
Citation: Han, F.; Fu, G.; Yu, C.;

Wang, S. Modeling Nutrition Quality

and Storage of Forage Using Climate

Data and Normalized-Difference

Vegetation Index in Alpine

Grasslands. Remote Sens. 2022, 14,

3410. https://doi.org/10.3390/

rs14143410

Academic Editor: Parth Sarathi Roy

Received: 23 June 2022

Accepted: 14 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Modeling Nutrition Quality and Storage of Forage Using
Climate Data and Normalized-Difference Vegetation Index in
Alpine Grasslands
Fusong Han 1, Gang Fu 1,* , Chengqun Yu 1 and Shaohua Wang 2,3

1 Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and
Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences,
Beijing 100101, China; hanfs.17b@igsnrr.ac.cn (F.H.); yucq@igsnrr.ac.cn (C.Y.)

2 Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of
Sciences, Beijing 100094, China; wangshaohua@aircas.ac.cn

3 State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy
of Sciences, Beijing 100094, China

* Correspondence: fugang@igsnrr.ac.cn or fugang09@126.com

Abstract: Quantifying forage nutritional quality and pool at various spatial and temporal scales are
major challenges in quantifying global nitrogen and phosphorus cycles, and the carrying capacity
of grasslands. In this study, we modeled forage nutrition quality and storage using climate data
under fencing conditions, and using climate data and a growing-season maximum normalized-
difference vegetation index under grazing conditions based on four different methods (i.e., multiple
linear regression, random-forest models, support-vector machines and recursive-regression trees)
in the alpine grasslands of Tibet. Our results implied that random-forest models can have greater
potential ability in modeling forage nutrition quality and storage than the other three methods. The
relative biases between simulated nutritional quality using random-forest models and the observed
nutritional quality, and between simulated nutrition storage using random-forest models and the
observed nutrition storage, were lower than 2.00% and 6.00%, respectively. The RMSE between
simulated nutrition quality using random-forest models and the observed nutrition quality, and
between simulated nutrition storage using random-forest models and the observed nutrition storage,
were no more than 0.99% and 4.50 g m−2, respectively. Therefore, random-forest models based on
climate data and/or the normalized-difference vegetation index can be used to model forage nutrition
quality and storage in the alpine grasslands of Tibet.

Keywords: random-forest model; multiple linear regression; support-vector machines; recursive-
regression trees

1. Introduction

Forage nutritional quality and pool can affect the quality and size of livestock and
wildlife, and the nutrient-carrying capacity in various grassland ecosystems [1–3]. Crude
protein (CP), ether extract (EE), crude ash (Ash), acid detergent fiber (ADF), neutral de-
tergent fiber (NDF) and water-soluble carbohydrate (WSC) contents and pools are often
treated as indicators of forage nutritional quality and nutritional pools, respectively [4,5].
Quantifying their variations at various spatial and temporal scales are major challenges
in quantifying the global nitrogen and phosphorus cycles and carrying capacity of grass-
lands [2,6]. More and more studies have estimated forage nutritional quality and pool at
various spatial and temporal scales [2,7–10]. However, there are still some uncertainties.
First, compared to plant biomass and/or production, forage nutritional quality and pool
have been less modeled at various spatial and temporal scales [11,12]. Second, compared
to CP, the other five variables (i.e., EE, Ash, ADF, NDF and WSC) have been less quantified
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by previous studies [13,14]. Meanwhile, CP by itself cannot fully reflect changes in forage
nutrition quality and pool [1,4,15,16]. Third, many of these previous studies have modeled
forage nutrition quality and/or pool using only remote-sensing data [9,13,14], because
plant growth conditions can be indicated by remote-sensing data and can be closely re-
lated to forage nutritional quality and pools [4,17]. However, remote-sensing data are
concurrently influenced by climate change and humanoid activities [18,19]. For example,
climate change can directly affect various vegetation indices (e.g., the normalized-difference
vegetation index) [20–23]. Grazing can also directly affect the normalized-difference vege-
tation index and the soil-adjusted vegetation index [24]. Moreover, it is tricky to accurately
separate the effects of climate change and humanoid activities on terrestrial ecosystems,
especially at bulky scales [11]. These findings indicate that it is hard to examine the ex-
clusivity relationships between forage nutrition and climate variables based on simulated
forage nutrition from remote-sensing data alone. Fourth, previous studies have mainly
estimated the nutrient quality and pool of forage via exponential regression, stepwise linear
regression, partial least-squares regression and the derivative transformation technique
for hyperspectral data [25–27]. As an increasingly mature technology, big-data-mining
technology (e.g., random-forest models, support-vector machines and recursive-regression
trees) has higher precision and data processing ability than other methods [28]. However, to
the best of our knowledge, only a few studies have tried to simulate the nutritional quality
and pool of plants using big-data-mining technology. That is, it remains unclear whether
or not big-data-mining technology can be used to simulate forage nutritional quality and
pools. Moreover, it is still not clear whether the accuracy of big-data-mining technology
in simulating forage nutritional quality and pools is greater than that of other methods.
Therefore, more studies are needed to better predict forage nutritional quality and pool at
various spatial and temporal scales in grasslands around the world under global change.

