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ABSTRACT
The rapid growth and expansion ofCryptomeria japonica (Thunb. ex L. f.) D. Don
in karst area strongly affects plant composition of native deciduous broad-leaved
forest, which seriously threat ecosystem function and service. Given the importance
of soil microorganisms in regulating nutrients cycling and plant species coexistence,
understanding soil microbial attributes and their relationships with soil and vegetation
features in forests harboring different C. japonica abundance will help understanding
the drivers of ecosystem function changes. Here we examined the diversity and
composition of soil bacterial and fungal communities and their correlations with
plant diversity as well as soil physicochemical properties in karst broad-leaved forests
with different relative abundances of C. japonica (i.e., a high, moderate, low and no
proportion level with a stem density of 1,487, 538, 156 and 0 plant/hm2, respectively)
in Mid-Subtropical China. We found that soil pH decreased while soil water content
(SWC), total nitrogen (TN), total phosphorus (TP) and total potassium (TK) tended to
increase with the increase in C. japonica abundance. In contrast, soil available nitrogen
(AN), available phosphorus (AP) and available potassium (AK) content declined by
26.1%∼49.3% under the high level of C. japonica abundance. A gradual decrease in
relative abundance of Acidobacteria and Chloroflexi while a pronounced increase in
relative abundance of Ascomycota and Basidiomycota were observed with increase of
C. japonica abundance. Alternations in bacterial composition were closely related to
changes in AP and AK, while the change of fungal structure was mainly related to
SWC, soil organic carbon (SOC) and pH, indicating that bacterial community was
sensitive to declines in soil available nutrients and fungal structure was sensitive to
changes in soil physicochemical properties (i.e., pH and SWC) and organic carbon
resource. Understory plants had the highest α-diversity in forest containing moderate
abundance of C. japonica, which might be related to the high bacterial diversity. Our
findings suggest conservation of soil bacterial and fungal taxa that are responsible for
nutrients availability and carbon sequestration is of great significance for improving the
resistance of natural deciduous broad-leaved forests to the rapid spread of C. japonica
in karst areas. Moreover, Acidobacteria, Chloroflexi, Ascomycota and Basidiomycota
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are potential indicators for soil properties changes, which should be taken into
consideration in karst forest managements.

Subjects Ecology, Microbiology, Plant Science, Soil Science, Forestry
Keywords Vegetation composition, Microbial community, Soil nutrients, Plant diversity,
Karst ecosystem, Cryptomeria japonica

INTRODUCTION
Soil microorganisms play a leading role in element cycling and energy flow through
trophic levels, maintaining the stability and sustainability of forest ecosystem (Cao & Ni,
2015). In particular, soil microorganisms drive the mineralization process of soil organic
matter (Shao et al., 2021), and play an important role in nutrients immobilization and
C sequestration (Dai, Yan & Xie, 2017). Soil microbial biomass is an important part of
soil organic C and N pools (Paul, 2015). The activity, species diversity, functional and
taxonomic composition of soil microorganisms are sensitive to climate, ecosystem types,
soil physical and chemical properties and plant species composition (Bainard et al., 2014;
Hazard et al., 2013), which in turn affects the soil health and quality. Therefore, microbial
community attributes are potential indicators of soil nutrient pool size and nutrient
availability (Deng, Cheng & Hui, 2016; Riah, Trinsoutrot & Martin, 2015). Understanding
the alternation ofmicrobial attributes, especially the diversity and functional characteristics,
in response to environmental changes in any complex ecosystem can help to improve the
ability of predicting ecosystem responses to external changes (Niu et al., 2017).

