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Abstract: During the past several decades, the carbon budget in the dryland ecosystem has experienced
great variation under the joint impact of climate change and anthropogenic interference. How the
net ecosystem productivity (NEP) responds to climate change and human interference in the Qilian
Mountains (QLM), Northwest China, remains unclear. To fill these gaps, we first estimated the NEP
in the QLM and then quantified the independent and interactive influences of natural environment
factors, climatic factors, and human activity intensity on the NEP change from 2000 to 2020 by linking
the Geodetector and structural equation models. The NEP of the QLM showed a significant increase
during the recent 20 years, and 78.93% of the QLM experienced a significant increase in NEP; while
only 4.83% of the area in the QLM experienced a decreasing trend, which is dominantly located on the
southeast edge, surrounding the Qinghai Lake, and the midland of the QLM. The area percentage of
the carbon sink region increased from 47% in 2000 to 62% in 2020. The natural environment factors
(e.g., altitude and soil type) and climate factors (e.g., temperature and precipitation) were the dominant
factors that determine the spatial distribution of NEP. Compared with a single factor, the interaction of
pairs of factors enhanced the influence strength on NEP. The natural environment factors indirectly
affected NEP change through influencing human activities intensity and climatic factors. Human
activities intensity played a medium indirectly negative effect on NEP, while climatic factors exerted
strong direct and indirect positive influences on NEP. The contributions of human activity intensity,
climatic factors, and natural environment on NEP change in the QLM were 33.5%, 62.3%, and 38.3%,
respectively. Overall, warming and wetting shifts in meteorological conditions offset the negative
impact of human activities on NEP in the QLM, and the QLM has acted as a growing carbon sink in
the past 20 years.

Keywords: carbon source/sink; climatic factors; net ecosystem productivity; human activities;
Qilian Mountains

1. Introduction

Continuously intensifying climate change and human activity during the past few
decades have exerted a profound impact on ecosystem structures, functions, and ser-
vices [1,2]. Climate change can drive the vegetation dynamics and regulate soil respiration,
and therefore influence the carbon cycle and budget of the terrestrial ecosystem [3]. The net
carbon exchange between terrestrial ecosystems and the atmosphere indicates net ecosystem
productivity (NEP). It is an important indicator for the quantitative evaluation of terres-
trial ecosystems’ carbon sources and sinks [4–6]. In the context of climate change and
anthropogenic interference, it is crucial to monitor the spatiotemporal variation in terres-
trial carbon sink/source. Moreover, revealing the spatiotemporal variation in NEP and its
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driving mechanism is necessary for regional sustainable development and global carbon
emissions reduction.

The carbon budget has long been the focus of global change research, and the NEP
estimation plays an important role in carbon budget research. Numerous studies have
confirmed that human activity and climate change will lead to fluctuation in NEP of the
terrestrial ecosystems and alter carbon source and carbon sink patterns in local regions
or the global extent [3,6,7]. Traditionally, the NEP estimation was concentrated on the
local scale based on in situ experiments [8,9]. In recent years, owing to the development
of remote sensing technology, estimating NEP on large scale has become possible due to
its low cost and high efficiency [6,10–12]. Many previous works addressed the spatiotem-
poral change in NEP and its response to climatic factors and human activity by coupling
remote sensing models and empirical statistical methods. For instance, Dai et al. [10]
revealed the response of the NEP to temperature and precipitation in Inner Mongolia
by coupling the empirical model and correlation analysis. Li et al. [12] indicated that
drought and increased human activity weakened the carbon sink capacity in Central Asia.
Zhang et al. [6] found that climate change reduced the NEP in the drylands of Central
Asia by combining the Carnegie–Ames–Stanford (CASA) and empirical models. Liang
et al. [13] indicated that the NEP in most regions of China experienced a non-significant
increasing trend by coupling the modified CASA model and empirical model. Generally,
the changes in NEP are triggered by natural and anthropogenic factors. However, given
the complicated interactions between natural and anthropogenic factors, quantifying the
contributions of climate change and human activity on NEP in dryland alpine ecosystems
is currently challenging.

Partial derivative analysis [14], regression analysis [6], residual analysis [15], and
machine learning [16] were the primary methods used to reveal the effects of climate
change and human activity on the terrestrial ecosystem in previous research. However,
these methods/models have shortcomings in addressing the interactions between different
driving factors. Ignoring the interactions between driving factors, the result is probably
imprecise [17]. Fortunately, by considering the interactions between independent variables,
the structural equation model (SEM) is a robust method to quantify the direct and indirect
effects and the effect paths of multiple influencing factors on target variables [18]. More-
over, the Geodetector model (GDM) can reveal the internal mechanism between different
influencing factors and response variables [19–21]. It is a vigorous method to investigate
the interactions between driving factors [22]. Linking the GDM and SEM can help us to
deepen the understanding of the driving mechanism behind the NEP change.

