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Abstract
Epiphytic bacteria develop complex interactions with their host macrophytes and play an important role in the ecological 
processes in freshwater habitats. However, how dominant and rare taxa respond to elevated atmospheric  CO2 remains unclear. 
A manipulated experiment was carried out to explore the effects of elevated  CO2 on the diversity or functional characteristics 
of leaf epiphytic dominant and rare bacteria from a submerged macrophyte. Three levels (high, medium, normal) of dis-
solved inorganic carbon (DIC) were applied to the overlying water. The physicochemical properties of the overlying water 
were measured. Elevated atmospheric  CO2 significantly decreased the pH and dissolved oxygen (DO) of overlying water. 
Proteobacteria, Cyanobacteria, Bacteroidetes, Planctomycetes, and Actinobacteria are the dominant phyla of leaf epiphytic 
bacteria from Myriophyllum spicatum, occupying over 90% of the accumulated relative abundances. The aquatic DIC level 
and further pH significantly drove the epiphytic community composition differences among the three DIC levels. For domi-
nant epiphytic bacteria, the functional potential of nutrient processes and mutualistic relationships were strongly affected 
by a high DIC level, while responses of rare epiphytic bacteria were more related to trace element processes, pathogens, and 
defense strategies under a high DIC level. Our results showed the responses of epiphytic bacteria to elevated  CO2 varied 
across dominant and rare taxa.

Keywords Myriophyllum spicatum · Dissolved inorganic carbon · Epiphytic bacteria · PICRUSt · Multivariate cutoff level 
analysis

Introduction

As the major components of aquatic ecosystems, submerged 
macrophytes serve as primary producers and provide food 
and shelter for fish and zooplankton (Hempel et al. 2009; 
Rejmankova 2011). The vast surfaces offered by densely 
rooted macrophytes become excellent microhabitats for 
attached bacteria, and such surfaces have a positive influ-
ence on bacterial activity due to exuded organic compounds 
(Eriksson 2001). The attached bacteria always form bio-
films on the surfaces of submerged macrophytes, which are 
either beneficial or detrimental to submerged macrophytes. 
For example, epiphytic bacteria can provide carbon dioxide 
through respiration and enhance nutrient recycling (Wet-
zel 1993; Wijewardene et al. 2022). Negative influences on 
macrophytes included light attenuation by the biofilms and 
the assembly of pathogen bacteria (Hempel et al. 2008; Gere 
et al. 2017; Wijewardene et al. 2022). Although the impor-
tant role of leaf epiphytes has been verified, how dominant 
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and rare taxa respond to elevated atmospheric  CO2 remains 
unclear.

Elevated atmospheric  CO2 will possibly influence the dis-
solved inorganic carbon (DIC) concentrations in overlying 
water and further lead to decreased pH or weak acidification 
in some freshwater ecosystems (Yin et al. 2017; Hasler et al. 
2018). Free  CO2 (or  H2CO3),  HCO3

−, and carbonate  (CO3
2−) 

comprised the total inorganic carbon in freshwater systems, 
and the relative proportions of these compounds are depend-
ent on the pH of the overlying water (Maberly and Spence 
1983). Recent studies indicated that the contents of dissolved 
organic carbon (DOC) in the surface water were also sig-
nificantly increased by elevated  CO2 (Guo et al. 2011; Song 
et al. 2014). The labile fraction of the DOC in freshwater 
supports high rates of bacterial metabolism (Nelson et al. 
2011; Pollard 2013). Therefore, enhanced performance of 
submerged macrophytes due to the fertilization effect under 
elevated  CO2 can interact with aquatic chemistry changes 
(Hussner et al. 2019), further regulating the assembly of 
the epiphytic bacteria on the surfaces of macrophytes in the 
aquatic ecosystem.