Soil is the medium of plant interaction, and plants have a significant impact on
land productivity mainly by changing soil properties (Pyšek et al., 2020). Plants can
affect soil microbial diversity and composition through direct competition for nutrient
resources and indirect influence on soil physiochemical environment (Vilà et al., 2011).
The vegetation composition will affect the symbiotic relationship between vegetation
and soil microorganisms, change the structure and function of microbial community,
and alter soil properties. Peng et al. (2019) summarized that the existence of Phyllostachys
edulis in broad-leaved forest can increase soil microbial biomass and diversity, which
may be attributed to changes in soil organic carbon pool. It is also possible that after
the emergence of Phyllostachys edulis, the activity of soil microorganisms capable of
degrading allelochemicals decreased, afterwards the degradation rate of allelochemicals
slowdown, which can affect the growth of other plants (Li et al., 2017). In addition, soil
microorganisms can have a cascade effect on herbivorous insects and indirectly regulate
vegetation composition through the food chain (Lu, He & Ding, 2018). In view of the
pivotal role of soil microorganisms in regulating soil nutrient availability and maintaining
ecosystem stability,microbial responses to changes in vegetation composition are important
in predicting the effects of different vegetation composition on forest restoration. Although
effects of plant composition changes on soil microbial community have been widely
discussed in previous studies, there are still controversies on these effect modes, and the
importance of different impact modes varies greatly under different plant species.
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Cryptomeria japonica that harbors fragrant wood, water-proof and corrosion-resistant
qualities, has the features of wind prevention, sand fixation and water and soil conservation,
and the expansion ability is strong in the surrounding stands. The growth space of
deciduous broad-leaved forest in karst area have been seriously threatened by the growth
and expansion of C. japonica. Understanding the effects of different plant composition on
both above and below ground communities, in particular the soil microbial community,
is essential for maintaining karst ecosystem functions. However, few studies have
examined the effects of different relative abundance of C. japonica on plant diversity,
soil nutrients content, soil microorganisms and their relationships. The responses of soil
microbe-plant continuum to changes in C. japonica abundance in deciduous broad-leaved
forest in karst area were investigated, aiming to clarify: (1) The structure, diversity and
functional composition of soil bacterial and fungal communities under different vegetation
composition characterized by different proportion of C. japonica; (2) How the changes of
soil microbial community relate to alternations in soil properties and plant diversity.

MATERIALS & METHODS
Study site
The study site is located in the national long-term research base of comprehensive
management of rocky desertification in Wuling Mountain, Hunan Province, Mid-
Subtropical China (27◦44.5′N, 109◦10′E). The climate is subtropical monsoon humid
climate, withmean annual precipitation of 1,300–1,500mm, andmean annual temperature
of 16.3 ◦C. Soil is mainly yellow brown developed from limestone, which belongs to
moderate karst area. The native vegetation is dominated by broad-leaved forests and
main native plant species are Houttuynia cordata, Cryptotaenia japonica and Achyranthes
bidentate. After 15 years of changes in vegetation composition, significant changes have
taken place in understory plants. According to the stem density of C. japonica in broad-
leaved forest, the proportion ofC. japonica can be divided into high (H), moderate (M), low
(L) and no (N). Forests stands harboring different C. japonica proportion were selected to
represent different vegetation composition. The overall stand profile is shown in Table S1.

Three 20 m× 20 m plots were randomly established in different vegetation composition
area. The space between any two plots within one type of area was more than 20 m. Plant
community and species surveys were conducted inMay 2020, and individuals with diameter
at breast height (DBH) ≥ one cm were recorded with species name, height, coverage and
frequency (Han et al., 2020). Three 2 m × 2 m plots and three 1 m × 1 m plots were
arranged in each 20 m × 20 m plot for shrub and herbage investigations, respectively.

Soil sampling
In August 2020, three 2 m × 2 m quadrats were randomly set in each 20 m × 20 m
plot, and three 0–20 cm topsoil samples were randomly collected in each quadrat. The
soil samples of each plot were mixed well, and the visible animal and plant residues and
small stones were carefully removed. Soil samples were stored 4 ◦C and immediately taken
back to the laboratory for treatment. Soil samples were divided into two parts, one for the
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analysis ofmicrobial community and the other for the determination of soil physiochemical
properties.