Forage nutritional quality and pool can determine the quality and size of livestock and
wildlife and affect the policy of balance between forage and livestock in alpine grasslands on
the Tibetan Plateau. At present, the policy of balance between forage and livestock mainly
depends on forage yield rather than nutritional pool on the Tibetan Plateau. However,
amount carrying capacity always overestimates or underestimates the nutritional carrying
capacity in alpine grasslands on the Tibetan Plateau [29,30]. These findings imply that a
combination of amount carrying capacity and nutritional carrying capacity can be better
in the accuracy quantization of carrying capacity. The accurate quantification of forage
nutritional quality and pool is an important basis for the accurate quantification of livestock
carrying capacity and the balance between forage and livestock in alpine grasslands on
the Tibetan Plateau. It is expected that big-data-mining technology (e.g., random-forest
models) may be used to simulate forage nutritional quality and pool, whereas, to our best
knowledge, few studies have tried to evaluate and compare the accuracies of different
methods of big-data-mining technology in predicting forage CP, EE, Ash, ADF, NDF and
WSC contents and pools in alpine grasslands on the Tibetan Plateau. Therefore, it is still not
clear which one is the better big-data-mining technology in predicting the nutrient quality
and pools of forage in alpine grasslands on the Tibetan Plateau.

Random-forest models, support-vector machines and recursive-regression trees are
three commonly used big-data-mining technologies [28], and they have been developed
as packages (i.e., randomForest, e1071 and rpart) of the R software. The packages ran-
domForest, e1071 and rpart can greatly facilitate our processing of big data and the sim-
ulation/prediction of forage nutritional quality and pool. Therefore, in this study, we
modeled forage nutritional quality and pool in alpine grasslands from climate data and/or
the growing-season maximum normalized-difference vegetation index under fencing or
grazing conditions in Tibet, based on multiple linear regressions, random-forest models,
support-vector machines and recursive-regression trees. The main objectivities of this study
were to compare the accuracies of the random-forest models, support-vector machines and
recursive-regression trees in predicting forage CP, EE, Ash, ADF, NDF and WSC contents
and pools in alpine grasslands.
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2. Materials and Methods
2.1. Plant Sampling and Analyses

In July–August 2018–2020, we clipped the aboveground biomass of all plants from
190 quadrats under fencing conditions and 190 quadrats under grazing conditions in alpine
grasslands of Tibet. The sampling sites are illustrated in Figure 1. The quadrat sizes were
0.50 m × 0.50 m and 1.00 m × 1.00 m for alpine meadows and alpine steppes, respectively.
The aboveground biomass was weighed after oven-drying at 65 ◦C for 48 h. Then, we
measured the CP, EE, Ash, ADF/NDF and WSC using the Kjeldahl method, Soxhlet
extraction method, complete combustion method, Van Soest method and anthrone-based
method, respectively [4].
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Figure 1. Sampling sites.