Microbial communities comprise a large number of spe-
cies, in which a small proportion of these species are highly 
dominant, while a large proportion is present at a lower 
abundance and with an extremely high diversity (Pedrós-
Alió 2012). Dominant species with high growth rates 
account for the majority of bacterial biomass and regulate 
biogeochemical cycling in ecosystems (Cottrell and Kirch-
man 2003; Shu et al. 2018). Rare microorganisms can act 
as a diverse source pool that responds to disturbance events 
and thereby help promote ecological stability (Hanson et al. 
2015; Lynch and Neufeld 2015). In a study of coastal marine 
sediment, changes in bacterial community composition 
were associated with a global increase in  pCO2, but most 
of these bacterial taxa were resilient (Kerfahi et al. 2014). 
Another study of soil microbial community structure under 
elevated  CO2 showed that PLFA (phospholipid fatty acid) 
profiles were not affected by  CO2 enrichment (Ebersberger 
et al. 2004). This is possibly attributed to the negligence of 
different responses by dominant and rare taxa. Therefore, 
distinguishing the responses of dominant and rare taxa will 
shed sufficient light on the changes of epiphytic bacterial 
communities to elevated atmospheric  CO2 and relatively few 
empirical studies have examined such responses in freshwa-
ter submerged macrophytes.

As is known, Myriophyllum spicatum L. is a submerged 
aquatic species with branching leafy shoots and finely dis-
sected whorls of leaves, whose canopy characteristics pro-
vide sufficient space for the epiphytic bacteria (Strand and 
Weisner 2001). Due to the fact that M. spicatum has a low 
requirement for nutrients and can grow on various sedi-
ment types, it is widely distributed in freshwater lakes of 
the Yangtze River Basin (Zhang et al. 2012; Fan et al. 2021), 

including the typical macrophyte-dominated mesotrophic 
Liangzi Lake (Xie et al. 2013; Ma et al. 2021). As other 
macrophytes, M. spicatum is also limited to  CO2 depletion 
and evolves a strategy of  HCO3

− utilization (Hussner and 
Jahns 2015). Taking these into consideration, M. spicatum 
was selected as the host plant species. To illustrate the epi-
phytic microbial response under elevated  CO2, three levels 
of overlying water DIC content were set up in a pot experi-
ment. Using high-throughput sequencing of 16S rRNA 
genes, we aim to reveal the shifts of epiphytic microbial 
compositions and their potential changes in functional pro-
files. Our research questions were (1) whether the epiphytic 
community compositions changed in response to elevated 
 CO2; (2) whether there were differences in the responses 
between dominant and rare taxa to elevated  CO2. Since 
elevated  CO2 would change the pH and dissolved oxygen 
in the overlying water, we hypothesized that elevated  CO2 
would significantly alter the epiphytic community composi-
tions. Furthermore, because of the different adaptive avail-
abilities of dominant and rare bacterial taxa to environmen-
tal changes, we hypothesized that the sensitive responses 
of dominant taxa would be related to nutrient process and 
mutualistic relationships, while sensitive responses of rare 
taxa were more related to trace element processes, patho-
gens, and defense strategies under elevated  CO2.

Methods and materials

Host species and free‑air  CO2 enrichment 
experiment

The free-air  CO2 enrichment (FACE) experiment was car-
ried out at the greenhouse of the College of Life Sciences 
in Wuhan University, Hubei Province, China. The details 
of the pot experiment were described in the previous work 
(Li et al. 2019). M. spicatum is widely distributed in the 
submerged areas and lakeshores of Liangzi Lake (Fig-
ure S1). Thus, plant materials (stem fragments of M. spi-
catum) were collected from Liangzi Lake (30°05′-30°18′ 
N, 114°21′–114°39′ E) in April 2018. As a reference, we 
also collected the overlying water DIC data in Liangzi 
Lake in the same time, and the average DIC content was 
13.71 ± 2.47 mg/L based on the 30 plots from the field inves-
tigation. And the total nitrogen of the overlying water where 
M. spicatum occurred was 0.57 ± 0.091 mg/L and the total 
phosphate was 0.014 ± 0.007 mg/L. Three fragments of M. 
spicatum (3.60 g ± 0.684 g, fresh weight) were cultivated in 
plastic pots (diameter of 30 cm, the height of 25 cm; filled 
with substrates of 7 cm depth), which were placed in the 
experiment tanks (length of 80 cm, width of 40 cm, height 
of 50 cm). Three levels of DIC availability of overlying 
water were applied by continuous bubbling with different 
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concentrations of  CO2: “normal DIC level (N)” without 
bubbling any gas (DIC, 14.75 ± 0.43 mg/L), “medium DIC 
level (M)” with bubbling ambient atmospheric air (DIC, 
16.16 ± 0.17 mg/L), “high DIC level (H)” with bubbling 
atmospheric air enriched with pure  CO2 from a pressurized 
gas cylinder (DIC, 20.99 ± 3.14 mg/L). For each treatment, 
three replicates were selected for the following analyses of 
high-throughput sequencing. The duration of the experiment 
was approximately 4 weeks.