Soil organic carbon (SOC) was determined by potassium dichromate sulfuric acid
oxidation method. Total nitrogen (TN) was determined by semi-micro Kjeldahl method.
Total phosphorus (TP)was determined bymolybdenumantimony anti spectrophotometry.
Available phosphorus (AP) was determined by sodium bicarbonate extraction colorimetry.
Estimation of available nitrogen (AN) mainly adopted magnesium oxide extraction
diffusion method. The soil water content (SWC) was measured by oven drying and ring
knife method (Bao, 2000).

Soil DNA extraction
The TGuide S96 magnetic bead method soil genomic DNA extraction kit was used to
complete DNA extraction according to the manufacturer’s instructions. A total of 12 DNA
samples representing 12 studying plots were obtained in the end. The full length primers
for the 16S rRNA region were 27F: (5′-AGAGTTTGATCCTGGCTCAG-3′), and 1492R:
(5′-GGTTACCTTGTTACGACTT-3′). The fungal full-length primers used were ITS1F (5′-
CTTGGTCATTTAGAGGAAGTAA-3′) and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′)
(Edgar, 2013). The DNA sequencing was performed on PacBio platform. The quantitative
determination, homogenization, library preparation, Online sequencing and data quality
control of PCR amplification products were all completed by BMK Cloud (Biomarker
Technologies Co., Ltd., Beijing, China. http://www.biocloud.net) (Joshi et al., in press).

Bioinformatic analysis
The bioinformatics analysis of this study was performed with the aid of the BMK
Cloud (http://www.biocloud.net). The raw reads generated from sequencing were filtered
and demultiplexed using the SMRT Link software (v 8.0) with the minPasses ≥5 and
minPredicted Accuracy ≥0.9, in order to obtain the circular consensus sequencing (CCS)
reads. Subsequently, the lima (v 1.7.0) was employed to assign the CCS sequences to
the corresponding samples based on their barcodes. CCS reads containing no primers
and those reads beyond the length range (1,200–1,650 bp) were discarded through the
recognition of forward and reverse primers and quality filtering using the cutadapt quality
control process (v 2.7). The optimized sequence (tag) was obtained by screening and
splicing. The optimized sequences are clustered and divided into OTUs (Operational
Taxonomic Unit), and the OTU abundance information is normalized according to the
normalized output data. Taxonomy information of bacterial OTUs was identified using
the Ribosomal Database Project (RDP) classifier (http://rdp.cme.msu.edu/), and the UNITE
(v 7.1) database were assigned to classify information of fungal OTUs (Abarenkov et al.,
2010). The α diversity of bacterial and fungal communities was further analyzed. Picrust2
(v1.0) software was used to annotate the species by comparing the predicted characteristic
sequence with the existing phylogenetic tree in the software. IntegratedMicrobial Genomes
(IMG) database is used to output functional information, and then infer the functional
gene composition in the sample, so as to analyze the functional differences between
different samples or groups. First, it relies on an algorithm to insert marker sequences
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into existing phylogenetic trees with the help of short read layout tools. On this basis, the
OTUs gene family was inferred. Then, it determines the gene family abundance of each
sample. Finally, the sample path abundance is predicted by inferring the path abundance
(Moussa, Maria & Géraldine, 2020). Ecological guilds of fungal communities were assigned
using Fungi Functional Guild (FUNGuild v1.0) (http://fungu ild.org) (Nguyen et al., 2016).
All sequences in the current study are stored in the sequence reading Archive (SRA)
of NCBI database, with biological project ID: PRJNA735594 and accession number:
SAMN19589874, SAMN19589875, SAMN19589876, SAMN19589877, SAMN19589878,
SAMN19589879, SAMN19589880, SAMN19589881, SAMN19589882, SAMN19589883,
SAMN19589884 and SAMN19589885.

