarium specimens

with the DNA Secure Plant Kit (Tiangen Biotech,

Beijing, China).
Amplification, sequencing and
genotyping

We generated sequence data from the chloroplast DNA

fragment trnH-psbA using primers trnHGUG (Tate and

Simpson, 2003) and psbA (Sang et al., 1997) for all 200

samples (after Shaw et al., 2005). For 105 samples we also

generated data from seven nuclear microsatellite loci (Hpv11,

Hpv22, Hpv27, Hpv30, Hpv37, Hpv67 and Hpv75; Lu et al.,

2016) (Supplementary Table 1). PCR amplifications, sequencing

and genotyping were performed following the methods outlined

in Lu et al. (2016).
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Analyses of cpDNA sequence data

All cpDNA sequences were aligned by MAFFT v7.3.1 (Katoh

and Toh, 2008). Sequences were collapsed into haplotypes using

DnaSP v5.0 (Librado and Rozas, 2009). Sequences of haplotypes

were deposited in GenBank (see Supplementary Table 1 for

accession numbers). The relationships among haplotypes were

analyzed by constructing a network based on a median-joining

algorithm (Bandelt et al., 1999) in NETWORK v4.0 (http://www.

fluxus-engineering.com). The phylogeny of haplotypes was

reconstructed using maximum likelihood (ML) analysis

implemented in GARLI v0.951 (Zwickl, 2006). The

substitution model was identified using the Akaike

information criterion in modelgenerator v.851 (Frech et al.,

1997). One thousand bootstrap replicates were run in GARLI

to estimate the bootstrap support. Bayesian inference (BI)

implemented in MrBayes v3.1.2 (Ronquist et al., 2012) was

also used for phylogenetic reconstruction. Two independent

Markov Chain Monte Carlo (MCMC) analysis runs, with each

including one cold and three hot chains, were conducted

simultaneously beginning with a random tree. One million

generations were run with sampling at every 1000 generations.

Chain convergence was checked using Tracer v1.5 (Rambaut

and Drummond, 2007), and the first 25% of samples were

discarded as burn-in. The congeneric species H. montana, plus

three species in the family Plantaginaceae - Callitriche lenisulca,

Streptocarpus teitensis and Plantago ovata - were included as

outgroups in the phylogenetic analyses.
Analyses of nuclear microsatellite
loci data

Microsatellite loci data were obtained from a subset of 105

individuals, due to the difficulty of PCR amplification from

herbarium materials. Genetic clusters among 105 individuals

(26 H. lanceolata, 7 H. tetraphylla, and 72 H. vulgaris) were

inferred by the software STRUCTURE v2.3.4 (Pritchard et al.,

2000). The number of clusters (K) was set from 1 to 10. Under

the admixture model, ten independent runs were performed for

each K value with 300,000 MCMC iterations and a burn-in

period of 100,000 iterations. The optimal number of clusters was

determined based on the value of DK (Evanno et al., 2005). Prior

to Structure analysis, we used SHEsis software (Shi and He,

2005) to detect linkage disequilibrium among these seven

microsatellite loci to see if they met the prerequisites for

Structure analysis. Principal coordinate analysis (PCoA),

implemented in GenALEx v6.5 (Peakall and Smouse, 2012),

was also used to compare the genetic s imilari t ies

among individuals.

The demographic history of H. vulgaris was inferred based

on nuclear microsatellite loci data using an Approximate

Bayesian Computation-Random Forest (ABC-RF) approach
Frontiers in Plant Science 03
implemented in DIYABC Random Forest v1.0 (Collin et al.,