Mountain ecosystems play a vital role in providing a wealth of ecosystem services and
ecological goods, (e.g., water conservation, biodiversity maintenance, climate regulation,
and carbon cycling). However, alpine ecosystems in arid/semiarid regions are especially
sensitive to human activities and climate change [14,23]. In the past few decades, climate
change and expanding human activities have profoundly affected the ecosystem’s carbon
source/sink pattern in northwest China [24,25]. Previous studies revealed that grassland,
forest, and shrubland respond to climate change to various degrees, and the grassland
ecosystem is the most sensitive ecosystem in Qinghai-Tibetan Plateau [26]. The Qilian
Mountains (QLM) are widely regarded as an irreplaceable ecological security barrier in
the northeastern Qinghai-Tibetan Plateau [27,28]. However, given the complex topogra-
phy and climatic conditions, the QLM is also one of the most fragile ecological zones in
China [29–31]. The vegetation in the QLM has undergone marked variation under the
combined influence of climate change and human activities in the past several decades,
which altered the terrestrial carbon cycle and budget [14,32,33]. Previous studies primarily
concentrated on the changes in Normalized Difference Vegetation Index (NDVI) and Net
Primary Productivity (NPP), and mainly focused on the individual effect of the driving
factors [14,30]. However, the magnitude of the NEP in the QLM and the interaction of
different factors (e.g., climatic factors and human interference) behind the NEP change
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remains unclear. Therefore, it is necessary to estimate the NEP and distinguish the impacts
of human activity and climatic factors on NEP in the QLM.

The targets of this study are to (1) estimate the NEP and its spatiotemporal change in
the QLM from 2000 to 2020, (2) identify the key factors that influence the spatial distribution
of NEP, and (3) disentangle the contributions of the natural environment, climatic factors,
and human activity intensity to NEP change.

2. Materials and Methods
2.1. Study Area

The QLM is situated on the northeastern Qinghai-Tibet Plateau and straddles Gansu
and Qinghai provinces. It covers a total area of ~190,000 km2 from 35.8◦ to 40.0◦N and
93.5◦ to 104.0◦E, with altitudes from 1937 to 5792 m (Figure 1a). The average elevation is
over 3000 m. The QLM has a continental alpine semiarid climate with annual precipitation
of ~370 mm and the annual mean temperature is below 1 ◦C. The natural vegetation type
presents marked horizontal and vertical zonation features, mainly including seven types:
meadows, grassland, desert, shrub, alpine vegetation, coniferous forest, and broadleaf forest
in order of decreasing area (Figure 1b). Moreover, the farmland (cultivated vegetation)
accounts for ~1.22% in the QLM. The QLM is widely regarded as the priority area for
biodiversity protection in China [28]. Moreover, its important duties include preserving
the Qinghai-Tibet Plateau’s ecological barrier, preventing the three deserts of Tengger,
Badain Jaran, and Kumtag from encroaching southward, and ensuring the survival and
development of the oases in the Hexi Corridor [34].

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

remains unclear. Therefore, it is necessary to estimate the NEP and distinguish the impacts 
of human activity and climatic factors on NEP in the QLM. 

The targets of this study are to (1) estimate the NEP and its spatiotemporal change in 
the QLM from 2000 to 2020, (2) identify the key factors that influence the spatial distribu-
tion of NEP, and (3) disentangle the contributions of the natural environment, climatic 
factors, and human activity intensity to NEP change.  

2. Materials and Methods 
2.1. Study Area 

The QLM is situated on the northeastern Qinghai-Tibet Plateau and straddles Gansu 
and Qinghai provinces. It covers a total area of ~190,000 km2 from 35.8° to 40.0° N and 
93.5° to 104.0° E, with altitudes from 1937 to 5792 m (Figure 1a). The average elevation is 
over 3000 m. The QLM has a continental alpine semiarid climate with annual precipitation 
of ~370 mm and the annual mean temperature is below 1 °C. The natural vegetation type 
presents marked horizontal and vertical zonation features, mainly including seven types: 
meadows, grassland, desert, shrub, alpine vegetation, coniferous forest, and broadleaf for-
est in order of decreasing area (Figure 1b). Moreover, the farmland (cultivated vegetation) 
accounts for ~1.22% in the QLM. The QLM is widely regarded as the priority area for 
biodiversity protection in China [28]. Moreover, its important duties include preserving 
the Qinghai-Tibet Plateau’s ecological barrier, preventing the three deserts of Tengger, 
Badain Jaran, and Kumtag from encroaching southward, and ensuring the survival and 
development of the oases in the Hexi Corridor [34]. 

