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Abstract: Biomass of seedlings at different 
developing stages of growth is important information 
for studying the response of species to site conditions. 
The objectives of this study was to explore the 
distribution characteristics of AGB (above-ground 
biomass) and BGB (below-ground biomass) of Abies 
georgei var. smithii seedlings of different ages, and 
investigate the effects of topography (slope aspect, 
altitude), plant community characteristics 
(crown density, species diversity, etc.), and soil 
properties (soil physical and chemical properties) on 
the biomass and its allocation. Seedlings in five age 
classes (1–2, 3–4, 5–6, 7–8, and 9–10 years old) were 
collected by full excavation from 6 elevations (3800 m, 
3900 m, 4000 m, 4100 m, 4200 m, 4300 m) on the 
north and south slopes of Sejila Mountain in Tibet. 15 
seedlings of each age class were investigated at one 
altitude. The individual effects of seedling age (SA) 
and the interaction effects of SA, slope aspect (SL), 

and elevation (EG), namely, SL×EG, SL×SA, EG×SA, 
and SL×EG×SA, had significant effects on the AGB of 
the seedlings (p<0.05), whereas BGB was only 
significantly affected by SA (p<0.001). The AGB and 
BGB of the seedlings showed a binomial growth trend 
with the increase in seedling age, and had an 
allometric relationship at different elevations, α 
(allometric exponential) varied from 0.913 to 1.046 in 
the northern slope, and from 1.004 to 1.268 in the 
southern slope. The biomass of seedlings on the 
northern slope was remarkably affected by stand 
factors, with a contribution rate of 47.8%, whereas 
that on the southern slope was considerably affected 
by soil factors with a contribution rate of 53.2%. The 
results showed that age was the most important factor 
affecting seedling biomass. The allometric pattern of 
seedling biomass was relatively stable, but in a high-
altitude habitat, A. georgei var. smithii seedlings 
increased the input of BGB. Understanding seedling 
biomass allocation and its influencing factors is useful 
for evaluating plants' ability to acquire resources and 
survival strategies for adaptation to the environment 
in Tibet Plateau. 
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1    Introduction  

Seedling stage is a critical period in the life cycle 
of tree species (Comita et al. 2010), during which 
biomass allocation pattern determines the 
photosynthetic efficiency and planting cost of 
seedlings (Ding et al. 2016). According to optimal 
allocation theory, plants will preferentially allocate 
more biomass to tissues with limited resources 
(Gargaglione et al. 2010), which means that plants 
will allocate more biomass to leaves and branches if 
light becomes more limited, and plants will allocate 
more biomass to roots if water or nutrients become 
limited (Mokany et al. 2006; Ryser and Eek 2000). 
Biomass allocation patterns may affect the carbon 
storage of developing seedlings through the 
transformation of photosynthetic "source" to 
respiratory "sink" in plants (Modrzyński et al. 2015). 
Although biomass allocation has been studied deeply 
in tree species (Parresol 2001; Bi et al. 2004; Peichl 
and Arain 2007; Gargaglione et al. 2010), the patterns 
of plant biomass allocation under competitive stress 
are not consistent among different tree species(Xue et 
al. 2010; Konôpka et al. 2020; Konôpka et al. 2021; 
Wertz et al. 2020).The survival mechanism of 
different plant seedlings to adapt to high-altitude 
resource-deficient habitat through biomass allocation 
is still not full understood.  

Different biomass components have different 
functions, especially in photosynthetic uptake of 
carbon. Peng et al. (2019) reported that the 
degradation of alpine grassland on the Qinghai-Tibet 
Plateau resulted in the increase of belowground 
biomass and the decrease of aboveground biomass. 
Biomass allocation patterns not only play an 
important role in resource acquisition and survival 
competition (Hermans et al. 2006; Poorter et al. 
2012), but also been used to assess plant responses to 
environmental changes (Peng et al. 2019; Sun et al. 
2017). Nie et al. (2019) found that soil properties, 
topography, and landform affected the understory 
biomass of subtropical hilly pine forest. Zhang et al. 
(2016) found stand characteristics and environmental 
factors significantly affected forest biomass and root 
cap allocation in Southwest China. Xiang et al. (2020) 

reported the biomass allocation and allometric growth 
equation of Cunninghamia lanceolata were affected 
by stand age. Stand age affects tree size, shape, 
biomass allocation, and consequently allometric 
relationships (Peichl and Arain 2007). As stands 
develop, there are considerable changes in micro-site 
conditions (e.g. such as light and soil nutrients) and 
the interactions among individual trees to acquire 
available resources. Accordingly, tree shape (taper), 
crown structure and root systems vary with stand age 
so that allometric relationships between tree biomass 
components and dimensional variables differ greatly 
(Peichl and Arain 2007; Fatemi et al. 2011). Therefore, 
when developing allometric equations for tree 
biomass components, the effects of stand age should 
be taken into account to minimize the bias. 