Physicochemical properties of overlying water

The overlying water was sampled every week to determine 
dissolved inorganic carbon (DIC) and total carbon (TC) 
contents by a TOC analyzer (TOC-L analyzer, Shimadzu, 
Japan). Overlying water dissolved oxygen (DO), conductiv-
ity (C), total dissolved solids (TDS), salinity (SAL), and 
pH were determined weekly by the YSI Professional Plus 
handheld multiparameter meter (YSI Inc., USA). The total 
nitrogen (TN) of overlying water was analyzed by a flow 
injection analyzer (QC8500, LACHAT, USA).

Analysis of epiphytic microbial communities

At the end of the FACE experiment, healthy and intact fresh 
leaves of M. spicatum (about 15 cm in length from the apex) 

were selected to characterize the epiphytic microbial com-
munities associated with the surfaces. Leaf samples were 
enclosed individually inside sterilized press-seal bags and 
immediately brought to the lab. The surfaces were rinsed 
with sterilized ultrapure water and then wiped gently with 
sterile cotton swabs (Steinberg et al. 2015). The swab sam-
ples were then stored at − 80 °C in the lab until processing. 
Microbial DNA was extracted from swab samples using the 
PowerSoil DNA kit (MoBio Laboratories, Solana Beach, 
CA) following the manufacturer’s protocols. The purified 
DNA was stored at − 20 °C for downstream analyses.

The forward primer 338F (5′-barcode-ACT CCT ACG 
GGA GGC AGC AG-3′) and the reverse primer 806R (5′-
GGA CTA CHVGGG TWT CTAAT-3′) were used to amplify 
the V3–V4 regions of the bacterial 16S rRNA gene (Dennis 
et al. 2013). PCR protocols were as follows: 95 °C for 3 min, 
followed by 27 cycles at 95 °C for 30 s, 55 °C for 30 s, 72 °C 
for 45 s, and a final extension at 72 °C for 10 min. PCR reac-
tions were performed in a 20 μL mixture containing 4 μL of 
5 × FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL of each 
primer (5 μM), 0.4 μL of FastPfu Polymerase, 0.2 μL BSA, 
and 10 ng of template DNA. The purified amplicons were 
then pooled in equimolar concentrations, and the ampli-
con library was quantified using the QuantiFluorŋ™-ST 
Fluorometer (Promega, USA). The amplicon library com-
bined with the PhiX Control library was loaded on an Illu-
mina MiSeq platform (Majorbio, Shanghai, China), and 

Table 1  General description 
of all, abundant, and rare OTU 
data sets at 97% sequence 
similarity level

OTU number Sequence number ACE Chao Coverage

All OTUs 926 321,759 777.49 ± 52.76 780.16 ± 55.82 0.997 ± 0.001
Abundant OTUs 42 (4.5%) 221,825 (68.94%)
Rare OTUs 708 (78%) 25,947 (8.37%)

Table 2  The contribution 
(contrib) of abundant OTUs 
to average Bray–Curtis 
dissimilarity between epiphytic 
communities of M. spicatum 
from high DIC and normal DIC 
level