 
Figure 1. Location and altitude (a), and vegetation type (b) of the study area. QLM: Qilian Moun-
tains; QTP: Qinghai-Tibet Plateau; MD: meadows; GL: grassland; SHR: shrub; CF: coniferous forest; 
DE: desert; BF: broadleaf forest; AV: alpine vegetation; CV: cultivated vegetation. 

2.2. Data Collection and Analytical Framework 
This study collected data on NPP and the potential influencing factors from multiple 

sources (Table 1). Time-series NPP product (MOD17A3) and land cover product 
(MCD12Q1) from 2000 to 2020 were filtered and downloaded based on the Google Earth 
Engine (GEE) cloud platform. These data are of high quality and extensively applied to 
estimate carbon consequences [1,14,35]. The vegetation type and soil type were attained 

Figure 1. Location and altitude (a), and vegetation type (b) of the study area. QLM: Qilian Mountains;
QTP: Qinghai-Tibet Plateau; MD: meadows; GL: grassland; SHR: shrub; CF: coniferous forest;
DE: desert; BF: broadleaf forest; AV: alpine vegetation; CV: cultivated vegetation.

2.2. Data Collection and Analytical Framework

This study collected data on NPP and the potential influencing factors from multiple
sources (Table 1). Time-series NPP product (MOD17A3) and land cover product (MCD12Q1)
from 2000 to 2020 were filtered and downloaded based on the Google Earth Engine (GEE)
cloud platform. These data are of high quality and extensively applied to estimate carbon
consequences [1,14,35]. The vegetation type and soil type were attained from the Resource
and Environment Data Cloud Platform, Chinese Academy of Sciences (https://www.

https://www.resdc.cn/
https://www.resdc.cn/
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resdc.cn/ (accessed on 13 May 2022)). Topographic factors (i.e., elevation, aspect, and
slope) were extracted from digital elevation model (DEM) data collected from the United
States Geological Survey (USGS, https://earthexplorer.usgs.gov/ (accessed on 15 May
2022)). Meteorological data (temperature and precipitation) from 39 stations in the QLM
and its surrounding region were collected from the China meteorological data service
center (http://data.cma.cn/ (accessed on 23 May 2022)). The ANUSPLIN 4.2 software
was employed to interpolate the station data of temperature and precipitation into a
spatial grid based on the covariate of altitude. The solar radiation data were downloaded
from Terra Climatology Lab (https://climate.northwestknowledge.net/TERRACLIMATE/
index (accessed on 17 May 2022)). Data on human activity intensity were collected from
Mu et al. [36], this data employed eight categories of human pressures following the concept
of human footprint to represent the human activities intensity (i.e., cropland, road impact
(road and railway distribution), population density, night-time light, pasture, and so on),
which can comprehensively represent the human activity intensity. Statistic data were
collected from the statistic yearbooks of Qinghai Province and Gansu Province. The spatial
reference of the spatial data was set to the WGS_1984_Albers projection and the resolutions
were resampled to 1 km in the ArcGIS Pro 2.8 platform (ESRI, Redlands, CA, USA).

Table 1. Data used in this study.

Data Time Resolution Source

MOD17A3 2000–2020 500 m https://ladsweb.modaps.eosdis.nasa.gov
(accessed on 13 May 2022)

MCD12Q1 2000–2020 500 m https://ladsweb.modaps.eosdis.nasa.gov
(accessed on 3 May 2022)

Altitude - 30 m https://earthexplorer.usgs.gov/
(accessed on 15 May 2022)

Soil type The 1990s 1:1,000,000 https://www.resdc.cn/
(accessed on 13 May 2022)

Solar radiation 2000–2020 ~4400 m https://climate.northwestknowledge.net/
(accessed on 17 May 2022)

Human activity
intensity 2000–2018 1000 m Mu et al. [36]

Meteorological
data 2000–2020 - http://data.cma.cn/

(accessed on 23 May 2022)

The main steps of this study include three parts, namely the NEP estimation, driving
factor selection, and driving mechanism analysis. The primary analytical framework is
shown in Figure 2.
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2.3. Methods
2.3.1. Estimate the NEP in the QLM

The NEP is defined as the difference value between the net primary productivity (NPP)
and the soil heterotrophic respiration (RH):

NEP = NPP− RH (1)

If the NEP is greater than zero, the carbon fixed by vegetation is bigger than the carbon
released by soil respiration (i.e., a carbon sink). Otherwise, it is a carbon source.

According to previous studies [8,37], the RH estimation model for the alpine steppe
ecosystem in the QLM can be written as follows:

RH(x, t) = 0.22×
(

e0.0913T(x,t) + ln(0.3145P(x, t) + 1)
)
× 30× 46.5% (2)

where T(x,t) and P(x,t) are the mean temperature and total precipitation of cell x in the
month t, respectively.