2021). ABC-RF outperforms other ABC methods by offering a

significant improvement in robustness to the choice of summary

statistics (Raynal et al., 2019). Samples were divided into five

groups for ABC-RF simulation on the basis of their genetic

clusters corresponding to geographical distributions: North

America, Europe, Russia plus Northeast China, Russian Far

East, and China (see Results for details). We modelled 20

possible evolutionary scenarios (Supplementary Figure 2) with

China (scenarios 1-8), North America (scenarios 9-14) and

Europe (scenarios 15-20) each considered a potential area of

origin. Neither Russia plus Northeast China nor Russian Far

East was considered a potential ancestral site because the origin

of ancient arctic plant in either of these areas is considered

unrealistic based on previous studies (Liu et al., 2014; Tkach

et al., 2014; Wang et al., 2016). We performed three ABC-RF

analyses. For the first analysis, these 20 scenarios were analysed

individually. For the second analysis, scenarios were combined

into three groups based on different original areas, with group 1

consisting of scenarios considering China as the original area

(scenarios 1-8), group 2 including scenarios considering North

America as the original area (scenarios 9-14) and group 3

containing scenarios considering Europe as the original area

(scenarios 15-20). To improve the robustness of the first analysis

(see Results), we performed the third analysis only for scenarios

1-8 individually because group 1 was selected as the best fit in the

second analysis (see Results). In all three analyses, 100,000

training datasets were generated for each scenario and the

number of trees in the random forest was set to 1000. The

settings for all prior parameters are listed in Supplementary

Table 2. The posterior probability, as well as the global and local

error rates were used to assess the choice of scenario and the

quality of prediction (Collin et al., 2021). Five independent runs

were performed for each analysis. Population regeneration of H.

vulgaris can be achieved through sexual reproduction and

vegetative propagation. Because existing coalescent simulators

for microsatellite loci data cannot simulate populations with

different recombination rates simultaneously (e.g. Cornuet et al.,

2014; Zhu et al., 2020), the divergence time among groups was

not estimated here.
Results

Chloroplast DNA phylogeography

The length of aligned sequences from 200 individuals was

443bp. The sequences were collapsed into 15 haplotypes: A1-A6,

B1-B6 and C1-C3. These haplotypes were divided into lineage

AC and lineage B, based on the haplotype network (Figure 1A)

and phylogenetic tree (Figure 1B). Lineage AC is further

subdivided into lineage A and lineage C because the phylogeny

identifies lineage C as monophyletic (Figure 1B), and on the
frontiersin.org
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haplotype network lineages A and C form two discrete clusters

(Figure 1A). Haplotype C1 was identified in each of the 10

samples of H. tetraphylla, and haplotypes A1, C1, and C2 were

identified across the 33 samples of H. lanceolata; all of these

haplotypes were also identified in H. vulgaris (Figure 1A,

Supplementary Table 1). Lineage A is distributed in the

northern range of Eurasia: haplotype A1 is widespread and

present at sites in Europe, Russia and China, whereas each of

the other five A haplotypes is restricted to a single site in Russia

or China (Figure 2A). Lineage B occurred in the southern range

of Eurasia. The most common haplotype, B1, was present at sites

in Europe, Russia and China, whereas haplotype B2 occurred at

3 sites in China, and haplotype B3 was found at 9 sites in China,

Russia and Mongolia. Haplotypes B4, B5 and B6 each occurred

at one site in either China or Russia (Figure 2A). Lineage C

comprised three haplotypes, with haplotype C1 widespread in

North America, Northern Europe, and Russian Far East.

Haplotype C2 was found at 8 sites in Canada, and haplotype

C3 was restricted to a single site in the Russian Far

East (Figure 2A).

The ML and BI trees showed the same topology. The 15

haplotypes formed a monophyletic lineage with robust support,
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which divided into two clades: clade B consisted of haplotypes

B1-B6 with robust support, and clade A+C included haplotypes

A1-A6 and C1-C3 (Figure 1B). Furthermore, haplotypes C1-C3

formed a monophyletic lineage with high support nested in clade

A+C (Figure 1B).
Nuclear DNA phylogeography

The results of SHEsis analysis indicated the seven

microsatellite loci were unliked based on the very low values

of r2 (Supplementary Table 3). The STRUCTURE analyses of

microsatellite loci data from 105 individuals suggested that K=2

was the most likely number of genetic clusters, with K=3 as the

second most likely based on the calculation of DK
(Supplementary Figure 3). When K=2, the first cluster

comprised samples from North America, Northeast China,

Europe and Russia, which included individuals with cpDNA

haplotypes from lineages A and C. The second cluster included

samples from China, Europe and Russia (Figure 3A,

Supplementary Figure 4), all of which had cpDNA haplotypes

from lineage B (Supplementary Table 1). Five samples from
A B

FIGURE 1

Network and phylogenetic tree of 15 cpDNA haplotypes of Hippuris vulgaris. (A) Network of genealogical relationships among the 15 cpDNA
haplotypes. The black dots represent missing haplotypes. Three haplotypes, A1, C1 and C2, were also from (H. lanceolata and H. tetraphylla, and
their proportions were indicated by black and grey, respectively. (B) Phylogenetic tree of 15 cpDNA haplotypes inferred using GARLI. Numbers at
nodes are the ML bootstrap values (BS) and Bayesian posterior probabilities (PP) in phylogeny reconstruction. The nodes without numbers
indicate BS < 65 and PP < 0.90.
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China and Russia were admixtures of these two genetic clusters

with a probability ranging from 0.302 to 0.698 (Figure 3A).