Abies georgei var. smithii is the dominant species 
of the natural dark coniferous forest in Sejila 
Mountain in Southeast Tibet and has important 
ecological functions, such as water and soil 
conservation, and serves as an ecological security 
barrier in the Qinghai–Tibet Plateau. However, 
natural regeneration is difficult because of the 
degradation of forest ecological environment. The 
natural distribution area of A. georgei var. smithii 
shrunk, and the population number decreased (Wang 
et al. 2014; Liang et al. 2010). The seedling stage is 
crucial for forest’s regeneration, survival and 
performance at this stage will affect the composition, 
structure, and function of forest ecosystems in the 
future (Modrzyński et al. 2015). Biomass allocation 
patterns reflect the different ecological strategies of 
plants (Weiner 2004), which reflect the investment of 
photosynthates in different parts of plants to adapt to 
environmental conditions (Niklas 2006; Poorter and 
Sack 2012). There are few comprehensive studies on 
the effects of environmental factors (topographic 
factors, stand characteristics, soil properties, etc.) to 
the biomass allocation of A. georgei var. smithii 
seedlings in Southeast Tibet. Therefore, we studied 
biomass and its allocation of A. georgei var. smithii 
seedlings typically to answer three main questions: (i) 
how is the distribution characteristics of AGB (above-
ground biomass) and BGB (below-ground biomass) of 
A. georgei var. smithii seedlings in different slopes, 
elevations, and seedling ages? (ii) Does the biomass of 
A. georgei var. smithii seedlings followed an 
allometric pattern in alpine ecosystem? (iii) how does 
topographic, stand characteristics, and soil properties 
affect biomass of A . georgei var. smithii seedlings in 
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subalpine high-altitude habitats? 

2    Materials and Methods 

2.1 Study area 

The study site is located in Sejila Mountain 
(93°12′–95°35′ E, 29°10′–30°15′ N) in Nyingchi City, 
Tibet Autonomous Region, China (Fig. 1). Sejila 
Mountain is close to the branch of the Yarlung Zangbo 
River (Niyang River basin) with an altitude of 2100–
5300 m, and is a part of the Nyenqing Tanggula 
Mountains (Zhou et al. 2015). This region is 
characterized by typical warm temperate and 
temperate mountain climates with distinct dry and 
wet seasons. The annual temperature amplitude 
ranges from −13.98℃  to 9.23℃ , and the annual 
average temperature is −0.73℃ (Wang et al. 2019). 
Most of the rainfall occurs from June to September, 
and the precipitation can exceed 1000 mm and 
accounts for 80% of the total annual precipitation. 
The frostless period is as long as 6 months, the total 

sunshine duration is as long as 1151 h, and the 
humidity is between 60% and 80% (Duan et al. 2020). 
The main forest vegetation types in Sejila Mountain 
are natural dark coniferous forests, with A. georgei 
var. smithii as the constructive species, as well as 
Picea likiangensis var. linzhiensis, mixed with 
Sabina saltuaria. Fir is the dominant tree species in 
the treeline community on shady and sunny slopes 
(Guo and Zhang 2015). 

2.2 Sampling design 

In July 2020, 12 large sample plots (100 m×100 
m) were set at 100 m intervals within an altitude 
range of 3,800–4,400 m (Fig. 1). There were two 
series set in the northern and southern slopes of Sejila 
Mountain, respectively. Three 25 m × 25 m quadrats 
were set in each 100 m × 100 m plot, and each plot 
was not connected at different elevations. The basic 
information of the sampling plot is shown in Table 1. 
At each 25 m × 25 m quadrat, four 5 m × 5 m shrub 
survey quadrats and four 1 m × 1 m herb survey 
quadrats were set up to investigate the plant species, 

Fig. 1 Location of 12 sampling sites in Sejila Mountain. 
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average height, coverage, and other information of 
shrubs and herbs in each quadrat. (Table 1), and the 
species diversity index was calculated (Table 2). In 
each 25 m×25 m quadrats, the longest branch lengths 
of the arbor layer (diameter at breast height ≥ 5cm) 
were recorded. Crown width was calculated by the 
following formula: Crown width = (longest branch 
length from east to west × longest branch length from 
north to south)/2. Then, crown density (CD) was 
calculated as crown width divided by quadrats area 
(Wu et al. 2021). Herb coverage (HC) was the ratio of 
the vertical projected area of the aerial parts of herbs 
to the ground (Li et al. 2000). 

A full excavation method (Willimas et al. 2019) 
was used to collect seedlings in every 25 m × 25 m 
quadrat. The Seedlings were divided into five age 
classes: 1–2, 3–4, 5–6, 7–8, and 9–10 years old. 
Seedlings were collected under unshaded conditions, 
and five plants of each age class were collected from 
each sample quadrat. Seedling age was determined by 

branch color, floral, and bud scale markers (Duarte et 
al. 1999; Deng et al. 2018). Whole seedlings were dug 
out and marked. During the excavation of older 
seedlings, tools such as scrapers and brushes, were 
used to gently tap the roots along the lateral root 
extension until the root ends were obtained. This 
method can avoid the measurement error caused by 
other plant root interference and root damage. 