The RH estimation model for other ecosystems in the QLM can be written as [38]:

anRH = e(1.22+0.73 ln (anRS)) (3)

moRS = F× e(aT−bT2) × αP + (1− α)Pm−1

K + αP + (1− α)Pm−1
(4)

where anRH is the yearly soil heterotrophic respiration; anRS is the yearly soil respiration;
moRS is the monthly soil respiration; T is the monthly mean temperature; P is the monthly
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total precipitation (cm); Pm−1 is the total precipitation of the former month (cm); F and K are
the parameters; a and b are parameters for temperature; α is the parameter for precipitation.

2.3.2. Trends Analysis of the NEP Change

The Theil-Sen Median trend analysis was introduced to explore the change trend of
NEP in the QLM. It is a robust trend analysis method, which is suitable for the short series.
This method has been widely used in previous studies [6,39]. The expression can be written
as follows:

β = Median
(NEPj − NEPi

j− i

)
(5)

where β denotes the change trend of NEP; NEPi and NEPj represent the times series NEP
values of years i and j, (2000 ≤ i < j ≤ 2020 in this study), and n is the length of the study
period. If β > 0 denotes the NEP shows an increasing trend and if β < 0 means a decreasing
trend of the NEP change during the study period.

The significance of the changing trend of NEP was examined using the Mann–Kendall
(M–K) test. It offers the advantages of not requiring samples to follow a normalized
distribution and being free from outlier interference. The Theil-Sen Median trend analysis
and M–K test were conducted in the MATLAB 2018a platform (The MathWorks Inc., Natick,
MA, USA).

2.3.3. Driving Factors Determination

Various natural factors and human activity can influence the dynamics of the NEP [3,6].
In light of earlier research [3,21,40], considering the specific QLM data availability, we
determined the explanatory variables for NEP change. Finally, eight potential driving
factors were selected as explanatory variables for the NEP change (the NEP change val-
ues between 2000 and 2020), including climatic factors (temperature change, precipita-
tion change, and solar radiation change), topography (altitude, aspect, and slope), soil
(soil type), and human interference (change in human activity intensity). We generated
10,000 random sampling points based on the ‘create random points’ tool in the ArcGIS Pro
platform. Then, the values of the response variable (NEP change) and the eight driving
factors were extracted to each sampling point using the ‘extract multi-values to points’
tool in the ArcGIS Pro platform. Finally, a table containing the values of the response
variable and the corresponding explanatory variables was generated that is available for
subsequent analysis.

2.3.4. Geodetector Model (GDM)

The GDM is a spatial statistics method to reveal spatial heterogeneity and quantify
the influence of driving factors on the response variable based on four modules [22]. In this
study, we employed the factor detector and interaction detector to disentangle the driving
mechanism of the spatial difference of the NEP in the QLM. We conducted the GDM based
on the ‘GD’ package in the RStudio software (version 1.4, RStudio, PBC. Boston, MA, USA).

(1) The explanatory powers of the driving factors for the response variable can be
measured by the q-statistics value of the factor detector, which can be written as:

q = 1− SSW
SST

= 1− ∑L
h=1 NhN2

h
Nδ2 (6)

where SSW and SST represent the Within Sum of Squares and Total Sum of Squares;
h = 1, 2, 3, . . . , L denotes the strata of the dependent or independent factors; Nh and N
are the number of units in strata h and the whole region, respectively; δ2

h and δ2 are
the variance of the Y value for the units in strata h and the whole region, respectively,
0 ≤ q ≤ 1. The significance level of the q-statistics was tested by the noncentral F test [22].

(2) Interaction detector can be used to determine whether the explanatory powers of
two driving factors are enhanced, weakened, or independent of each other by comparing
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the q-statistics values of two independent factors X1 (q(X1)), X2 (q(X2)), and the interaction
of X1 and X2 (q(X1∩X2)). The details of the interaction types can be found in Table 2.

Table 2. Interaction type of driving factors in the GDM.

Type of Interaction Relations of q-statistics Value

Nonlinear weaken q (X1 ∩ X2) < Min (q (X1), q (X2))
Single factor nonlinear weaken Min (q (X1), q (X2)) < q (X1 ∩ X2) < Max (q (X1), q (X2))

Bivariable enhanced Q (X1 ∩ X2) > Max (q (X1), q (X2))
Independent q (X1 ∩ X2) = q (X1) + q (X2)

Nonlinear enhanced q (X1 ∩ X2) > q (X1) + q (X2)