When K=3, we defined these three clusters as I, II, and III.

Clusters I + III combined corresponded to the first cluster when

K=2, and cluster II corresponded to the second cluster when K=2

(Figure 3B). Cluster I included samples from Northeast China

and Russia mainly corresponding to haplotype lineage A and

also included 10 samples from Russian Far East with haplotype

C1 or C3. Cluster III included samples from North America and

Europe mainly corresponding to haplotype lineage C and also

included four samples from Europe and Russia with haplotype

A2 (Figures 2, 3; Supplementary Table 1). The genotypes of

neither H. lanceolata nor H. tetraphylla were assigned into

independent genetic clusters (Figures 3A, B; Supplementary

Table 1). Similarly, the PCoA analysis revealed three genetic

groups (Figure 3C), which corresponded to clusters I, II, and III

revealed by STRUCTURE.

Among 20 alternative scenarios of the demographic history

of H. vulgaris, ABC-RF modelling based on microsatellite loci

data indicated scenario 2 was the best supported model, based on

the highest mean classification vote of 263.8 and mean posterior

probability of 0.476, with global and local error rates of 0.746

and 0.524, respectively (Table 1). When the scenarios were

analysed in three groups, group 1, which supports China as

the original area, was selected as the best fit, with mean posterior

probability of 0.698 accompanied by global and local errors of
Frontiers in Plant Science 05
0.342 and 0.302, respectively (Table 1). To improve prediction

quality, we ran the third analysis for scenarios 1-8 in group 1.

Scenario 2 was selected as the best fit again, with mean posterior

probability of 0.551 accompanied by global and local errors of

0.653 and 0.449, respectively (Table 1). For scenario 2, China

was identified as the ancestral area, and the populations spread

from China to Russia plus Northeast China. European

populations descended from Russia and dispersed to North

America. Populations from Russian Far East were derived

from plants that migrated from both North America and

Russia plus Northeast China (Figure 4).
Discussion

Phylogeographical structure

Many arctic plants have distinct lineages and obvious

phylogeographical structures, such as Oxyria digyna (Wang

et al., 2016), Sibbaldia procumbens (Allen et al., 2015),

Saxifraga oppositifolia (Winkler et al., 2012), and Dryas

octopetala (Skrede et al., 2006). Hippuris vulgaris similarly

shows phylogeographic structuring, although with more

widespread haplotypes compared with these terrestrial herbs:

each H. vulgaris lineage included a haplotype (A1, B1 and C1,

respectively) that was broadly distributed throughout Eurasia
A B

FIGURE 2

Distribution of cpDNA haplotypes and nuclear microsatellite clusters in Hippuris vulgaris. Samples of H. lanceolata and H. tetraphylla were
marked with the number 1 and 2, respectively. (A) Distribution of 15 cpDNA haplotypes. (B) Distribution of three nuclear microsatellite clusters
identified using STRUCTURE.
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and/or North America (Figure 2A). Because of the limited life

span of wetlands on geological and evolutionary time scales,

dispersal (chiefly mediated by birds) rather than vicariance has

often been used to explain the broad distribution of aquatic

plants (Barrett et al., 1993; Santamarıá, 2002). High clonality is

another explanation for the broad distribution of aquatic plants

because it reduces the risk of genotype mortality and the genetic

differentiation among populations (Barrett et al., 1993).Hippuris

is common in the diet of waterbirds (Dessborn et al., 2011).
Frontiers in Plant Science 06
Therefore, the same haplotype of H. vulgaris could disperse to

multiple sites mediated by birds and persist there for a long time

by high levels of asexual reproduction.