2.2. Normalized-Difference Vegetation Index and Climate Data

The growing-season (May–September) maximum normalized-difference vegetation
index was obtained using a Moderate-Resolution Imaging Spectroradiometer (MOD13A3,
Collection 6, 1 km × 1 km, monthly). Monthly air temperature, precipitation and ra-
diation data were obtained from interpolated climate data with a spatial resolution of
1 km × 1 km [31]. According to previous studies [11,32], we assumed that the CP, EE, Ash,
ADF, NDF and WSC contents and pools under fencing conditions were only affected by
climate change (air temperature, precipitation and radiation), and they had potential forage
nutritional quality and pools. By contrast, we assumed the CP, EE, Ash, ADF, NDF and
WSC contents and pools under grazing conditions were simultaneously affected by climate
change and human activities, and they had actual nutritional quality and pool. Growing-
season mean air temperature, total precipitation and total radiation were used to simulate
the potential CP, EE, Ash, ADF, NDF and WSC contents and pools under fencing conditions
based on multiple linear regressions, random-forest models, support-vector machines and
recursive-regression trees, respectively (Tables 1–4). By contrast, growing-season mean air
temperature, total precipitation, total radiation and the maximum normalized-difference
vegetation index were used to simulate the actual CP, EE, Ash, ADF, NDF and WSC contents
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and pools under grazing conditions based on multiple linear regressions, random-forest
models, support-vector machines and recursive-regression trees, respectively (Tables 1–4).

Table 1. Regression parameters of multiple-linear-regression models for acid detergent fiber (ADF),
crude ash (Ash), crude protein (CP), ether extract (EE), neutral detergent fiber (NDF) and water-
soluble carbohydrate (WSC) contents and pools under fencing or grazing conditions, respectively.

Variables
Land-Use

Types
Regression Coefficients

R2
Intercept Temperature Precipitation Radiation NDVI

ADF content Fencing −9.56 −0.39 0.00 0.01 0.26
Grazing −13.03 1.60 0.02 0.01 −2.09 0.25

ADF pool Fencing −24.26 1.96 0.03 0.01 0.05
Grazing −143.96 1.58 0.02 0.03 69.08 0.39

Ash content Fencing −55.08 0.80 −0.01 0.02 0.70
Grazing −35.98 1.33 0.01 0.01 −11.00 0.42

Ash pool Fencing −49.26 0.67 0.01 0.01 0.20
Grazing −129.79 1.18 0.00 0.03 43.03 0.28

CP content Fencing 36.37 −0.02 0.00 −0.01 0.75
Grazing 42.75 −0.59 −0.01 −0.01 1.12 0.57

CP pool Fencing 20.33 0.36 0.00 −0.01 0.20
Grazing −12.70 0.15 0.00 0.00 19.28 0.57

EE content Fencing 7.47 −0.02 0.00 0.00 0.57
Grazing 8.02 −0.19 0.00 0.00 −0.48 0.50

EE pool Fencing 2.95 0.06 0.00 0.00 0.06
Grazing −2.25 0.00 0.00 0.00 3.98 0.44

NDF content Fencing 88.26 −0.20 0.01 −0.01 0.25
Grazing 33.80 0.62 0.02 0.00 −9.44 0.08

NDF pool Fencing 7.60 2.29 0.05 −0.01 0.11
Grazing −257.39 2.45 0.03 0.06 121.09 0.49

WSC content Fencing −2.44 0.18 0.00 0.00 0.35
Grazing −12.70 0.18 0.00 0.00 2.82 0.28

WSC pool Fencing −4.36 0.19 0.00 0.00 0.09
Grazing −36.28 0.43 0.00 0.01 20.99 0.41

Table 2. Parameters of random-forest models for acid detergent fiber (ADF), crude ash (Ash), crude
protein (CP), ether extract (EE), neutral detergent fiber (NDF) and water-soluble carbohydrate (WSC)
contents and pools under fencing or grazing conditions, respectively.

Variables Land-Use Types R2 Mean Square Errors ntree mtry

ADF content Fencing 0.82 3.82 773 3
Grazing 0.90 4.59 872 2

ADF pool Fencing 0.73 90.31 813 3
Grazing 0.91 27.89 897 4

Ash content Fencing 0.93 3.76 549 1
Grazing 0.94 3.09 887 4

Ash pool Fencing 0.78 13.79 786 1
Grazing 0.76 54.90 450 3

CP content Fencing 0.92 0.28 508 1
Grazing 0.93 0.40 788 1

CP pool Fencing 0.83 1.55 945 1
Grazing 0.93 1.29 340 3

EE content Fencing 0.80 0.04 501 2
Grazing 0.91 0.04 503 2

EE pool Fencing 0.79 0.08 331 2
Grazing 0.88 0.10 809 2

NDF content Fencing 0.86 3.19 824 3
Grazing 0.93 3.17 939 4

NDF pool Fencing 0.78 64.46 328 1
Grazing 0.94 51.90 755 4

WSC content Fencing 0.82 0.34 640 2
Grazing 0.96 0.23 850 4

WSC pool Fencing 0.77 0.65 215 1
Grazing 0.87 4.14 622 3
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Table 3. Parameters of support-vector machines for acid detergent fiber (ADF), crude ash (Ash),
crude protein (CP), ether extract (EE), neutral detergent fiber (NDF) and water-soluble carbohydrate
(WSC) contents and pools under fencing or grazing conditions, respectively.