Given that the GDM requests the discrete independent variables, the continuous in-
dependent variables (i.e., precipitation, temperature, solar radiation, altitude, slope, and
human activity intensity) were reclassified by using the optimal discrete method (e.g., equal
intervals, quantile, natural breaks, geometric, and standard deviation) according to the
principle of the maximum value of the q-statistics, which can reflect more information be-
tween explanatory variables and response variables [22]. The classification was conducted
based on the ‘GD’ package in the RStudio software. The details of the classification and the
spatial distribution of these factors are shown in Figure 3. The discrete method for each
driving factor was as follows: temperature (natural breaks); precipitation (equal intervals);
solar radiation (natural breaks); altitude (natural breaks); aspect (geometric), slope (natural
breaks), and human activity intensity (standard deviation).
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2.3.5. Structural Equation Model (SEM)

The SEM was employed to quantify the effect paths and effect strengths of the driving
factors on NEP change in the QLM. In this study, the target variable is the change value of
the NEP in the QLM from 2000 to 2020, the explanatory variables include human activity
intensity change, climatic factor changes, and the natural environment factors. Based
on the literature review [3,17], the main hypothesis of this study was as follows: First,
the natural environment variables (i.e., altitude, aspect, slope, and soil type) can cause
changes in climate and human activity. Second, human activity can directly impact the NEP
change or indirectly affect NEP by influencing the NPP. Similarly, shifts in meteorological
conditions (e.g., temperature change, precipitation change, and solar radiation change) can
directly impact the NEP change, or indirectly change the NEP by impacting the NPP. The
direct effect was the path coefficient between the two factors, while the indirect effect was
measured by the product of the path coefficients of the related effect paths. If there is more
than one indirect effect path, the sum of these indirect effects is the total indirect effect.
The SEM was conducted in the AMOS 22.0 software based on the above assumptions, and
variables and paths were added or deleted through stepwise regression analysis to debug
the model. The goodness-of-fit of the SEM was measured using three parameters, includ-
ing Comparative Fit Index (CFI), Root Squared Mean Error of Approximation (RMSEA),
and the ratio of chi-square and degree of freedom (CMIN/DF). When the CFI is greater
than 0.9, RMSEA is lower than 0.08, and CMIN/DF is lower than 3 indicating the model
fitted well [41].

3. Results
3.1. Spatiotemporal Pattern of NEP Change

The spatial distribution of NEP exhibited obvious heterogeneity, which presented a
gradually increasing trend from northwest to southeast (Figure 4a,b). The high values
were dominantly situated in the eastern region and northern edge of the QLM, while the
low values were mainly situated in the northwest region. From 2000 to 2020, the medium-
high level (80–150 g C m−2) and high level (>150 g C m−2) of NEP increased by 8.35%
and 11.42%, respectively. They were primarily located in the southeast and north edge
of the QLM. The low level (<50 g C m−2) decreased by 13.95%, which were dominantly
situated in the midland of the QLM (Figure 3b). The slight increase in NEP (NEP increase
<85 g C m−2) was dominant, which occupied 64.64% of the total area. The medium-high
and high increase in NEP accounted for 19.10% and 10.71%, respectively, and they were
primarily located on the north edge and east edge of the QLM. The decreased region of NEP
occupied 5.55%, which was primarily located in the central area in the QLM (Figure 4c).

A trend analysis indicated that 95.17% of the pixels experienced a growing trend of the
NEP, among which 78.93% experienced a significant increase (p < 0.05); while only 4.83%
went through a decreasing trend, among which 1.82% passed the significance test (p < 0.05),
which dominantly lies on the southeast edge, the northwest edge, surrounding Qinghai
Lake, and the interior region of the QLM. The significantly decreased region of the NEP
was dominantly distributed in the central region (e.g., Muli colliery in Tianjun County),
the northwest edge and east of Qinghai Lake, and the regions adjacent to Xining City and
Haidong City in the southeastern region of the QLM (Figure 4d).

During the study period, the annual average NEP in the QLM lay between 0.93
and 51.04 g C m−2 with an average value of 27.13 g C m−2, the minimum value occurred
in 2000, while the maximum value was shown in 2019. From 2000 to 2020, the NEP
showed a significant growing trend with a slope of 2.57 g C m−2 a−1, indicating the QLM
experienced an increasing trend of carbon sequestration (Figure 5a). Furthermore, along
with the increase in the NEP, the area percentage of the carbon sink region (NEP > 0)
increased by 15%, and reached 62% in 2020 compared with 2000 (Figure 5b).
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3.2. Independent and Interactive Effects of Driving Factors on NEP Change

As for the independent effects, most of the selected independent factors exerted a signif-
icant effect on the spatial change in NEP (p < 0.01), except the slope and aspect (Figure 6a).
Among these factors, altitude has the strongest effect (q-statistics value = 0.49), followed
by temperature (q-statistics value = 0.47), and soil type (q-statistics value = 0.45). Precip-
itation had a medium effect on NEP (q-statistics value > 0.30). Human activity intensity
and solar radiation showed a relatively weak impact on the NEP (q-statistics value < 0.3);
while the slope and aspect exerted a weak influence on the distribution of NEP in the QLM
(q-statistics value < 0.1).
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enhanced and nonlinear enhanced, respectively. The details of the interaction type can be found
in Table 2.