OTU ID Contrib Taxon High DIC Normal DIC

OTU361 0.0472 Proteobacteria; Acetobacteraceae 2472.33 ± 1295.2 90.33 ± 42.34
OTU299 0.0081 Proteobacteria; Acetobacteraceae 442 ± 254.14 34.67 ± 10.6
OTU334 0.0291 Proteobacteria; Bradyrhizobiaceae 2401.67 ± 256.86 939.67 ± 516.06
OTU337 0.0055 Proteobacteria; Caulobacteraceae 362 ± 191.49 86 ± 19.7
OTU919 0.0104 Proteobacteria; Rhizobiaceae 547.67 ± 192.38 23 ± 17.78
OTU636 0.0087 Proteobacteria; Rhizobiaceae 546 ± 148.52 106.67 ± 46.92
OTU340 0.0068 Proteobacteria; Sphingomonadaceae 380 ± 214.57 39 ± 20.66
OTU485 0.0056 Proteobacteria; Methylophilaceae 330.67 ± 25.01 46.33 ± 19.66
OTU461 0.0380 Proteobacteria; Methylophilaceae 1973 ± 798.2 48 ± 36.51
OTU75 0.0237 Cyanobacteria 1380 ± 343.04 185.67 ± 241.94
OTU643 0.0155 Proteobacteria; Acetobacteraceae 114 ± 17.69 898.33 ± 379.52
OTU674 0.0054 Proteobacteria; Acetobacteraceae 99.67 ± 15.37 374.67 ± 118.95
OTU815 0.0125 Proteobacteria; Erythrobacteraceae 755 ± 406.59 1366.33 ± 182.53
OTU822 0.0176 Proteobacteria; Sphingomonadaceae 1578 ± 303.23 2437 ± 873.97
OTU74 0.0044 Cyanobacteria 186 ± 109 408.67 ± 18.72
OTU638 0.0158 Planctomycetes; Phycisphaeraceae 414 ± 277.57 1174.67 ± 551.44
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sequencing was performed using a 2 × 300 paired-end (PE) 
configuration (Wu et al. 2015; You et al. 2016).

The paired-end reads were extracted from each sample 
according to the barcode sequence, and all reads with a con-
siderable proportion of either poor quality bases (low-quality 
score, ambiguous bases, or homopolymer) or mismatches in 

primers or barcodes must be removed (Schloss et al. 2011; 
Li et al. 2014). After quality trimming, paired-end reads of 
sufficient length (a minimum of 10 base overlap between 
forward and reverse reads) were merged into full-length 
sequences by FLASH v1.2.5 (Magoč and Salzberg 2011). 
Potential chimera sequences were identified and removed 

Table 3  The contribution 
(contrib) of rare OTUs at genus 
level to average Bray–Curtis 
dissimilarity between epiphytic 
communities of M. spicatum 
from high DIC and normal DIC 
level

Note: because of the great high diversity of the rare bacteria, the analyses were performed at the genus 
level

Genus Contrib Taxon High DIC Normal DIC

norank 0.0248 Gemmatimonadetes 13 ± 6.08 275.67 ± 176.32
OM27_clade 0.0109 Proteobacteria; Bdellovibrionaceae 25 ± 35.59 137.33 ± 43.25
Hyphomonas 0.0147 Proteobacteria; Hyphomonadaceae 68 ± 11.36 225 ± 115.57
Unclassified 0.0195 Proteobacteria; Rhodospirillaceae 4.67 ± 0.58 198 ± 162.73
Silanimonas 0.0093 Proteobacteria; Xanthomonadaceae 10.33 ± 3.06 108.33 ± 37.63
norank 0.0195 Proteobacteria 13.67 ± 11.59 222.33 ± 136.05
Geitlerinema 0.0104 Cyanobacteria 25.33 ± 13.32 131.67 ± 21.73
Ideonella 0.0174 Proteobacteria; Comamonadaceae 192.33 ± 167.85 11 ± 5.2
Blastomonas 0.0082 Proteobacteria; Sphingomonadaceae 104.67 ± 38.03 21 ± 8.19
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based on a prediction by UCHIME (USEARCH v9.2) using 
the reference database mode. The clean sequences were 
clustered into operational taxonomic units (OTUs) using 
UCLUST (USEARCH v9.2) at a 97% similarity level. The 
taxonomy assignment of OTUs was performed using RDP 
Release 11 for bacteria16S rRNA genes as a reference data-
base source. The chloroplast and mitochondria from the host 
plant were checked and excluded by filtering the sequences 
from the OTU table.