Variables Land-Use Types Mean Residuals Mean Decision Values No of Support Vectors

ADF content Fencing −0.06 0.01 145
Grazing −0.32 0.05 144

ADF pool Fencing 5.01 −0.27 173
Grazing 1.21 −0.07 127

Ash content Fencing −0.20 0.03 138
Grazing −0.16 0.02 138

Ash pool Fencing 1.20 −0.15 140
Grazing 2.88 −0.19 162

CP content Fencing 0.08 −0.04 126
Grazing 0.16 −0.07 129

CP pool Fencing 0.50 −0.17 138
Grazing 0.21 −0.05 120

EE content Fencing 0.03 −0.07 143
Grazing 0.01 −0.02 131

EE pool Fencing 0.15 −0.24 145
Grazing 0.13 −0.14 143

NDF content Fencing 0.19 −0.04 150
Grazing −0.22 0.03 131

NDF pool Fencing 3.20 −0.19 145
Grazing 1.88 −0.07 120

WSC content Fencing −0.04 0.03 155
Grazing 0.11 −0.05 144

WSC pool Fencing 0.30 −0.18 150
Grazing 0.71 −0.13 137

Table 4. Parameters of recursive-regression trees for acid detergent fiber (ADF), crude ash (Ash),
crude protein (CP), ether extract (EE), neutral detergent fiber (NDF) and water-soluble carbohydrate
(WSC) contents and pools under fencing or grazing conditions, respectively.

Variables Land-Use Types R2 Minsplit Minbucket Maxcompete Maxsurrogate Usesurrogate Surrogatestyle Maxdepth xval

ADF content Fencing 0.60 20 7 4 5 2 0 30 10
Grazing 0.84 20 7 4 5 2 0 30 10

ADF pool Fencing 0.24 20 7 4 5 2 0 30 10
Grazing 0.87 20 7 4 5 2 0 30 10

Ash content Fencing 0.88 20 7 4 5 2 0 30 10
Grazing 0.69 20 7 4 5 2 0 30 10

Ash pool Fencing 0.50 20 7 4 5 2 0 30 10
Grazing 0.55 20 7 4 5 2 0 30 10

CP content Fencing 0.92 20 7 4 5 2 0 30 10
Grazing 0.86 20 7 4 5 2 0 30 10

CP pool Fencing 0.37 20 7 4 5 2 0 30 10
Grazing 0.89 20 7 4 5 2 0 30 10

EE content Fencing 0.81 20 7 4 5 2 0 30 10
Grazing 0.84 20 7 4 5 2 0 30 10

EE pool Fencing 0.32 20 7 4 5 2 0 30 10
Grazing 0.77 20 7 4 5 2 0 30 10

NDF content Fencing 0.73 20 7 4 5 2 0 30 10
Grazing 0.42 20 7 4 5 2 0 30 10

NDF pool Fencing 0.45 20 7 4 5 2 0 30 10
Grazing 0.91 20 7 4 5 2 0 30 10

WSC content Fencing 0.65 20 7 4 5 2 0 30 10
Grazing 0.54 20 7 4 5 2 0 30 10

WSC pool Fencing 0.36 20 7 4 5 2 0 30 10
Grazing 0.66 20 7 4 5 2 0 30 10

2.3. Statistical Analysis

We used the cross-validations across all 190 samples under fencing or grazing condi-
tions. The 190 samples were randomly divided into two groups. The first group (n = 170)
was used to obtain the multiple linear regressions, random-forest models, support-vector
machines and recursive-regression trees for each of the six variables under fencing or



Remote Sens. 2022, 14, 3410 6 of 20

grazing conditions. The second group (n = 20) was used to validate the multiple linear
regressions, random-forest models, support-vector machines and recursive-regression trees.
The relative bias, root-mean-square error (RMSE), relative RMSE, determination coefficient
(R2) and linear slope between simulated and observed data were treated as indicators of
model accuracies. The multiple linear regressions, random-forest models, support-vector
machines and recursive-regression trees were performed using R.4.1.2.