Statistical analysis
Soil physiochemical properties and plant diversity differences among different vegetation
composition were tested by one-way analysis of variance (ANOVA) with Tukey multiple
comparisons, and Pearson correlation analysis was performed to examine the α diversity
relationships between microbial and plant. Permutational multivariate analysis of variance
(PERMANOVA) analysis based on Jaccard distance matrices at microbial phylum and
family levels was performed to compare difference of microbial taxonomic or functional
composition among different vegetation composition. Redundancy analysis (RDA) was
used to test the effects of measured environmental properties on microbial composition at
both phylum and family levels (Edgar, 2013). All statistical analyses were performed using
R programming language (v 4.0.3) with Vegan Packages.

RESULTS
The composition and diversity of understory vegetation
The number of understory plant species under the forest with C. japonica is less than that
without C. japonica (Table S2). We further compared the α-diversity indices and found
similar evenness across the four relative abundance of C. japonica (Table 1). Notably, for
the species richness and Shannon diversity, the highest values presented in moderate-
proportion and the lowest in high proportion of C. japonica, whereas the Simpson’s
dominance index was the greatest under high proportion of C. japonica. (P < 0.05,
Table 1).

Changes of soil physiochemical properties
With the increase relative abundance of C. japonica, soil pH decreased significantly
(F = 26.681, df = 3, DW (Durbin-Watson inspection) = 0.761, P < 0.01) (Table 2).
The SOC content in forest with moderate C. japonica proportion was significantly higher
than other proportion degrees (F = 57.732, df = 3, DW = 0.275, P < 0.01) and was
as much as 32.5% higher than that without C. japonica. Soil TN, TK and SWC content
increased significantly while AN, AP and AK showed a decrease trend alongside the increase
of relative abundance of C. japonica. The content of soil TP changed little after C. japonica
appearance (F = 6.191, df = 3, DW= 0.314, P = 0.981). These results suggested that most
of the total soil nutrients increased while nutrient availability decreased with increase in
the relative abundance of C. japonica.
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Table 1 The α-diversity of understory plant community under different proportion degree.

Degree of
proportion

EH F H ′ D

H 0.82± 0.03a 0.176± 0.00b 2.47± 0.04b 0.96± 0.003a

M 0.87± 0.01a 0.193± 0.00a 2.71± 0.05a 0.93± 0.009b

L 0.85± 0.00a 0.187± 0.00ab 2.68± 0.03ab 0.92± 0.003b

N 0.84± 0.00a 0.177± 0.00b 2.67± 0.05ab 0.92± 0.002b

Notes.
The data of different lowercase letters in the vertical row (mean and standard error) showed significant difference (P < 0.05).
Abbreviations: EH , Pielou’s evenness index; F, Margalef richness index; H ′, Shannon diversity index; D, Simpson’s dom-
inance index; H, High proportion (C. japonica trees account for 60% of the total plant individuals in the whole stand); M,
Moderate proportion (C. japonica account for 30% of the total plant individuals in the whole stand); L, Low proportion (C.
japonica account for 10% of the total plant individuals in the whole stand); N, No proportion (no C. japonica).

Composition of soil microbial community
Proteobacteria (26.5%∼28.8%) was the most abundant bacterial phylum in almost all
samples, followed by Acidobacteria (21.7%∼31.3%), Verrucomicrobia (15.0%∼16.7%)
and Bacteroidetes (3.2%∼9.3%) (Fig. 1A). Compared with the broad-leaved forest with no
C. japonica, the relative abundance of Acidobacteria in the broad-leaved forest with high
proportion of C. japonica decreased by 9.6%, while the relative abundance of Bacteroidetes
displayed an increase trend with the increase in C. japonica abundance. At family level,
the relative abundance of uncultured_b acterium_o_Subgroup_2 decreased significantly
after the emergence of C. japonica while that of the Chitinophagaceae increased markedly
(Fig. 1B). The PERMANOVA analysis based on phylum (Fig. 1C) (R2

= 0.534, P = 0.015)
and family (Fig. 1D) level (R2

= 0.501, P = 0.004) showed that with the increase of C.
japonica proportion, the soil bacterial community changed significantly.