Definition of dominant and rare taxa

Multivariate cutoff level analysis was used for the definition 
of dominant and rare OTUs (Gobet et al. 2010; Liu et al. 
2015). The data set was sorted according to the decreas-
ing total sum of OTU sequences. A series of cutoff levels 
are assigned to the original data set according to several 
percentages of the total number of sequences in the data set 
(0, 1, 5–95, and 99%). Pairwise distance matrices were cal-
culated using the Bray–Curtis dissimilarity index and then 
the resulting dissimilarity matrices were compared with one 

another using the nonparametric Spearman rho correlation 
coefficient. Variations in the main axes of extracted varia-
tion in community structure were explored via nonmetric 
multidimensional scaling (NMDS), and then the Procrustes 
method was then used to compare the NMDS ordination 
results. The OTUs that had a mean relative abundance 
of > 0.15% were defined as regionally dominant OTUs (4.5% 
cutoff, Figure S2), whereas the OTUs with a mean relative 
abundance of < 0.0195% were defined as regionally rare 
OTUs (78% cutoff, Figure S3).

In total, 42 (4.5%) OTUs with 221,825 sequences were 
considered dominant taxa, while 708 (78%) OTUs with 
25,947 sequences were classified as rare taxa (Table 1). The 
richness (OTU number) of rare taxa was six times greater 
than that of dominant taxa, but the abundance of rare OTUs 
was about one-twentieth of the dominant one. In addition, 
dominant taxa mainly came from Proteobacteria (25 OTUs) 
and Cyanobacteria (11 OTUs), while rare taxa distributed 
more evenly, mainly coming from Acidobacteria (22 OTUs), 
Actinobacteria (40 OTUs), Bacteroidetes (86 OTUs), Chlor-
oflexi (58 OTUs), Cyanobacteria (65 OTUs), Proteobacteria 
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(302 OTUs), and Verrucomicrobia (22 OTUs) (Table S1). 
SIMPER analysis was used to identify dominant and rare 
OTUs contributing to the average Bray–Curtis dissimilarity 
in community compositions among three DIC levels with 
the function “simper” in the “vegan” package. The dominant 
and rare OTUs with higher contribution values were used 
for sample discrimination (Lin et al. 2012). Further filtering 
processes were applied to get rid of OTUs that did not occur 
in all samples. At last, we selected dominant and rare OTUs 
that showed a significant difference in abundance between 
high and normal DIC levels to reveal the different responses 
of dominant and rare bacteria to elevated  CO2 (Table 2, 3).

Statistics

One-way ANOVA was used to determine the effect of DIC 
levels on TC, TN, DO, C, TDS, SAL, and pH of the over-
lying water. Variance homogeneity was tested using Lev-
ene’s test, and data were log-transformed if necessary. LSD 
post hoc tests were used to identify significant differences 
between different DIC levels at the 5% significance level.

Abundance-based coverage estimator (ACE), Chao, and 
diversity indices (Shannon–Wiener diversity, Simpson diver-
sity) based on the OTU table were estimated in the “vegan” 
package. One-way analysis of variance was performed to 
explore the effect of DIC levels on alpha diversity indices. 
The Pearson correlations between abundances of bacterial 
taxa and overlying water properties were evaluated with 
the function “corr.test” in the package “psych.” The phy-
logenetic tree of dominant taxa (occurred in all samples) 
was constructed using the neighbor-joining method with 
the function “ggtree.” A redundancy analysis (RDA) was 
performed to investigate the relationships between bacterial 
communities and environmental factors with the function 
“rda” in the “vegan” package. Permutational multivariate 
analysis of variance (MANOVA) was then performed to 
test the effects of overlying water DIC levels on the Hell-
inger-transformed bacterial community compositions with 
the function “adonis” in the “vegan” package. The above 
multivariate analyses were performed at three levels: all 
OTUs, dominant, and rare OTUs. The functional profiles 
of microbial communities were predicted using PICRUSt 
(Phylogenetic Investigation of Communities by Reconstruc-
tion of Unobserved States) according to the online protocol 

(Langille et al. 2013; Ortiz-Estrada et al. 2019). The pre-
dicted table of individual enzyme functions abundance was 
obtained. One-way ANOVA was performed to test the effect 
of different DIC levels on the predicted enzyme abundances 
in each sample. All statistical analyses and plots were per-
formed in R (version 3.5.1).