3. Results
3.1. Model Building

The key parameters of the models between the nutritional quality and pool variables
(i.e., CP, EE, Ash, ADF, NDF and WSC contents and pools) and growing-season climate data
(i.e., mean air temperature, total precipitation and total radiation), and/or the maximum
normalized-difference vegetation index under fencing or grazing conditions, are shown in
Tables 1–4, respectively. Different methods can provide different parameters among the
four methods (Tables 1–4). For example, the multiple linear regressions, random-forest
models, and recursive-regression trees can directly provide R2 values (Tables 1, 2 and 4). By
contrast, the support-vector machines did not directly provide R2 values (Table 3). Among
the multiple linear regressions, random-forest models, and recursive-regression trees, the
multiple linear regressions explained the fewest variations in all the nutritional quality and
pools variables, and the random-forest models explained the most variations for most of
the nutritional quality and pools variables (Tables 1, 2 and 4). The explanation abilities of
the environmental variables of forage nutritional quality and pool can change with differ-
ent indices of forage nutritional quality and pool, and land use types (Tables 1, 2 and 4).
Climate data can explain about 73–93%, 5–75% and 24–92% of the variation in these vari-
ables related to forage nutritional quality and pool, based on the random-forest models,
multiple linear regressions and recursive-regression trees under fencing conditions, re-
spectively (Tables 1, 2 and 4). Meanwhile, climate data and growing-season maximum
normalized-difference vegetation index can, together, explain about 76–96%, 8–57% and
42–91% of the variation in these variables related to forage nutritional quality and pool,
based on the random-forest models, multiple linear regressions and recursive-regression
trees under grazing conditions, respectively (Tables 1, 2 and 4). No fixed or default ntree
and mtry parameters were used for the random-forest models (Table 2). Additionally, no
fixed support-vector parameter was used for the support-vector machines (Table 3).

3.2. Model Validation

The RMSE and relative RMSE values between the simulated and observed nutritional
quality and pool variables under fencing or grazing conditions are shown in Tables 5
and 6. The RMSE and relative RMSE values between the simulated nutritional quality
and pool variables using random-forest models, and the observed nutritional quality and
pool variables, were the lowest among the four simulated methods under both fencing and
grazing conditions, respectively. The RMSE and relative RMSE values between simulated
nutrition quality using random-forest models and observed nutrition quality were no
more than 0.99% and 7.23%, respectively. Meanwhile, the RMSE and relative RMSE
values between the simulated nutrition storage using random-forest models and observed
nutrition storage were no more than 4.50 g m−2 and 35.32%, respectively.
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Table 5. The RMSE (g m−2) between simulated and observed nutritional quality and pool variables
under fencing or grazing conditions (n = 20).

Variables

Fencing Grazing

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

CP content 0.60 0.13 0.32 0.40 0.66 0.19 0.53 0.55
CP pool 3.50 0.94 3.52 2.47 2.41 0.55 1.20 1.07

Ash
content 3.47 0.86 2.18 2.47 3.80 0.46 2.39 2.49

Ash pool 7.58 2.37 7.67 8.31 10.24 2.99 6.68 5.97
EE content 0.30 0.12 0.16 0.17 0.33 0.07 0.15 0.22

EE pool 0.47 0.11 0.44 0.45 0.72 0.15 0.59 0.38
WSC

content 0.84 0.32 0.79 0.61 1.61 0.33 1.04 0.92

WSC pool 1.22 0.32 0.89 0.84 2.88 0.50 1.61 1.46
ADF

content 3.06 0.99 2.34 1.52 2.97 0.93 1.63 1.85

ADF pool 9.93 3.72 9.25 9.66 15.37 2.75 9.69 5.11
NDF

content 2.43 0.61 2.01 1.47 6.80 0.74 3.77 2.26

NDF pool 14.45 4.50 7.88 5.83 17.55 2.80 11.09 5.93

Table 6. Relative RMSE (%) between simulated and observed nutritional quality and pool variables
under fencing or grazing conditions (n = 20).