Chloroplast DNA sequences and nuclear microsatellite data

each identified three genetic lineages of H. vulgaris distributed

across different regions (Figures 2, 3). However, incongruence

between these two molecular markers occurred in 14 samples

from Russian Far East and Europe (Figures 2, 3; Supplementary

Table 1). Both incomplete lineage sorting and hybridization/
A

B

C

FIGURE 3

The genetic clusters of Hippuris vulgaris based on nuclear microsatellite data. (A) The bar plot depicts the STRUCTURE admixture coefficients
for individuals when K = 2. Samples of H. lanceolata and H. tetraphylla were marked with the number 1 and 2, respectively. (B) The bar plot
depicts the STRUCTURE admixture coefficients for individuals when K = 3. Samples of H. lanceolata and H. tetraphylla were marked with the
number 1 and 2, respectively. (C) Principal coordinate analysis performed from pairwise genetic distances among individuals. Individuals were
classified by their geographical origins (left) or chloroplast DNA haplotype lineages (right).
TABLE 1 Results of scenario choice in three DIYABC-RF analyses.

Analysis Global Local Votes scenario: Posterior

error error 1 2 3 4 5 6 7 8 9 10 probability

rate rate 11 12 13 14 15 16 17 18 19 20

20 scenarios 0.746
(0)

0.524
(0.009)

28.2
(6.06)

263.8
(18.78)

31.8
(4.55)

146.2
(8.87)

51
(5.61)

20.6
(3.58)

39.2
(2.86)

50.4
(3.21)

8.6
(2.88)

7.6
(3.58)

0.476 [scen. 2]
(0.009)

4.4
(3.36)

11.2
(4.15)

7.4
(3.51)

87.4
(7.09)

90.6
(4.10)

9.4
(2.79)

94.2
(9.23)

7.6
(0.89)

11.4
(4.34)

29
(4.30)

Three groups 0.342
(0)

0.302
(0.020)

596.4
(14.10)

158.8
(10.69)

244.8
(13.95)

0.698 [group 1]
(0.020)

Eight scenarios
in group 1

0.653
(0)

0.449
(0.021)

45
(3.08)

413.8
(15.02)

39.2
(3.11)

283.6
(13.76)

78
(8.57)

23.8
(2.78)

53.2
(6.98)

63.4
(5.37)

0.551 [scen. 2]
(0.021)
The values are mean values over the five replicates for each of the analyses with standard deviation over the five replicates provided in parentheses for each metric.
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introgression can cause phylogenetic incongruence between

nuclear and plastid DNA (Wendel and Doyle, 1998). In H.

vulgaris, the two atypical combinations of nuclear and plastid

DNA (cluster I/lineage C and cluster III/lineage A, Figure 3C)

most likely arose following inter-lineage hybridization and

subsequent backcrossing which led to cytonuclear discordance,

a phenomenon that has been reported in many plant lineages

(Fehrer et al., 2007; Acosta and Premoli, 2010; Folk et al., 2017;

Liu et al., 2020). Additionally, some individuals in the contact

area of clusters I and II showed evidence of mixed ancestry,

which is also suggestive of inter-lineage hybridization

(Figures 2B, 3B). However, in this case hybridization was

likely more recent because for these hybrids the values of the

admixture coefficients are largely consistent with F1 hybrids

(Figure 3B). Further detailed studies are needed to explore the

hybridization patterns among lineages.

Taxonomic controversy has surrounded H. vulgaris, H.

lanceolata and H. tetraphylla. McCully and Dale (1961)

proposed that their morphological differences reflected

phenotypic plasticity and thus they should be treated as a

single species. Tzvelev (1980) speculated that H. lanceolata is a

hybrid of H. vulgaris and H. tetraphylla due to its intermediate

features. However, Elven et al. (2019) concluded that clear

morphological limits and discontinuities in leaf number and

shape identify them as three different species. Our study revealed
Frontiers in Plant Science 07
no private haplotypes or independent genetic clusters for H.

lanceolata and H. tetraphylla (Figures 1, 2, 3; Supplementary

Table 1) although samples of the two putative species with

typical species morphological characters (Supplementary

Figure 1) were included; these results support the conclusion

of McCully and Dale (1961) thatH. lanceolata andH. tetraphylla

should be merged into H. vulgaris. However, McCully and Dale

(1961) only used North American samples, and our data based

on widespread sampling revealed three genetic lineages of H.

vulgaris with different geographical distributions (Figure 2).