Results and discussions

Physicochemical properties of overlying water

The physicochemical properties of the overlying water were 
significantly affected by the elevated atmospheric  CO2 con-
centration (Table S2). One major consequence of elevated 
atmospheric  CO2 concentrations is an increase in C avail-
ability in aquatic ecosystems (Olesen and Madsen 2000). 
As exhibited, there was a significant difference in the total 
C among three DIC levels (p value = 0.034), while the total 
N exhibited no such difference (Table S2, Fig. 1A, B). Sig-
nificant differences in DO (p value < 0.001) and conductiv-
ity (p value = 0.038) were observed among three DIC lev-
els (Table S2, Fig. 1C, D). Concentrations of DO possibly 
depend on gas exchange processes at a small scale (Hanson 
et al. 2006). The gas bubbling under high or medium DIC 
treatments possibly led to the decreased DO content in the 
overlying water. The salinity in overlying water differed 
among three DIC levels at the p value < 0.1 level (Table S2, 
Fig. 1E), which confirmed the fact that the salinity in overly-
ing water was always correlated with conductivity (Roos and 
Pieterse 1995), The increased overlying water conductivity 
and salinity under increased DIC levels was possibly attrib-
uted to the decreased pH, which strongly influences nutrient 
availability and the solubility of metals (Rousk et al. 2009).

Overlying water pH decrease is another major conse-
quence of elevated atmospheric  CO2. Accumulated free  CO2 
under elevated  CO2 possibly changes the equilibria between 
various inorganic carbon species (free  CO2,  HCO3

−, and car-
bonate) in the overlying water (Maberly and Spence 1983). 
The addition of  CO2 to overlying water possibly results in 
the production of carbonic acid and the accumulation of 
 H+, further reducing the water pH. Therefore, elevated  CO2 
always leads to “freshwater acidification” in aquatic eco-
systems, while the extent of the acidification is not com-
parable to acidification in oceans (Reitsema et al. 2018). 
While in systems with a great buffering capacity, such as a 
high density of macrophytes, the accumulated  CO2 would 
be consumed quickly by the primary producer and not lead 
to acidification of the water body (Hasler et al. 2016). So, 
the occurrence of a high density of macrophytes probably 
enhances the resistance of the freshwater ecosystem to ele-
vated  CO2 in the future.

Fig. 3  Taxonomic information of dominant epiphytic bacterial taxa 
occurred in all samples (A), and the phylogenetic tree was con-
structed using the neighbor-joining method. The Shannon and Simp-
son diversity among the three DIC levels (B), and the different low-
ercase letters showed significant differences. The correlation between 
the dominant epiphytic bacterial taxa and overlying water properties 
(C). Total_C, total carbon content; Total_N, total nitrogen; DO, dis-
solved oxygen

◂
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Epiphytic microbial community compositions 
under elevated  CO2

We recovered 321,759 high-quality sequences, which 
clustered into 926 OTUs at a 97% sequence similarity 
level (Table 1). The number of OTUs estimated by Chao1 
(780.16 ± 55.82) was similar to the estimator of the ACE 
index (777.49 ± 52.76), and the mean of Good’s coverage 
of all samples was 99.7% (Table 1). The phyla of Proteo-
bacteria, Cyanobacteria, Bacteroidetes, Planctomycetes, and 
Actinobacteria occupied a large proportion of each sample, 
with an accumulative relative abundance ranging from 90.36 
to 97.99% (Fig. 2, Table S3, Fig. 3A). The dominance of 
these bacterial phyla on the plant surfaces also occurred in 
previous studies (He et al. 2014; Hassenrück et al. 2015). 
The high DIC level in the overlying water caused by elevated 
 CO2 significantly reduced the Shannon diversity of epiphytic 
bacteria (Fig. 3B). We further examined the correlations of 
dominant bacterial taxa with overlying water properties. 
Several abundant bacterial taxa showed significant relation-
ships with overlying water total carbon content, pH, DO, 