At the same time of root collection, soil near 
seedling roots was also collected, and three soil 
samples (100–300 g) were collected from each 25 m × 
25 m quadrat (a total of 108 soil samples). The soil 
profile near the seedling root was dug, and three 
samples of 0–20 cm of undisturbed soil were 
collected with cutting ring (100 cm3) from each 
quadrat (a total of 108 cutting ring samples). 

2.3 Biomass measurements 

The collected seedlings were divided into above- 

Table 1 Basic information of the sampling plots in Sejila Mountain in Tibet.

Alt. 
(m) 

Northern slope Southern slope 

Long. 
(°E) 

Lat. 
(°N) 

Average 
coverage 

Average 
crown 
density 

Litter 
thickness 
(cm) 

Long. 
(°E) 

Lat. 
(°N) 

Average 
coverage 

Average 
crown 
density 

Litter 
thickness 
(cm) 

3800 94.7111 29.6471 0.87±0.02 0.67±0.05 12.00±2.65 94.7212 29.6432 0.91±0.03 0.61±0.02 9.00±1.00
3900 94.7111 29.6490 0.66±0.04 0.52±0.03 9.00±1.73 94.7142 29.6413 0.78±0.02 0.67±0.02 13.00±4.00
4000 94.7120 29.6516 0.87±0.04 0.46±0.04 14.33±3.21 94.7105 29.6403 0.95±0.02 0.51±0.02 19.33±4.51
4100 94.7102 29.6527 0.86±0.04 0.61±0.03 10.33±2.52 94.7090 29.6385 0.87±0.02 0.45±0.04 15.33±2.52
4200 94.7081 29.6525 0.78±0.04 0.49±0.03 6.33±1.53 94.7074 29.6369 0.93±0.03 0.65±0.04 14.67±2.08
4300 94.7062 29.6529 0.69±0.04 0.46±0.02 14.67±3.06 94.7071 29.6346 0.71±0.03 0.41±0.02 17.67±4.51

Notes: Mean±Standard deviation (SD). Alt., Altitude; Long., Longitude; Lat., Latitude. 
 
Table 2 Species diversity indices at different elevations on the northern and southern slopes of Sejila Mountain in 
Tibet 

Alt. (m) 
Species diversity on the northern slope
SG SS SSW SP HG HS HSW HP 

3800 3.33±0.58 0.55±0.10 0.94±0.21 0.78±0.11 5.00±1.00 0.58±0.12 1.13±0.28 0.70±0.10
3900 3.33±1.53 0.53±0.19 0.94±0.46 0.83±0.16 2.67±1.15 0.35±0.30 0.64±0.54 0.61±0.27 
4000 5.00±1.00 0.13±0.05 0.34±0.11 0.21±0.05 4.67±0.58 0.59±0.20 1.15±0.37 0.76±0.25 
4100 5.33±1.53 0.77±0.05 1.56±0.24 0.95±0.04 5.00±1.73 0.61±0.02 1.1±0.09 0.71±0.10 
4200 2.00±0.00 0.40±0.14 0.59±0.15 0.84±0.22 1.33±0.58 0.13±0.22 0.19±0.32 0.27±0.47 
4300 1 0 0 0 1 0 0 0 

Alt (m) 
Species diversity on the southern slope
SG SS SSW SP HG HS HSW HP 

3800 4.33±0.58 0.65±0.09 1.23±0.15 0.85±0.12 12.00±2.00 0.81±0.03 1.95±0.18 0.79±0.05
3900 5.33±2.31 0.70±0.14 1.44±0.48 0.88±0.09 6.33±1.53 0.61±0.14 1.23±0.30 0.68±0.17 
4000 5.67±1.15 0.71±0.16 1.49±0.37 0.86±0.16 12.00±2.00 0.70±0.04 1.60±0.16 0.65±0.08
4100 4.00±0.00 0.64±0.09 1.20±0.24 0.87±0.17 7.00±1.73 0.76±0.04 1.57±0.19 0.82±0.04
4200 4.33±0.58 0.56±0.10 1.06±0.13 0.74±0.14 6.67±2.89 0.72±0.11 1.48±0.49 0.79±0.08
4300 5.00±1.00 0.71±0.05 1.38±0.18 0.87±0.02 6.67±2.08 0.71±0.08 1.45±0.28 0.77±0.06

Notes: Mean±Standard deviation (SD). SG: Shrub Gleason index; SS: Shrub Simpson index; SSW: Shrub Shannon–
Wiener index; SP: Shrub Pielou evenness index; HG: Herbaceous Gleason index; HS: Herbaceous Simpson index; 
HSW: Herbaceous Shannon–Wiener index; HP: Herbaceous Pielou evenness index. 
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and below-ground parts. ABG is the sum of the stem, 
branch, and leaf biomass, and BGB is the sum of all 
root biomass. The seedlings were washed to remove 
the dust, soil and other impurities attached to the 
surface and then dried. During this process, damage 
to the seedlings was minimized, and the integrity of 
the ground and below-ground parts were ensured. 
The washed seedlings were inserted into envelopes 
and placed in an oven at 80°C to dry to constant mass, 
and then weighed (in grams).  