Variables

Fencing Grazing

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

CP content 8.36 1.81 4.46 5.57 8.58 2.47 6.89 7.15
CP pool 84.07 22.58 84.55 59.33 67.16 15.33 33.44 29.82

Ash
content 15.41 3.82 9.68 10.97 17.74 2.15 11.16 11.63

Ash pool 86.63 27.08 87.65 94.97 120.96 35.32 78.91 70.52
EE content 18.08 7.23 9.64 10.24 21.70 4.60 9.86 14.47

EE pool 65.91 15.43 61.71 63.11 121.12 25.23 99.25 63.92
WSC

content 18.93 7.21 17.81 13.75 28.86 5.92 18.64 16.49

WSC pool 64.91 17.03 47.35 44.69 99.94 17.35 55.87 50.67
ADF

content 7.55 2.44 5.77 3.75 7.42 2.32 4.07 4.62

ADF pool 49.77 18.65 46.36 48.42 71.36 12.77 44.99 23.72
NDF

content 4.11 1.03 3.40 2.49 11.83 1.29 6.56 3.93

NDF pool 66.96 20.85 36.52 27.02 92.97 14.83 58.75 31.41

The relative biases between the simulated and observed nutritional quality and pool
variables under fencing or grazing conditions are shown in Table 7. The absolute values of
the relative biases between the simulated—using multiple linear regressions—and observed
Ash contents, EE contents, ADF contents and NDF pools were the largest among the four
simulated methods under both fencing and grazing conditions. The absolute values of
the relative biases between the simulated—using support-vector machines—and observed
CP pools and WSC pools were the largest among the four simulated methods under
both fencing and grazing conditions. The absolute values of the relative biases between
the simulated—using recursive-regression trees—and observed WSC contents were the
largest among the four simulated methods under both fencing and grazing conditions.
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The absolute values of the relative biases between the simulated—using random-forest
models—and observed Ash pools, EE contents, WSC pools and NDF pools were the lowest
among the four simulated methods under both fencing and grazing conditions. All the
relative biases between the simulated and observed nutritional quality and pool variables
were lower than 6.00% for the random-forest models, whereas those of the other three
methods were greater than 6.00% (even 20.00%) for some cases.

Table 7. Relative bias (%) between simulated and observed nutritional quality and pool variables
under fencing or grazing conditions (n = 20).

Variables

Fencing Grazing

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

CP content 4.16 0.71 1.48 1.33 0.63 0.90 −0.20 −0.82
CP pool −10.52 4.65 −27.32 −2.04 −9.95 0.25 −10.02 10.00

Ash
content −2.11 −0.78 −1.46 0.02 −4.57 0.91 4.31 2.02

Ash pool 18.86 3.44 11.62 23.37 45.75 4.38 −11.59 22.45
EE content −1.79 −0.96 1.71 −0.75 13.16 1.23 1.79 6.14

EE pool 5.76 −5.56 −20.20 4.24 24.20 5.48 3.68 20.84
WSC

content 0.23 −1.78 0.52 −5.16 1.10 −0.18 1.13 1.19

WSC pool 4.48 −1.02 −7.99 3.55 −6.05 −1.44 −18.71 9.19
ADF

content −1.11 −0.06 −0.87 −0.68 −2.47 −0.68 −0.20 −0.20

ADF pool 3.92 0.80 −12.79 4.63 −25.55 −2.26 −20.12 −0.57
NDF

content 0.28 0.51 −0.30 0.16 1.62 −0.32 1.43 0.48

NDF pool 21.04 0.83 3.71 −2.23 28.43 2.65 5.52 19.89

The linear slopes between the simulated and observed nutritional quality and pool
variables under fencing or grazing conditions are shown in Table 8. Generally, the slopes
between the simulated forage nutritional quality and pool variables using random-forest
models, and the observed forage nutritional quality and pool variables, were the closest to
1 compared to the other three methods. The linear slopes were within 0.55–1.12, 0.94–1.02,
0.47–1.04 and 0.77–1.30 between the observed and simulated nutritional quality and pool
variables from the multiple linear regressions, random-forest models, support-vector ma-
chine and recursive-regression trees, respectively.

Table 8. The linear slopes between simulated and observed nutritional quality and pool variables
under fencing or grazing conditions (n = 20).