conductivity, and salinity (Fig. 3C). This result possibly 
indicated that only a part of bacteria taxa had adapted to the 
lower pH level caused by elevated  CO2. This contrasted to 
a previous study that sediment microbes quickly adapted to 
the elevated  CO2 environment (Li et al. 2019).

The compositions of leaf epiphytic bacterial commu-
nities were significantly altered by increased atmospheric 
 CO2. The results of MANOVA showed significant effects 
of elevated  CO2 on the epiphytic, dominant, and rare bacte-
rial community compositions (Fig. 4). All the constrained 
axes in each of the RDA models explained great proportions 
of the total variations in the communities’ dissimilarities 
(Fig. 4). This is possibly attributed to the niche-based mech-
anism. Greater environmental differences represent more 
available niche space to be colonized by specific microbes 
and thereby lead to stronger environmental filtering (He 
et al. 2014; Kerfahi et al. 2014; Cox et al. 2015). Elevated 
 CO2 significantly altered the overlying water properties 
(especially pH), led to a divergent species assemblage, and 
formed different bacterial communities on the leaf surfaces 
(Fig. 4). The composition changes under different DIC levels 
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Fig. 4  Ordination diagram of redundancy analysis (the first two axes) based on the dominant subcommunities (A), rare subcommunities (B), or 
the whole epiphytic bacterial communities (C) with environmental factors
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were similar to a previous study that found bacterial epi-
phytes formed distinct communities at the  CO2-impacted 
site compared with the control site (Hassenrück et al. 2015), 
and a previous study that found epiphyte communities of a 
tropical seagrass meadow showed a decline in the abundance 
of coralline algae and increases in filamentous algae under 
elevated aquatic  CO2 (Campbell and Fourqurean 2014). 
Though we did not collect microbial data in the overlying 
water, there is evidence that epiphytic microbes on the plant 
surfaces are possibly recruited from the surrounding envi-
ronment, and both the environment and the host plant have 
the capability to modulate the recruitment process (Burke 
et al. 2011; Mancuso et al. 2016; Roth-Schulze et al. 2018). 
This selective power of the host plant may be closely asso-
ciated with the surface properties of the host plant and its 
exudates (Bringel and Couée 2015; Remus-Emsermann and 
Schlechter 2018).

Meanwhile, there existed a negative influence of elevated 
 CO2 on epiphytic bacteria. In our study, we observed a 
decrease in the Shannon diversity of an epiphytic bacterial 
community (high DIC level, 3.94 ± 0.26; normal DIC level, 
4.62 ± 0.13). This is similar to a study of Posidonia oce-
anica, a significant decline in epiphytic cover was observed 
under ocean acidification (Cox et al. 2015). Further, the PIC-
RUSt result showed that the abundance of predicted catalase 
was significantly increased by elevated  CO2 (Figure S4). As 
is known, the potential of enhanced catalase indicates a com-
munity response to exogenous stress (Chabot et al. 2020). 
Catalases are enzymes that use  H2O2 as an electron acceptor 
and that manage oxidative stress caused by reactive oxygen 
species (Sinsabaugh 2010). For example, catalase activity 
was enhanced under the stress of saline-alkali soil (Zhang 
et al. 2016). In total, excessive  CO2 represents an unwanted 
waste product of metabolism and exerts negative influences 
(Fenner et al. 2007).