Fungal composition at both phylum and family levels showed substantial changed
with the increase of the proportion of C. japonica. In all soil samples, Basidiomycota
and Ascomycota are dominant phylum. Obviously, Basidiomycota has an overwhelming
advantage in forests with C. japonica, but Rozellomycota was the most abundant group
in forest without C. japonica (Fig. 2A). At the family level, the relative abundance of
Clavariaceae increases with the increase of the proportion of C. japonica. Compared
with the broad-leaved forest soil with no C. japonica, the abundance of Clavariaceae in
the broad-leaved forest soil with a high proportion of C. japonica increased by 30.63%
(Fig. 2B). Overall, there were obvious differences of fungal taxonomic composition among
forests with different proportions of C. japonica (R2

= 0.358, P = 0.021).
By comparing and annotating the KEGG database, six biological metabolic pathways

were obtained by soil bacteria in broad-leaved forest (Fig. S3A). Among them, metabolism,
genetic information processing and environmental information processing are important
components of soil bacterial function of broad-leaved forest. Their relative abundances
are 79.76% ± 0.81%, 7.46% ± 0.07% and 5.49% ± 0.07, respectively. The functional
composition of bacterial community only showed slight shifts after the emergence of C.
japonica. There were no significant differences of bacterial function composition among
forests with different proportions of C. japonica (R2

= 0.358, P = 0.021) (Fig. S3B).
The fungi functional group with different proportion degrees were mainly identified as
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Table 2 Differences in soil physicochemical properties of the top soil layer (0–20 cm) under different proportion degree.

Proportion
degree

pH SOC
(g kg−1)

TN
(g kg−1)

TP
(g kg−1)

AN
(mg kg−1)

AP
(mg kg−1)

SWC
(%)

TK
(g kg−1)

AK
(mg kg−1)

H 5.58± 0.06c 13.89± 0.25c 1.73± 0.01a 0.44± 0.02a 127.9± 2.13c 0.79± 0.04a 0.29± 0.02a 18.21± 0.20a 98.76± 0.21b

M 5.70± 0.05b 18.34± 0.41a 1.66± 0.04b 0.45± 0.02a 160.1± 3.52a 0.78± 0.07a 0.16± 0.01b 17.54± 0.11b 114.70± 0.16b

L 5.73± 0.02b 16.92± 0.43b 1.42± 0.02c 0.43± 0.01a 169.9± 4.73a 1.05± 0.32a 0.12± 0.01c 17.12± 0.23b 116.91± 0.20b

N 5.87± 0.01a 13.84± 0.18c 1.40± 0.01c 0.40± 0.01a 173.1± 2.01a 1.11± 0.02a 0.11± 0.01c 15.64± 0.18c 194.66± 0.28a

P value 0.001 0.004 0.001 0.981 0.001 0.56 0.036 0.025 0.552

Notes.
The data of different lowercase letters in the vertical row (mean and standard error) showed significant difference (P < 0.05).
Abbreviations: H, High proportion (C. japonica account for 60% of the total plant individuals in the whole stand); M, Moderate proportion (C. japonica account for 30% of the total plant individuals in
the whole stand); L, Low proportion (C. japonica account for 10% of the total plant individuals in the whole stand); N, No proportion (no C. japonica); SOC, soil organic carbon; TN, total nitrogen; TP,
total phosphorus; TK, total potassium; AN, available nitrogen; AP, available phosphorus; AK, available potassium; SWC, soil water content.
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Figure 1 Changes of soil bacterial community composition across four degrees of C. japonica pro-
portion. The community composition of soil bacteria at the level of phylum (A) and family (B) are pre-
sented and the significance of composition difference is illustrated. By PERMANOVA analysis based on
phylum (C) and family (D) level. Abbreviations: H, High proportion (C. japonica account for 60% of the
total plant individuals in the whole stand); M, Moderate proportion (C. japonica account for 30% of the
total plant individuals in the whole stand); L, Low proportion (C. japonica account for 10% of the total
plant individuals in the whole stand); N, No proportion (no C. japonica).