The results of the interaction detector manifested that the q-statistics values of the
pairwise factors were larger than that of the individual q-statistics value or their sum
(Figure 6b). According to Table 2, this demonstrates the interaction of two factors that
enhanced the effect on the NEP change. Among all the 28 interaction pairs, 5 pairs are
nonlinear enhanced (e.g., the interactions between slope, aspect and soil type, temperature,
solar radiation, and human activity intensity), while others are bivariable enhanced. The
q-statistics value of the interaction between precipitation and temperature was the highest
(q-statistics = 0.741). Additionally, relatively high interaction q-statistics values were de-
tected between altitude, soil type, solar radiation, and precipitation (q-statistics > 0.6). This
further demonstrated that these factors were the dominant factors affecting the NEP change
in the QLM. It is worth noting that the interaction of human activity intensity with soil
type, temperature, and altitude significantly enhanced the effect of human activity on the
NEP in the QLM. The q-statistics values of these pairs of interactions were over 0.55, which
was higher than the solitary effect of HA (q-statistics = 0.29). Overall, any pair of driving
factors interact for NEP change, either mutually enhancing or enhancing nonlinearly, rather
than acting independently.

3.3. The Effect Paths and Effect Strengths of the driving Factors on the NEP Change

The SEM results show that the interactions among factors were well-supported
by the model (Figure 7a). The parameters of goodness-of-fit (i.e., CMIN/DF = 2.611,
CFI = 0.954, RMSEA = 0.076) indicated the constructed model was well-fitted. Overall,
67% of the NEP change can be explained by the final model (Figure 7a). Altitude is the
primary factor for the latent variable of the natural environment, followed by soil type and
aspect; while temperature is the dominant factor of the latent variable of climatic factors,
followed by precipitation. This indicated that the NEP change in the QLM was impacted by
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the natural environment, climatic factors, and human activity intensity change in various
ways. The natural environment only had an indirect effect on NEP change, while climatic
factors and human activity intensity change both had direct and indirect effects on NEP
change in the QLM. The direct effect of human activity and climatic factors on NEP change
were −0.14 and 0.27 (p < 0.05), respectively. The indirect effect of human activity change on
NEP change was −0.195 (p < 0.05), while climatic factors exerted a positive indirect effect
of 0.352 by affecting the NPP (Figure 7a). As for the total effects of different latent variables,
the natural environment and climatic factors had a positive effect on NEP change with
an influential coefficient of 0.383 and 0.623, respectively (p < 0.05); while human activity
intensity change exerted a negative effect on the NEP change in the QLM with an influential
coefficient of −0.335 (p < 0.05) (Figure 7b). Overall, the positive effects of climatic factors
on NEP change outpaced the negative effects of human activity.
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Figure 7. The final fitted structural equation model for the NEP change in Qilian Mountains (a) and
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Asterisks indicate the significant level of the standardized regression coefficient (* and ** indicate
p < 0.05 and p < 0.01, respectively). R2 is the percentage of variance explained by the model.
NE: natural environment; CF: climatic factors; HA: human activity intensity change.

4. Discussion
4.1. The Effects of the Natural Environment Factors on NEP Change

Our results manifested that the natural environment variables (e.g., altitude, aspect,
slope, and soil type) indirectly affect NEP by altering the climatic factors, and human
activity intensity with a contribution of 38.3% (Figure 7b). Topography factors (e.g., altitude,
slope, and aspect) control the redistribution of water, and heat conditions, which exert
certain effects on vegetation growth and soil respiration [42]. Generally, the elevation
variation triggered the changes in temperature, precipitation, and soil properties, and these
changes had an effect on the spatial distribution and development of plants as well as soil
respiration [21,43]. The correlation analysis manifested that the altitude has significant
correlation with temperature, precipitation, and NEP change (Table 3). Moreover, altitude
can impact a series of important biological activities such as vegetation material metabolism,
photosynthesis, and stomatal density, especially in the alpine regions [3,23]. Liu et al. [44]
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found that vegetation growth significantly decreases when the altitude is over 3500 m
in the Qinghai-Tibetan Plateau. Soil type exerted a relatively strong effect on the NEP
(q-statistics value = 0.42). Slope and aspect can influence the retention of water, heat, and
soil nutrients, and further impact the uptake of carbon by vegetation and soil respiration.
Different soil type means various soil structure, moisture, and nutrient contents, which
can control vegetation growth. The soil properties of semi-leached soil, hydromorphic soil,
and calcic soil were more suitable for the growth of vegetation [40], while the arid soil,
saline-alkali, and desert soil were inconducive for the survival and growing of vegetation,
thus exerting an impact on the NEP. These findings are in line with a previous work in the
Gannan prefecture, Northeast Tibetan Plateau [21].