Whether the three lineages merit taxonomic recognitions need

to be determined in future studies that provide data on

morphological variation and from more genetic markers.
Biogeographical history of
Hippuris vulgaris

ABC-RF analysis of nuclear microsatellite data identified

China as the ancestral area for H. vulgaris. The more specific

region is likely the Qinghai-Tibet Plateau (QTP) because

populations in the QTP have higher genetic diversity than

those in Northwest China and Northeast China (Lu et al.,

2016). The QTP origin is characteristic of many arctic plants

(e.g. Guest and Allen, 2014; Li et al., 2014; Allen et al., 2015;
A B

FIGURE 4

The origin and dispersal of Hippuris vulgaris. (A) The best fit model (Scenario 2) of divergence within H. vulgaris analysed by ABC-RF. (B) Most
likely scenario of dispersal routes for H. vulgaris to attain a circumarctic distribution.
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Wang et al., 2016). After originating in China and then

dispersing northwards and westwards into Europe, further

diversification of H. vulgaris likely occurred when Clusters I

and III diverged in Europe, far from the QTP (Figure 2B).

Europe is also identified as a diversification center for some

additional species of arctic plants (e.g. Schönswetter et al., 2003;

Winkler et al., 2012). Our model further suggests that Cluster III

spread into North America, and then moved southwards and

westwards across North America. It is noteworthy that although

scenario 2 was identified as the best model for H. vulgaris, the

large value of the local (posterior) error rate (0.524 or 0.449)

indicates that future investigations based on a larger number of

loci are necessary to give a more reliable answer (Pudlo

et al., 2016).

The speciation and diversification of other arctic plant

species that originated in the QTP (as discussed above)

occurred across multiple geological ages, and were likely

triggered and facilitated by various QTP uplift events between

the early Miocene and the Quaternary (Wen et al., 2014).

Although the divergence time of H. vulgaris lineages could not

be estimated here, fossil records, which include one of Plio-

Pleistocene age from North Greenland (Bennike and Böcher,

1990) and another of middle and upper Pleistocene age from

central England (Kelly, 1968), suggest that lineages diverged in

the Pliocene or earlier. A previous study (Lu et al., 2016) dated

the divergence of lineages A and B to the early Pleistocene (ca.

1.36 Ma) based on an evolutionary rate of chloroplast intergenic

regions calculated from sugarcane, maize and rice (Yamane

et al., 2006). However, the dominance of asexual reproduction

and clonal growth in populations of H. vulgaris mean that its

molecular evolutionary rate is likely far lower than that of

gramineous herbs. Therefore, it is necessary to conduct further

studies to accurately estimate the divergence time of H.

vulgaris lineages.

Dai et al. (2021) similarly concluded that QTP was the likely

origin of H. vulgaris, although their sampling focused largely on

plants from China, with relatively few samples from West

Europe and none from North America, meaning that their

inferences were based on only two cpDNA lineages. By

sampling across a wide range in North America in addition to

Europe and Asia, we were able to identify three cpDNA lineages

compared to the two that Dai et al. (2021) uncovered, which in

turn provided insight into the diversification and spread of H.

vulgaris. Dai et al. (2021) concluded from two lineages that

the most likely historical dispersal route was from Japan

to North American, possibly across the Bering Land Bridge,

and then across the Atlantic Ocean or North Atlantic

Land Bridge to Europe. Conversely, our modelling based on

three lineages suggests that H. vulgaris spread from China

to Russia, then successively westwards to Europe and North

America, and finally from both North America and Russia plus

Northeast China to the Russian Far East. The different
Frontiers in Plant Science 08
conclusions reached by Dai et al. (2021) and this study

illustrate the importance of sampling from throughout the

range when investigating extremely widespread taxa such as

H. vulgaris.

Many aquatic boreal plants have extremely large

geographical distributions, although relatively few have been

studied throughout their range. In this study, we have

demonstrated that comprehensive sampling across multiple

continents is necessary before reconstructing the evolutionary

histories of lineages; once reconstructed, these histories can

provide substantial insights into historical patterns of dispersal

and colonization. Future studies based on samples from

additional species that follow circumarctic distributions could

investigate the potential influences of additional factors such as

life history and reproductive strategies on the historical

diversification and colonization of populations.
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