Full-size DOI: 10.7717/peerj.12739/fig-1

pathotrophic (2.7%–10.7%), saprophytic (52.7%–58.9%) and symbiotic (30.3%–42.8%)
(Fig. S4A). Saprophytic type was themost abundant one, and it more abundant in the forest
containing C. japonica. The relative abundance of pathotrophic type decreased gradually
with the increase of proportion degree, while the relative abundance of saprophytic type
increased slightly after the emergence of C. japonica. There were no significant differences
of fungal function composition among forests with different proportions of C. japonica
(R2
= 0.282, P = 0.522) (Fig. S4B).

Soil microbial α diversity
The Shannon index of soil bacterial community was greater in forests harboringC. japonica
compared to those without C. japonica (Fig. 3), and it was the greatest in the moderate
proportion (SM = 8.699± 0.87). There were no significant differences in soil fungi α
diversity among different relative abundance of C. japonica (Fig. 3), although the Shannon
diversity of fungal community under high C. japonica proportion (ShannonH = 5.775 ±
0.29) was obviously higher than that under other proportion. The Simpson diversity of

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.12739 8/20

https://peerj.com
https://doi.org/10.7717/peerj.12739/fig-1
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739


Figure 2 Changes of soil fungal community composition across four degrees of C. japonica propor-
tion. The community abundance composition of fungi at the level of soil phylum (A) and family (B) are
presented and the significance of composition difference is illustrated. By PERMANOVA analysis based
on phylum (C) and family (D) level. Abbreviations: H, High proportion (C. japonica account for 60% of
the total plant individuals in the whole stand); M, Moderate proportion (C. japonica account for 30% of
the total plant individuals in the whole stand); L, Low proportion (C. japonica account for 10% of the total
plant individuals in the whole stand); N, No proportion (no C. japonica).

Full-size DOI: 10.7717/peerj.12739/fig-2

both soil bacterial and fungal communities had no significant differences among forests
with various C. japonica abundance (Fig. S1).

Regression curves of plant diversity and microbial diversity was displayed in Fig. S2. A
significant unimodal correlation between plant diversity and bacterial diversity (P = 0.036)
was detected (Fig. S2A), and an extremely significant correlation between plant diversity
and fungal diversity (P < 0.001) was observed (Fig. S2B).

Correlations between soil environmental factors and microbial
structures
Redundancy analysis was used to determine the impact of environmental factors on soil
microbial community. The results showed that AK, AP, TK, SWC and pH had significant
impacts on soil microbial composition (Fig. 4). A total of 45.68% of the variation of soil
bacterial phylum structure could be explained by the first two components (Fig. 4A).

Liu et al. (2022), PeerJ, DOI 10.7717/peerj.12739 9/20

https://peerj.com
https://doi.org/10.7717/peerj.12739/fig-2
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739#supp-4
http://dx.doi.org/10.7717/peerj.12739


Figure 3 Variation of soil microbial α-diversity across four C. japonica proportion degrees. Abbrevi-
ations: H(B), Bacteria in high proportion; H(F), Fungal in High proportion (C. japonica account for 60%
of the total plant individuals in the whole stand); M(B), Bacteria in Moderate proportion; M(F), Fungal
in Moderate proportion (C. japonica account for 30% of the total plant individuals in the whole stand);
L(B), Bacteria in Low proportion, L(F), Fungal in Low proportion (C. japonica account for 10% of the to-
tal plant individuals in the whole stand); N(B), Bacteria in No proportion; N(F), Fungal in No proportion
(no C. japonica). Different lowercase letters of the same type (bacteria, fungi) show significant differences
at the level of P ≤ 0.05.