2.4 Soil properties measurements 

After removing stones and visible plant roots, the 
soil samples were sieved through a 0.25 mm screen. 
The physical and chemical properties of the soil 
samples were determined after air drying. Soil water 
content (SWC) was measured by drying method 
(Chang et al. 2012). Total organic carbon (TOC) was 
determined by the dry combustion method at 500°C 
(Storer et al. 1984). Total nitrogen (TN) and total 
phosphorus (TP) were determined by the Kjeldahl 
and NaOH alkali fusion molybdenum–antimony anti-
colorimetric methods (Sparks et al. 1996), 
respectively. Total potassium (TK) and available 
potassium (AK) were determined by NaOH melt-
flame photometry and 1 mol/L ammonium acetate 
extraction flame photometry (Gammon 1951), 
respectively. Available phosphorus (AP) was 
determined via an offline extraction column 
(Jakmunee and Junsomboon 2009). Nitrate nitrogen 
(NO3−–N) was determined by the phenol disulfonic 
acid colorimetry method (Haby 1989). Ammonium 
nitrogen (NH4+–N) was extracted with 1.2 mol/L KCl 
via the indophenol blue colorimetric method (Dorich 
and Nelson 1983). Particulate organic carbon (POC) 
was assayed according to the method of Garten et al. 
(1999). Easily oxidized organic carbon (EOC) was 
assessed according to the determination method of 
Chen et al. (2017). Dissolved organic carbon (DOC) 
was determined according to the method of Fang et al. 
(2014).  

2.5 Biodiversity calculation 

Gleason index (G), Shannon-Wiener index (SW), 
Simpson index (S), and Pielou evenness index (P) in α
 diversity were selected to measure plant richness, div
ersity, dominance, and distribution (Zhao et al. 2021). 
The calculation formulas are as follows: 

Gleason index:  

SN / lnG A=                                   (1)  

Shannon–Wiener index:  

1

SW ln
s

i i
i

p p
=

= −                         (2) 

Simpson index: 


=

−=
s

i
ipS

1

21                               (3) 

Pielou evenness index: 

max max/ lnSNP H H H= =， ,           (4) 

where A is the unit area; SN is the number of species; 
pi is the relative frequency of each species; Hmax is the 
maximum species diversity index, and i=1, 2, 3, …, n. 

2.6 Statistical analysis 

Biomass allocation patterns were studied by 
logarithmically transformed allometric function with 
log10-transformed data (Ma and Wang 2020). 
The analyses for allometric scaling of AGB versus BGB 
were conducted separately for each age group of 
seedlings on biomass data.  The allometric equation, 
Y1 = βY2α, was used for univariate modeling, where Y1 

and Y2 were BGB and AGB, respectively, and α and β 
are allometric coefficients. The equation was 
logarithmically transformed into the linear equivalent, 
log(Y1) = log(β) + αlog(Y2). A standardized major axis 
regression method (SMA) was used to calculate the 
exponential (α), 95% confidence interval (95%CI), 
determination coefficient (R2) and the intercept log(β) 
of the regression mode in Soft Standardized Major 
Axis Tests and Routines (SMATR) (West et al. 1997; 
Niklas and Enquist 2001; Niklas 2004). The 
parameter α is the slope of linear regression after 
logarithmic power function, and log(β) is the intercept 
of linear regression. 

The Kolmogorov-Smirnov test was used to 
determine whether all the biomass data had a normal 
distribution (α=0.05).The relationship between AGB, 
BGB and seedling age at different elevations was 
determined by linear regression equation established 
by least square method. A mixed model ANOVA was 
used to assess the effect of elevation gradient (EG), 
slope aspect (SL) and seedling age (SA) on the AGB 
and BGB. The mathematical form: Biomass = 
elevation gradient (EG) + slope aspect (SL) + seedling 
age (SA) + elevation gradient (EG) × slope aspect (SL) 
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+ elevation gradient (EG) × seedling age (SA) + slope 
aspect (SL) × seedling age (SA) + elevation gradient 
(EG) × slope aspect (SL) × seedling age (SA) + (1| 
sampling point). Statistical analyses were conducted 
using Excel 2013 and the nlme package in R language 
(version 4.0.2). All charts depicting variations in 
parameters were generated using Origin 2021 
(OriginLab, Northampton, MA ,USA). 

The relationship between seedling biomass, soil 
properties and vegetation factors was investigated by 
redundancy analysis (RDA)-constrained ranking of 
experimental data using Canoco 5.0 (Microcomputer 
Power, Ithaca, NY, USA). RDA analysis has two 
matrices: species data, which include AGB and BGB, 
and environmental data, which consist of soil 
properties (SWC, TOC, TN, TP, TK, AK, AP, NO3--N, 
NH4+-N, POC, EOC, DOC) and stand factors (HC, CD, 
LT, SG, SS, SSW, SP, HG, HS, HSW, HP). In addition, 
the variation decomposition method was used to 
quantify the individual and joint explanations of 
stand and soil factors for A. georgei var. smithii 
seedling biomass. Variation decomposition was 
analyzed using the vegan package in R language 
(version 4.0.2). 