Table 3. Correlations between driving factors and NEP change.

NEP_c T_c P_c Altitude Slope SR_c HAI_c

T_c 0.521 **
P_c 0.322 * 0.307 *

Altitude −0.510 * −0.415 ** 0.224 **
Slope 0.151 −0.062 0.192 0.009
SR_c −0.221 * −0.263 −0.236 * 0.257 ** −0.133 *

HAI_c −0.210 * 0.110 * 0.089 * −0.235 ** −0.147 * 0.004
Aspect 0.220 0.051 * −0.010 −0.008 −0.065 −0.110 0.057

Note: NEP_c: NEP change; T_c: temperature change; P_c: precipitation change; SR_c: solar radiation change;
HAI_c: human activity intensity change. * p < 0.05; ** p < 0.01.

4.2. The Effects of Climatic Factors on NEP Change

Climate change can drive changes in vegetation and soil, therefore it alters the global
carbon budget and cycle [45,46]. The alpine environment coupled with the arid/semi-arid
climate makes the ecosystems in the QLM sensitive to climate change [29,30]. Owing to
the warming and wetting shifts in meteorological conditions in the QLM region during
the recent 20 years (Figure 8a,b), an increasing trend in NEP covered most regions of the
QLM, especially in mountainous areas (Figure 4). Our study indicated that the temperature
had a relatively high influence (q-statistics value > 0.40) on NEP changes among the
selected climatic factors. Temperature is essential for the photosynthesis and respiration
of plants, especially in the alpine regions [47]. Previous studies showed that the rising
temperature significantly extended the growing season and promoted the increase in
vegetation productivity in the Qinghai-Tibet Plateau [48]. Precipitation showed a relatively
strong effect to NEP (q-statistics value = 0.31). The significant increase in precipitation
promoted the development of the shallow root vegetation, and further led to the rise of NEP
in the midland of the QLM (Figure 8) [23]. Li et al. [49] found that the Qilian Mountains
have experienced a substantial warming and wetting trend as a result of favorable climatic
conditions, which have created ideal natural circumstances for vegetation restoration and
development. Climate warming and humidification reduced the low-temperature and
water stress in alpine regions and simultaneously improved the water supply in the lower
arid land, which promoted vegetation growth [50]. Moreover, in the energy-limited region,
warming can enhance the mineralization and availability of soil nitrogen and promote
vegetation productivity [51]. Temperature had a strong explanatory power on NEP change,
this is probably due to the restraint of vegetation growth by climate factors which has
altered from water limitation to energy constraints in the alpine region [52]. However,
solar radiation change exerted a slight negative effect on NEP change in the QLM (the
standardized regression coefficient is −0.23, Figure 7a). The solar radiation in the QLM
experienced a decreasing trend during the past 20 years, and it covered most regions of the
QLM (Figure 8c,e). Although the trend is insignificant, the decreasing trend has exerted a
negative effect on photosynthesis, and further inhibits the carbon uptake and dry matter
accumulation of vegetation [2]. The correlation analysis also indicated that the NEP change
showed a significant negative relationship with solar radiation change (Table 3). Analogous
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results were found in the Tibetan Plateau, China [26]. Moreover, shifts in meteorological
conditions can alter soil respiration, for instance, Zhang et al. [6] found that the warming
promoted the increase in soil heterotrophic respiration in Central Asia from 2000 to 2019.
Wei et al. [3] indicated with the rising of temperature and precipitation, the ecosystem
respiration showed a marked increasing trend in the Qinghai-Tibet Plateau. Overall, this
study found climatic factors contributed 62.3% to the NEP change in the QLM (Figure 7b),
and it was the primary driving force behind the increase in NEP.
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4.3. The Effect of Human Activity on NEP Change

Apart from the natural environment and climatic factors, human activity is another
important driving force behind the NEP change in the QLM. Our study found that the
human-induced decrease in NEP predominately occurred in the southeast edge and the
central region of the QLM. The southeast edge of the QLM is adjacent to Xining city (capital
city of Qinghai Province) and Haidong city (Figure 1). With the rapid development of these
cities, the increase in anthropogenic interference is inevitable, which exerts a negative effect
on vegetation growth, thus reducing the regional NEP. In the central region of the QLM, the
coal mining and reservoir construction were the primary human interference in decreasing
the NEP (e.g., the Muli mining site caused a significant decrease in NEP with an area
of ~100 km2. The reservoir construction formed a decreased region of NEP with an area
of ~210 km2) (Figure 4c). Moreover, the development of tourism is another driving factor
for the reduction in NEP in local regions [49]. As for husbandry, the livestock quantity in
the QLM showed a rising trend during the past two decades (Figure 9a). Which can be
ascribed to animal husbandry as the main industry of the QLM region. A previous study
indicated that overgrazing was the primary cause of grassland deterioration [12]. Long-
term overgrazing weakens the grassland’s resistance and reduces the carbon sequestration
capacity of the grassland ecosystem [53]. However, due to the implementation of the
Grain for Green Program and Natural Forest Protect Project, the farmland area in the QLM