Full-size DOI: 10.7717/peerj.12739/fig-3

Principal component one (27.4%) and two (11.57%) accounted for 38.97% of the total
variation of soil bacterial family structure (Fig. 4B). AP, AK, TK were the main factors that
affected soil bacterial community. Among them, AK and AP were positively correlated with
family Pedosphaeraceae, Xanthobacteraceae and Soilbacteraceae_Subgroup_3, and TK was
positively correlated with family Nitrosomonadaceae, Gemmataceae, Chitinophagaceae
and SC-1-84. The first two principal components explained 45.1% variation of soil fungal
community structure at phylum level, and AK, AP, TN, AN were positively correlated with
Rozellomycota and Glomeromycota, while negatively related to Mucoromycota, GS01
and Basidiomycota (Fig. 4C). The contribution of the first two principal components to
the variance of soil fungal family structure amounted to 28.75%. Specifically, AN, TN,
pH and SOC were negatively correlated with Mortierellaceae, Herpotrichiellaceae and
Gomphaceae but positively related to Clavariaceae. SWC was positively correlated with
Archaeorhizomycetaceae and Ceratobasidiaceae (Fig. 4D).
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Figure 4 Redundancy analysis (RDA) examines the correlations between soil microbial structure and
environmental factors. Associations of soil properties with bacterial structure at the level of phylum (A)
and family (B) and fungal structure at the level of phylum (C) and family (D) were displayed. The soil
properties that were significantly related to microbial structures are indicated by arrows, and microbial
taxa and sampling sites were indicated by points.

Full-size DOI: 10.7717/peerj.12739/fig-4

Correlation between vegetation structure and microbial structures
Redundancy analysis (RDA) was used to detect associations between microbial structure
and vegetation features (Fig. S5). Results showed that bacterial composition at phyla
and family levels and fungal composition at family level were positively correlated with
plant Shannon diversity, Pielou, Richness, Vegetation coverage and Vegetation height
(Figs. S5A, S5B and S5D). Fungi composition at phylum level was positively correlated
with Shannon, Pielou, Richness and Vegetation height, and negatively correlated with
Vegetation coverage (Fig. S5C). Plant species richness had the greatest impact on bacterial
structure, and Vegetation coverage was the most important in affecting fungal structure.

DISCUSSION
Changes of soil physicochemical properties and vegetation diversity
after the change of relative abundance of C. japonica
Soil provides substrate and nutrient source for plant growth, and plants affect the element
cycles in ecosystem through physical, chemical or biological processes. Studies have shown
that plants can improve their competitiveness by changing soil nutrient contents and
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creating new habitats (Wang et al., 2012; Wang, Gong & Liu, 2015; Cao et al., 2019). Our
results showed an increased SOC, TN, TP, TK and SWC while decreased pH with increase
of C. japonica abundance in broad-leaved forest in karst area. However, it is generally
believed that the sudden emergence of new species will consume a lot of soil nutrients,
leading to the depletion of soil nutrients (Zhu &Wu, 2012). Our results also supported this
speculation, as indicated by significant decreases in available nutrients content, including
AN, AP and AK, Further proof that the rapid increase of the relative abundance of C.
japonica may depend on the rapid consumption of soil available nutrients, rather than
a native forest soil total nutrients. Another reason for the declined nutrients availability
might be that the increase of relative abundance of C. japonica induced soil microbial
shifts towards a community that can stimulate soil nutrient immobilizations (Figs. 1 and
2). In addition, after the emergence of C. japonica, the number of undergrowth plants
decreased, and the soil erosion increased. Such changes in soil properties probably cause
losses in available nutrients that are easily to be leached. Soil TP content is greatly affected
by soil parent material and soil formation processes, the content of exchangeable cations
in the litters of C. japonica might be lower than that of the native species, thus affecting
the mineral weathering of parent material (Lin, Peng & Hong, 2017). The decrease of soil
pH may be due to the increase of soil acidity caused by acidic substances in the litter and
root exudates of C. japonica. The increase of soil water content was mainly resulted from
the improvement of soil structure and the enhancement of soil water storage capacity with
the increase of SOC content. In addition, the emergence of C. japonica can reduce the
canopy width, light transmittance and water evaporation. Moreover, C. japonica has the
characteristics of soil and water conservation, which could contribute to soil water content
increases.