3    Results  

3.1 Variation of the AGB and BGB of A. 
georgei var. smithii seedlings in different 
slope aspects, altitudes, and seedling ages 

AGB and BGB increased with seedling age, and 
most of the biomass was concentrated in the above-
ground part (Fig. 2). The results from a mixed model 
ANOVA revealed that (Table 3), SA had significant 
effects on the AGB and BGB of A. georgei var. smithii 
seedlings (p<0.001), but slope aspect (SL) and 
elevation gradient (EG) had no significant individual 
effects (p>0.05). The interactive effects of SL and EG 
(i.e., SL×EG) had significant effect on AGB (p<0.05), 
SL×SA and SL×EG×SA had extremely significant 
effect on AGB (p<0.001), but EG×SA had no 
significant effect on AGB (p>0.05). SL×EG, SL×SA, 
EG×SA, and SL×EG×SA had no significant effect on 
BGB (p>0.05). 

Regression analysis was conducted on the 
relationship between seedling age and biomass of A. 
georgei var. smithii seedlings (Appendix 1). The 
results showed that AGB and BGB at different 
altitudes on the two slope aspects showed a binomial 

growth trend with the increase in seedling age. The 
fitting degree between AGB and seedling age was the 
highest at 4000 m (R2=0.921) on the northern slope 
and the lowest at 4100 m on the southern slope 
(R2=0.544). The fitting degree between BGB and 
seedling age was the highest at 4100 m (R2=0.938) on 
the northern slope and the lowest at 4100 m (R2= 
0.483) on the southern slope. The slope of AGB 
regression equation was higher than that of BGB 
regression equation at the same elevation on both 
slope aspects, which indicates that the accumulation 
rate of AGB was higher than that of BGB with the 
increase in seedling age. 

 3.2 Allometric relationship between AGB and 
BGB of A. georgei var. smithii seedlings  

The linear relationship of the log10-transformed 
biomass data was used to represent the biomass 
allocation patterns of A. georgei var. smithii seedlings. 
An allometric relationship existed between AGB and 
BGB at different elevations on both slope aspects (α≠1, 
Fig. 3, Fig. 4). The test of allometry shows that 
(Appendix 2), AGB and BGB showed an isometry 
relationship at 4000 m, 4100 m, 4200 and 4300 m on 
the north slope (allometric exponential α has no 

Table 3 Results from a mixed model ANOVA 
investigating the influence of elevation gradient, slope 
aspect and seedling age on AGB and BGB in A. georgei 
var. smithii seedlings. 

Biomass Factors DF F-value p-value

AGB 

SL 1 0.14  0.707  

EG 5 1.36  0.243 

SA 4 212.70 <0.001 

SL×EG 5 2.62  0.027 

SL×SA 4 5.68  <0.001

EG×SA 20 0.70  0.821  

SL×EG×SA 20 3.23  <0.001  

BGB 

SL 1 0.09  0.761  

EG 5 0.67  0.649 

SA 4 101.10  <0.001
SL×EG 5 0.87  0.504 

SL×SA 4 0.67  0.613  

EG×SA 20 0.71  0.809 

SL×EG×SA 20 1.37  0.151 

Notes: AGB: Above-ground biomass; BGB: Below-
ground biomass; SA: Seedling age; EG: Elevation 
gradient; SL: Slope aspect; DF: Degree of freedom. 
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significant difference with 
1), and showed  allometric 
relationship at other two 
elevations; at 3800 m, 
3900 m and 4000 m on 
the southern slope, AGB 
and BGB showed isometric 
relationship (allometric 
exponential α was not 
significantly different from 
1), and the other three 
altitudes showed 
allometric relationship 
between AGB and BGB. 
The allometric exponential 
between AGB and BGB on 
the northern slope was the 
lowest at 3800 m (95%CI: 
0.810–1.015) (Fig. 3A) and 
the highest at 4300 m 
(95%CI: 0.968–1.123, Fig. 
3F). R2 varied from 0.884 
to 0.989 (Fig. 3). On the 
southern slope, the 
allometric growth index 
between AGB and BGB 
ranged from 1.004 to 1.268 
(Fig. 4), the lowest was at 
4000 m (95%CI: 0.827–
1.181, Fig. 4C), the highest 
was at 4100 m (95%CI: 
1.054–1.483, Fig. 4D), and 
R2 varied from 0.912 to 
0.959 (Fig. 4). In 
conclusion, A. georgei var. 
smithii seedlings shared 
internal commonality in 
biomass allocation in 
different slope aspects and 
altitudes. 