Remote Sens. 2022, 14, 4046 14 of 18

showed a marked decrease in the last 20 years (Figure 9a) [13]. Meanwhile, owing to the
China Western Development and the Belt and Road Initiative, both the population and
Gross Domestic Product (GDP) of the QLM region experienced a significant increase during
the study period (Figure 9b). Generally, the growing human activity intensity inevitably
posed a negative impact on the NEP, and thus the NEP change showed a significant
negative relationship with the human activity intensity change (Table 3; Figure 10). In
total, human activity contributed 33.5% to the NEP change in the QLM with a negative
effect (Figure 7b). Although human activity led to the decrease in NEP to some extent, the
overall increase in NEP in the QLM was dominant. Therefore, the adverse consequences
of growing human-induced disturbances (e.g., grazing, mining, land cover changes, and
tourism) on NEP may be mitigated by the warming and wetting shifts in meteorological
conditions of the QLM region in the recent 20 years.
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4.4. Interactive Effects of Different Factors on NEP Change

Our study showed that the NEP had a nonlinear response (bivariable enhanced and
nonlinear enhanced) to the interaction of the driving factors (Figure 6b). The interaction of
temperature and precipitation had the highest q-statistics value, indicating climatic factors
exerted a crucial effect on NEP change in the QLM. The vegetation in the QLM region is
sensitive to temperature and precipitation due to its high altitude and arid environment [30].
Moreover, the interaction between altitude, temperature, and soil types had a relatively high
influence on NEP (Figure 6b). This is presumably because the elevation change generated
the difference in temperature and soil type, which impacted the spatial distribution and
development of plants [21]. Although slope, aspect, and solar radiation exerted a weak effect
on NEP, when they interact with temperature, altitude and soil type, their power obviously
improved (Figure 6b). This result is in line with previous studies [21,40]. Additionally, the
interaction of human activity with climatic factors significantly improved the strength of
the effects on NEP, for instance, the q-statistics of the interaction between human activity
with temperature was 0.568, which is higher than that of the individual factor (Figure 6b).
Similarly, Chen et al. [23] found that human activity (e.g., grazing, land cover changes)
sometimes amplified the impacts of climate change on the biogeochemical cycles in the
Qinghai-Tibetan Plateau. Overall, the results of the GDM manifested that the pairwise
factors often have a greater impact on NEP than individual factors or their aggregate,
indicating that the effects of the interacting factors did not simply accumulate in a linear
fashion but rather were nonlinear enhanced.

5. Conclusions

This paper provides a preliminary assessment of the net ecosystem productivity
(NEP) in the Qilian Mountains (QLM), Northwestern China, by coupling an empirical
model and remote sensing data. Additionally, by linking the Geodetector and structural
equation models, we present a fresh method to highlight the interaction and relative
contributions of human activity intensity, natural environment, and climatic factors on
the alteration of the NEP in the QLM. The main conclusions are as follows: (1) Most re-
gions (78.93%) of the QLM have experienced a significant increasing trend of NEP during
the recent 20 years; while only 1.82% experienced a significant decrease in NEP, which
are primarily located in the southeastern edge and central regions of the QLM. (2) The
area percentage of the carbon sink increased by 15%, from 47% in 2000 to 62% in 2020.
(3) The natural environment and climatic variables, such as altitude, soil type, temperature,
and precipitation were the dominant driving factors for the spatial change in NEP in the
QLM. (4) Compared with individual factors, the interaction of pairs of driving factors
(e.g., temperature and precipitation, soil type and temperature, altitude, and human activ-
ity) enhanced the influence strength on NEP change. (5) The natural environment factors
(e.g., altitude and soil type) indirectly affected NEP change by influencing human activities
and climatic factors, while human activity and climatic factors both exerted direct and
indirect effects on NEP change. (6) The climatic factor was the highest contributor (62.3%) to
NEP change, followed by the natural environment factor (38.3%) and human activity inten-
sity (33.5%). The positive effects of climatic factors on NEP change outpaced the negative
effects of human activity; therefore, there was an overall increase in NEP. These findings can
improve understanding of the complicated interrelationships of different driving factors
behind the spatiotemporal change in NEP in alpine ecosystems of arid/semi-arid regions.
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