Variables

Fencing Grazing

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

Multiple
Linear

Regression

Random
Forest

Support-
Vector

Machines

Recursive-
Regression

Trees

CP content 1.04 1.01 1.01 1.01 1.00 1.01 0.99 0.98
CP pool 0.55 1.02 0.47 0.77 0.71 0.99 0.90 1.01

Ash content 0.95 0.99 0.97 0.99 0.94 1.01 1.04 1.02
Ash pool 0.73 0.94 0.70 0.79 0.84 0.98 0.59 1.30

EE content 0.94 0.99 1.00 0.98 1.12 1.01 1.01 1.05
EE pool 0.75 0.95 0.60 0.86 0.80 1.00 0.64 0.92

WSC content 0.97 0.98 0.97 0.94 0.94 0.99 0.97 0.99
WSC pool 0.77 0.97 0.77 0.91 0.72 1.00 0.70 1.00

ADF content 0.99 1.00 0.99 0.99 0.97 0.99 1.00 1.00
ADF pool 0.81 0.97 0.73 0.92 0.62 0.98 0.76 0.95

NDF content 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
NDF pool 0.94 0.99 0.90 0.94 0.91 1.00 0.91 1.01
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The R2 values between the simulated and observed nutritional quality and pool vari-
ables under fencing or grazing conditions are shown in Figures 2–9. Generally, the R2 values
between the simulated forage nutritional quality and pool variables using random-forest
models, and the observed forage nutritional quality and pool variables, were the closest
to 100% compared to the other three methods. The simulated nutritional quality and pool
variables from multiple linear regressions, random-forest models, support-vector machine
and recursive-regression trees can explain 47–100%, 93–100%, 56–100% and 57–100% of the
observed nutritional quality and pool variables, respectively.Remote Sens. 2022, 14, 3410 9 of 20 
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Figure 2. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under fencing conditions. The solid lines
indicate fitted lines. All the simulated data were based on multiple linear regression.
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Figure 3. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under grazing conditions. The solid lines
indicate fitted lines. All the simulated data were based on multiple linear regression.
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observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein 
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and 
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate 
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between 

Figure 4. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under fencing conditions. The solid lines
indicate fitted lines. All the simulated data were based on random-forest model.
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Figure 5. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under grazing conditions. The solid lines
indicate fitted lines. All the simulated data were based on random-forest model.
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(EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content; (e) 
between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and 
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein 
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and 

Figure 6. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under fencing conditions. The solid lines
indicate fitted lines. All the simulated data were based on support-vector machines.
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Figure 7. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under grazing conditions. The solid lines
indicate fitted lines. All the simulated data were based on support-vector machines.
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observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate 
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between 
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Figure 8. Relationships (a) between simulated and observed crude protein (CP) content; (b) between 
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Figure 8. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under fencing conditions. The solid lines
indicate fitted lines. All the simulated data were based on recursive-regression trees.
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Figure 9. Relationships (a) between simulated and observed crude protein (CP) content; (b) be-
tween simulated and observed crude ash (Ash) content; (c) between simulated and observed ether
extract (EE) content; (d) between simulated and observed water-soluble carbohydrate (WSC) content;
(e) between simulated and observed acid detergent fiber (ADF) content; (f) between simulated and
observed neutral detergent fiber (NDF) content; (g) between simulated and observed crude protein
(CP) pool; (h) between simulated and observed crude ash (Ash) pool; (i) between simulated and
observed ether extract (EE) pool; (j) between simulated and observed water-soluble carbohydrate
(WSC) pool; (k) between simulated and observed acid detergent fiber (ADF) pool; and (l) between
simulated and observed neutral detergent fiber (NDF) pool under grazing conditions. The solid lines
indicate fitted lines. All the simulated data were based on recursive-regression trees.
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4. Discussion

The R2 values of the random-forest models, multiple linear regression and recursive-
regression trees were within 0.73–0.96, 0.05–0.75 and 0.24–0.92, respectively (Tables 1, 2 and 4),
indicating that generally, random-forest models can have a greater explanatory ability in
forage nutritional quality and pools than multiple linear regression and recursive-regression
trees. Our findings indicated that the R2 values of random-forest models under grazing
conditions were generally greater than those under fencing conditions (Table 2). That is,
the combination of climate data and growing-season maximum normalized-difference
vegetation index may better model CP, EE, Ash, ADF, NDF and WSC contents and pools
in the alpine grasslands of Tibet under grazing conditions. However, the data sources of
the random-forest models under fencing conditions are different from those under grazing
conditions in this study. Moreover, the R2 values of the multiple linear regression and
recursive-regression trees under grazing conditions were lower than those under fencing
conditions for some cases (Tables 1 and 4). Therefore, further studies are needed on whether
or not the combination of climate data and the growing-season maximum normalized-
difference vegetation index had closer relationships with forage nutritional quality and
pool than single climate data in the alpine grasslands of Tibet.