3.3 Environmental 
factors affecting 
biomass of A. 
georgei var. 
smithii seedlings 

Trend correspondence 
analysis (DCA) was performed on the species data 
(AGB and BGB), and the four ranking axes of the 
species data were all less than 3. Therefore, linear 

model RDA was selected. The RDA results showed 
that in the northern slope, the cumulative 
contribution rate of soil factors to the first two axes of 

Fig. 2 Variation of the biomass of A. georgei var. smithii seedlings at different 
elevations and slope aspects in Sejila Mountain in Tibet. Error bars indicate the 
standard error. 
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AGB and BGB was 90%, and that of stand factors to 
the first two axes of AGB and BGB was 92.69% 
(Appendix 3). On the southern slope, the cumulative 
contribution rate of soil factors to the first two axes of 
AGB and BGB was 90.36%, and that of stand factors 
to the first two axes of AGB and BGB was 90.19% 

(Appendix 3). Therefore, the first two ordination axes 
of RDA can be used to reflect the effects of soil and 
stand factors on the AGB and BGB of A. georgei var. 
smithii seedlings with different seedling ages (Fig. 5). 

The line length of the arrow represents the degree 
of effect of environmental factor on the AGB and BGB 

 
Fig. 3 Allometric relationship between the above-ground biomass (AGB) and below-ground biomass (BGB) of A. 
georgei var. smithii seedlings at different elevations (A: 3800 m; B: 3900 m; C: 4000 m; D: 4100 m; E: 4200 m; F: 
4300 m) on the northern slope. 
 

 
Fig. 4 Allometric relationship between the above-ground biomass (AGB) and below-ground biomass (BGB) of A. 
georgei var. smithii seedlings at different elevations (A: 3800 m; B: 3900 m; C: 4000 m; D: 4100 m; E: 4200 m; F: 
4300 m) on the southern slope.  
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of A. georgei var. smithii seedlings with different 
seedling ages. A longer line represents a greater 
influence, vice versa. On the northern slope, the arrow 
lines of AK, NO3−–N, NH4+–N, TP, and AP were long 
(Fig. 5A), and the arrow lines of CD was short (Fig. 
5B), which indicated that the AGB and BGB of A. 
georgei var. smithii seedlings were more affected by 
stand factors. On the southern slope, the arrow lines 
of TK, AK, SWC, DOC, NH4+–N, and TP were longer 
(Fig. 5C), and the arrow lines of stand factors, LT, CD, 
and HC were longer (Fig. 5D), which indicated that 
the AGB and BGB of A. georgei var. smithii seedlings 

were more affected by soil factors. On the northern 
slope, soil factors were negatively correlated with AGB 
and BGB (Fig. 5A), and stand factors were positively 
correlated with AGB and BGB (Fig. 5B). On the 
southern slope, soil factors were positively correlated 
with AGB and BGB (Fig. 5C), and stand factors were 
negatively correlated with AGB and BGB (Fig. 5D). 

We adopted the method of variation 
decomposition to carry out the forward selection of 
explanatory variables for stand and soil factors to 
further quantify their individual and interactive 
effects. On the northern slope, the contribution of 

 

 
Fig. 5 Redundancy Analysis (RDA) double-sequence diagram of soil factors, plant community characteristics, and 
biomass of A. georgei  var. smithii seedlings at different age groups on the northern (A, B) and southern slope (C,D). 
The length of the vector represents the intensity of impact, arrows in the same direction have positive correlation, 
arrows of the opposite direction have negative correlation, the red line indicates environmental factors, and the blue 
line indicates species factors. AGB1, AGB2, AGB3, AGB4, AGB5 and BGB1, BGB2, BGB3, BGB4, BGB5 are the above-
ground biomass and below-ground biomass for the 1-2, 3-4, 5-6, 7-8, 9-10 year-old seedlings, respectively. The full 
name of the abbreviation on the figure was shown in Appendix 4. 
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stand factors to AGB and BGB accounted for 47.8%, 
and soil factors contributed lesser at 21.5%. The 
common explanation rate of the two environmental 
groups to seedlings’ biomass accounted for 12.2% (Fig. 
6A). However, on the southern slope, the contribution 
of stand factors to AGB and BGB accounted for only 
20.5%. Soil factors contributed more to biomass at 
53.2%. The common explanation rate of the two 
environmental groups to seedlings’ biomass 
accounted for 10.7% (Fig. 6B). 

4    Discussion 

Topographic conditions (including slope aspect, 
elevation, slope position, etc.) are considered 
important factors affecting plant biomass in 
subtropical regions (Alves et al. 2010; Sato 2010; Lin 
et al. 2012). Slope aspect affects biomass indirectly by 
changing litter decomposition and soil nutrient 
cycling rate (Hicks and Frank 1984; Thakur et al. 
2019). The present study showed that the AGB and 
BGB between the northern and southern slopes had 
no significant difference (p>0.05; Fig. 2, Table 3), 

which indicated that the individual effect of slope 
aspect (SL) on biomass was weak. However, when SL 
interacted with SA and EG (SL×EG, SL×SA, 
SL×EG×SA), the AGB of A. georgei var. smithii 
seedlings was significantly affected (p<0.05, Table 3), 
which indicated that slope aspect had a strong 
indirect combined effect on biomass and was consist 
with previous studies. Canadell et al. (1988) studied 
the biomass of Quercus ilex L. on the northern and 
southern slopes and found that the allometric 
exponential of the northern and southern slopes are 
1.544 (R2=0.775) and 2.077 (R2=0.840), respectively; 
the allometric equations of biomass on the southern 
and northern slopes were significantly different 
(p<0.05); and slope aspect has a significant effect on 
biomass (p<0.05). Wang et al. (2014) found the 
average biomass of Abies georgei. on the northern 
slope is 16.639 g higher than that on the southern 
slope (11.397 g). The differences may be due to the 
spatial heterogeneity of the ecosystem caused by the 
slight differences in topography and soil 
characteristics (Nie et al. 2019). 