Responses of dominant and rare taxa to elevated 
 CO2

Generally, dominant and rare bacterial taxa respond to 
elevated  CO2 differently. The responses of dominant taxa 
to elevated  CO2 were mainly related to nutrient processes 
and mutualistic relationships. Responses of dominant taxa 
to elevated  CO2 varied across families and within one family, 
for example, the OTUs from Rhizobiaceae or Acetobacte-
raceae (Table 2). High DIC levels increased the abundance 
of OTU334 which is a species of Bosea (Bradyrhizobiaceae) 
with the capability of denitrification (de Souza et al. 2014). 
The species in Caulobacteraceae can exude alkaline phos-
phatase and better survive in oligotrophic aquatic habitats. 
In a previous study, the bacteria of Caulobacter is one of 
the primary microbial colonizers in the reformation process 
of a temporary river (Fazi et al. 2008). The abundances of 

OTUs in Rhizobiaceae, characterized by their ability to 
develop biological nitrogen fixation (Carareto Alves et al. 
2014), were upregulated under high DIC levels (Table 2). 
The effects of aquatic DIC levels on species in Sphingomon-
adaceae varied, with an increased abundance of OTU340 
and a decreased abundance of OTU822 under high DIC lev-
els (Table 2). Species in Sphingomonadaceae are important 
members of the freshwater planktonic bacterial community, 
most of which are chemoorganotrophic. And several genera 
are facultative photoheterotrophic owing to the bacteriochlo-
rophyll a content, such as Blastomonas, Sandaracinobacter, 
and Sandarakinorhabdus (Glaeser and Kämpfer 2014). The 
abundances of two OTUs in Methylophilaceae were upregu-
lated under high DIC levels (OTU485, OTU461, Table 2), 
possessing the ability to utilize the C1 compound. Methy-
lobacteria in this family can consume methanol released by 
plants into the environment through leaf stomata, with a pro-
duction of bioactive substances (Fedorov et al. 2011). Such 
changes implied that elevated atmospheric  CO2 strongly 
affected the nutrient potential of dominant epiphytic bacteria 
and their mutualistic relationship with their host.

Elevated atmospheric  CO2 downregulated the abundances 
of most rare species (genus level), except for the genera of 
Ideonella and Blastomonas (Table 3). This is possibly true 
because rare species are more vulnerable to being lost from 
ecosystems under climate change because of their low com-
petitive ability (Pedrós-Alió 2012). Members of the fam-
ily Comamonadaceae are free-living or plant associated, in 
which quite a number of species inhabit more oligotrophic 
freshwater habitats (Willems 2014). Members of Blasto-
monas contain bacteriochlorophyll a and are aerobic anox-
ygenic phototrophic bacteria (Glaeser and Kämpfer 2014). 
Members of Hydrogenophilaceae regulate the process of 
sulfide turnover in aquatic habitats (Willems 2014). The 
Bdellovibrionaceae are predatory bacteria that prey upon a 
variety of Gram-negative bacteria (Pineiro et al. 2004). Sev-
eral genera of Xanthomonadaceae are categorized as gen-
eralist hydrocarbon-degraders based on their ability to also 
utilize various carbon substrates as a sole source of carbon 
and energy (Gutierrez 2019), and several genera are plant 
pathogens. In total, the response of rare epiphytic bacteria 
was more related to trace element processes, pathogens, and 
defense strategies under high DIC levels (Hol et al. 2010; 
Lynch and Neufeld 2015).

Conclusions

The presented study showed an obvious shift in the leaf epi-
phytic microbial community composition of M. spicatum 
under elevated  CO2. The responses of epiphytic bacteria to 
elevated  CO2 varied across dominant and rare taxa. For dom-
inant epiphytic bacteria, the functional potential of nutrient 
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processes and mutual relationships were strongly affected by 
high DIC levels, while responses of rare epiphytic bacteria 
were more related to trace element processes, pathogens, 
and defense strategies under a high DIC level. The func-
tional potential changes of leaf epiphytes under elevated 
 CO2 imply that submerged macrophytes can alternatively 
assimilate nitrogen and phosphate through the leaves from 
the water column and facilitatively enhance the fitness of 
their host plant. This exhibited a disparate pattern com-
pared with their terrestrial counterparts, where terrestrial 
leaf epiphytes constantly need to cope with a combination 
of stresses, such as ultraviolet radiation exposure, low water 
and nutrient availability, and high-temperature fluctuations 
(Remus-Emsermann and Schlechter 2018).
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