Climate data had closer relationships with forage nutritional quality than nutritional
storage under fencing conditions. Moreover, the predicted accuracies of forage nutritional
pools were lower than those of forage nutritional quality in most cases. These findings
may be related to the fact that forage nutritional pools were equal to the multiplication of
forage nutritional quality and aboveground plant biomass. As is well known, aboveground
plant biomass is generally directly related to air temperature, precipitation and radiation in
alpine grasslands on the Tibetan Plateau [12,20,21,23,33,34]. However, to the best of our
knowledge, climate data alone cannot capture 100% of the variation in aboveground plant
biomass in alpine grasslands on the Tibetan Plateau [12,31]. On the other hand, both the
explained ability of climate data in aboveground plant biomass and the predicted accuracy
of aboveground plant biomass models derived from climate data may be lower than those
of nutritional quality in alpine grasslands on the Tibetan Plateau [28].

Our findings implied that different methods can have different predicted accuracies,
which may be mainly due to their different algorithms. For example, firstly, the correlations
between the dependent variables and independent variables are assumed to be linear for the
multiple-linear-regression method. In contrast, the random-forest models cannot directly
assume the linear or nonlinear relationships among independent variables, nor their linear
or nonlinear relationships with dependent variables. Actually, the forage nutritional quality
variables cannot always have linear relationships with climate data [4,12,35]; this, in turn,
may result in the lower predicted accuracies of forage nutritional quality and pool for
the multiple linear regressions, but the higher predicted accuracies of forage nutritional
quality and pool for the random-forest models in this study. Secondly, ntree and mtry
are two important and key parameters of random-forest models, and they are generally
not fixed values. Users can try their best to find the relatively optimal combination of
ntree and mtry by adjusting the parameters of ntree and mtry, which can guarantee that
a relatively optimal random-forest model is obtained. Similarly, the number of support
vectors, as one key parameter of a support-vector machine, is not generally a fixed value.
By contrast, there are no adjustable parameters for the multiple-linear-regression method.
Thirdly, randomness is one obvious characteristic of the random-forest model, but not for
the multiple-linear-regression method.

Our findings suggest that random-forest models can have the greatest potential ability
to predict forage nutritional quality and pools in alpine grasslands among the four methods.
The predicted accuracies of the CP, EE, Ash, ADF, NDF and WSC contents and pools from
the random-forest models in this study were greater than those reported by previous
studies [2,25,36–39]. For example, a previous simulated study demonstrated that the
relative biases of CP, EE, ADF and NDF were 5.97%, 2.30%, 3.82% and 3.82% in alpine
grasslands of the Qilian Mountain, respectively [36], which were greater than those in
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this study (Table 5). The R2 values were 0.23–0.76 for the CP pool of model building in
alpine grasslands of the Haibei region [36], which were lower than the R2 values (0.83–0.93)
in this study. Moreover, in this study, the default parameters of ntree and mtry were not
used, whereas the relatively optimal combination of ntree and mtry parameters was used.
Therefore, the random-forest models established by this study can be used to predict
changes in forage nutritional quality and pool under climate change and grazing conditions
in alpine grasslands on the Tibetan Plateau.

5. Conclusions

In this study, we established and evaluated four methods (i.e., random-forest models,
multiple linear regression, support-vector machines and recursive-regression trees) for
the CP, EE, Ash, ADF, NDF and WSC contents and pools in the alpine grasslands of
Tibet, under fencing or grazing conditions, respectively. The predicted accuracies of these
random-forest models were relatively higher than those of the other three methods. The
simulated nutritional quality using random-forest models can have high accuracies, with
relative biases of <2.00% and an RMSE of <0.99%. The simulated nutritional storage using
random-forest models can also have high accuracies, with relative biases of <6.00% and
an RMSE of <4.50 g m−2. The linear slopes were within 0.55–1.12, 0.94–1.02, 0.47–1.04
and 0.77–1.30 between the observed and simulated nutritional quality and pool variables
using multiple linear regressions, random-forest models, the support-vector machine and
recursive-regression trees, respectively. The simulated nutritional quality and pool variables
from multiple linear regressions, random-forest models, the support-vector machine and
recursive-regression trees can explain 47–100%, 93–100%, 56–100% and 57–100% of the
observed nutritional quality and pool variables, respectively. Therefore, the established
random-forest models can be used to model nutritional quality and storage in alpine
grasslands on the Tibetan Plateau.
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