Elevation controls plant growth and ecosystem 
function through indirect changes to other drivers 
such as soil properties, species diversity et al. (Fu et al. 
2020; Case and Peterson 2005). We found that 
elevation had no significant effect on the AGB and 
BGB (p>0.05), but the interactive effects of EG, SL, 
and SA (i.e., SL×EG, SL×EG×SA) had a significant 
effect on the AGB of A. georgei var. smithii seedlings 
(p<0.05, Table 3). Hertel and Schling (2011) found 
that Picea asperata biomass increases considerably 
with elevation in the Alps, and the biomass of P. 
asperata at the highest elevation was almost twice 
more than that at the lowest altitude. In the central 
Himalayas of India, the average biomass of Celtis 
australis seedlings at low EG (550–1000 m), middle 
EG (1050–1250 m) and high EG (1350–1980 m) were 
respectively 8.4±2.5 g, 9.4±3.3 g, and 12.7±1.7 g, and 
EG has a significant effect on biomass (p<0.01)(Singh 
et al. 2006), which were different from our results. 
The difference may be due to the fact that the 
longitude and altitude gradients in plant biomass are 
associated with pervasive geographic patterns in the 
structure and function of forest ecosystems (e.g., 
forest biodiversity, soil chemical characters, 
vegetation primary production, etc.) (Han et al. 2011). 
Therefore, we analyzed the effects of soil and stand 
factors on the AGB and BGB of A. georgei var. smithii 
seedlings and explained them in detail in the 

Fig. 6 Venn diagram of the explanatory rates of soil and 
plant community characteristics on biomass of A. 
georgei var. smithii seedling on the northern (A) and 
southern slope (B). The overlapping part is the common 
explanation rate of soil and plant community 
characteristics to seedlings biomass. REs means 
residuals, which indicate a part of the unexplained 
change. 
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following discussion. 
Optimal allocation theory holds that plants 

should adapt to environmental changes by investing 
more biomass in the various organs that receive the 
most limited resources (Zhang et al. 2011). Biomass 
allocation patterns might reflect the self-coordinating 
mechanism of plants that maximizes resource 
utilization (Li et al. 2017). In the present study, the 
allometric exponential α of the relationship between 
BGB and AGB of A. georgei var. smithii seedlings 
were larger at higher elevations (Fig. 3, Fig. 4). This 
result suggests that A. georgei var. smithii seedlings 
at high elevations increased their allocation to BGB, 
because water is the main limiting factor for plant 
growth at high elevations (Peichl and Arain 2007; 
Weiner 2004). The hydrothermal conditions at low 
altitudes are relatively favorable for plant growth, but 
plant growth at high altitudes is limited by low 
temperatures (Zheng et al. 2004). Thus, A. georgei 
var. smithii seedlings increased their investment to 
underground parts to meet the nutrient and water 
transport requirements at high altitudes. 

The allocation of biomass by seedling ages 
follows the principle of balance between plant growth 
and resource allocation among plant components, and 
its purpose is to maintain the normal physiological 
activities and functions of plant components 
(Landsberg and Sands 2011; Mensah et al. 2016). We 
found that the AGB and BGB of A. georgei var. smithii 
seedlings were significantly affected by seedling age 
(p<0.001, Table 3), and the accumulation rate of AGB 
was greater than that of BGB with the increase in 
seedling age (Appendix 1). Some studies also found 
that with the growth of seedling, the above-ground 
part grows larger because of individual changes; more 
resources are allocated to above-ground growth; and 
the accumulation rate of AGB is higher than that of 
BGB (Mensah et al. 2016). 

 In the early 1970s, some researchers studied the 
relationship between seedling age and biomass through 
allometric equation, and the fitting regression 
coefficient of the allometric equation was depended on 
the composition and plant species (Bond-Lamberty et 
al. 2002; Saint-André et al. 2005). In the present study, 
we found that the AGB and BGB accumulation of A. 
georgei var. smithii seedlings had obvious gradient 
with the increasing of age class; therefore, we 
established the allometric equation of biomass to 
predict the changes in the biomass and carbon storage 
of A. georgei var. smithii seedlings (Fig. 3, Fig. 4). The 

regression analysis of log10 biomass data showed that 
the allometric exponential between AGB and BGB was 
0.913–1.268 (95%CI: 0.810–1.483), which was close to 
α=1, following the isometric distribution hypothesis 
(Enquist and Niklas 2002; Niklas 2005, 2006). This 
value was close to the allometric exponential between 
the AGB and BGB of China plant (1.04 [95%CI: 1.00–
1.08]) (Cheng and Niklas 2007) and between the AGB 
and BGB of global plant (1.09 [95%CI: 1.05–1.13]) 
(Enquist and Niklas 2002). However, the allometric 
exponential of A. georgei var. smithii seedlings in 
present study was different from that of boreal/alpine 
Picea–Abies forest 0.67(95%CI: 0.61–0.73) (Zhang et 
al. 2016). The intercept (log(β): −0.710 to −0.418) of 
the allometric growth of A. georgei var. Smithii 
seedlings was also different from that of Chinese 
vegetation (log(β): 0.366), global vegetation (log(β): 
2.59), and boreal/alpine Picea–Abies forest (log(β): 
0.06). The absolute values of the AGBs of different 
vegetation types were remarkably different from those 
of BGBs (Cheng and Niklas 2007).  

Many studies analyzed the relationship between 
plant community characteristics (canopy density, 
litter, species diversity, etc.) and plant biomass. These 
studies found that the shading effect produced by 
canopy density affect solar radiation and weaken 
plant photosynthesis (Comeau et al. 1993; Perrin and 
Mitchell 2013); litter inhibits seedling colonization by 
reducing available water and acting as a mechanical 
barrier (Caccia and Ballaré 1998; Maruyama et al. 
2004); and the interspecific competition of species 
diversity has a remarkable effect on seedling growth 
and biomass (Gerlach et al. 1997; Yann et al. 2018). 
Our study found that the contribution rate of stand 
factors to the AGB and BGB of A. georgei var. smithii 
seedlings was higher on the northern slope (47.8%) 
but lower on the southern slope (20.5%, Fig. 6), which 
indicated that canopy density (CD), litter thickness 
(LT), species diversity, and other factors were highly 
correlated with the biomass of A. georgei var. Smithii 
seedlings on the northern slope. RDA also confirmed 
this point. Except for CD, the correlation between the 
other plant community characteristics and biomass 
were all long on the northern slope (Fig. 5B), which 
indicated that the plant community characteristics on 
the northern slope were more suitable for the growth 
of A. georgei var. smithii seedlings. However, the 
reason for the lower contribution rate of the stand 
factors in the southern slope may be that the growth 
and development of seedlings were inhibited by 
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higher canopy density, litter thickness, and species 
diversity index (Appendixes 1, 2).  

The contribution rate of soil factors to the AGB 
and BGB of A. georgei var. smithii seedlings was 
higher on the southern slope (53.2%) and lower on 
the northern slope (21.5%, Fig. 6), which indicated 
that soil nutrients, SWC, and other factors on the 
southern slope were highly correlated with the 
biomass of A. georgei var. smithii seedlings. Fig. 5C 
showed that the correlation between TK, AK, SWC, 
DOC, NH4+-N, TP and biomass in the southern slope 
was greater than that in the northern slope, which 
indicated that the soil condition on the southern slope 
was more suitable for the growth of A. georgei var. 
smithii seedlings. Some studies found that the spatial 
distribution of soil properties was affected by slope 
aspect, slope steepness, and slope position (Castilho 
et al. 2006; Nie et al. 2019). Soil characteristics in the 
northern and western slopes had higher soil nutrient 
content than those in the southern and eastern slopes, 
and soil factors had a higher impact on biomass in the 
northern slope (Nie et al. 2019), which was 
inconsistent with our research results. The cause may 
have to do with the presence of vegetation on the 
ground, and the complex vegetation distribution may 
change the negative correlation between slope aspect 
and soil nutrients (Nie et al. 2019). In addition, 
studies found that because the northern slope has 
more dense vegetation coverage, it retained more soil 
water; thus, it had more biomass (Yetemen et al. 
2015). Notably, in the present study, the southern 
slope had denser vegetation coverage and greater soil 
moisture retention, but stand factor is negatively 

correlated with seedling biomass (Fig. 5D), which 
seriously inhibits the growth of the seedlings. This 
result was also consistent with our previous 
discussion on the effects of stand factors on the 
biomass of A. georgei var. smithii seedlings on the 
southern slope. 

5    Conclusions 

Seeding age is an important factor affecting the 
biomass of A. georgei var. smithii seedlings in 
Southeast Tibet, and AGB and BGB increased with 
increasing seedling age. The analyses for allometric 
relationship between BGB and AGB appeared to be a 
useful tool to provide an accurate description of the 
biomass allocation patterns of A. georgei var. smithii 
seedlings. In sub-alpine ecosystems, A. georgei 
var. smithii seedlings increased BGB input in order to 
adapt to high-altitude habitats. Our results confirmed 
that allometric theory and optimal allocation theory 
are complementary in explaining biomass allocation. 
Moreover, the biomass of seedlings was affected 
differently  by  environmental  factors  on  both slopes. 
The biomass of A. georgei var. Smithii seedlings on 
the northern slope was greatly affected by plant 
community characteristics, whereas soil priority was 
the dominant factor on the southern slope. By 
exploring the biomass allocation mechanism of A. 
georgei var. smithii seedlings and their relationship 
with habitat conditions, the present study provided 
evidences of the survival strategies of A. georgei var. 
smithii seedlings at high altitudes in Tibet plateau. 
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