Species diversity is commonly used to reflect the dynamic changes of communities in
the ecological processes (Hao et al., 2014). Our study showed that Shannon diversity of
understory species were the lowest under a higher C. japonica abundance. This might be
due to the homogenization of understory environments due to increase of forest canopy
density and decrease of light resources (Maureen et al., 2007; Yu & Sun, 2013; Huang et al.,
2018). Meanwhile, due to the rapid growth of C. japonica, the living space of understory
plants was restricted, which may contribute to the losses of original species. In addition,
the herb layer showed greater changes in species composition than shrub layer. This result
might be owing to the fact that the life history of herb layer plants is shorter than that of
shrub layer plants, and they have stronger adaptability and wider niche, making the species
composition of community unstable and variable (David, 2002).

Changes in soil microbial community composition and diversity after
the change of relative abundance of C. japonica
As an important part of forest ecosystem, soil microorganism can play a leading role
in nutrient and energy flow of soil ecosystem (Richardson, 2001). When the external
environment changes, soil microbial species diversity (Lesaulnier et al., 2008), community
structure (Li et al., 2010), and functional composition (Zheng et al., 2012) will change
accordingly. However, here we only found a significant shifts in soil bacterial and fungal
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taxonomic structure but little in their functional structure after emergence of C. japonica in
a broad-leaved forest in the karst area. For example, the relative abundance of Proteobacteria
increased after the emergence ofC. japonica. This may be due to the increased SOC content,
as Proteobacteria is generally considered to be an R-strategy species with a preferential
advantage in habitats rich in organic matter (Rodrigues, Pellizari & Mueller, 2013; He et
al., 2016). After emergence of C. japonica, the abundance of Acidobacteria decreased with
decline in soil available nutrients, whichwas conflict with the recognition that Acidobacteria
were oligotrophic microorganisms preferring nutrient poor environments (Magill & Aber,
2000; Huang, Tian & Jiang, 2009; Dai, Yan & Xie, 2017). However, previous studies also
demonstrated a negative correlation of Acidobacteria with SWC and TP content (Cai
et al., 2018). This partly explained the decrease of Acidobacteria in our results, as the
SWC and TP showed an increased trend with the increase of the relative abundance
of C. japonica (Table 2). Therefore, Acidobacteria might be more sensitive to changes
in SWC and TP than the changes in other soil physicochemical properties. Moreover,
the growth rate of Acidobacteria is relatively slow, when soil nutrient content changes,
their fast-growing counterparts, such as Proteobacteria, will overwhelm oligotrophic
Acidobacteria. Regarding to fungal community, the increase of relative abundance of C.
japonica significantly stimulated growth of Basidiomycetes and Ascomycetes, but restricted
growth of Rozellomycota. Basidiomycetes and Ascomycetes have a strong ability to
decompose lignocellulose in plant residues (Beimforde et al., 2014; Riley et al., 2014), and
theymay be capable of inhibiting growth of other fungi via competing for carbon resources.
In addition, the Ascomycetes are widely distributed in acid environments (Du et al., 2020),
thus the decreased soil pH after the emergence ofC. japonicamay partly explain the increase
of Ascomycetes abundance. We did not detect any significant differences in functional
composition across various C. japonica abundance (Figs. S3 and S4). This unexpected
finding was possibly attributed to the following reasons: (1) the emergence of C. japonica
may introduce new soilmicrobial species closely related to roots and promote the expansion
of C. japonica, thus this study focusing on bulk soil microorganisms may underestimate the
changes in rhizospheremicroorganismswith high functional diversity; (2) the reassembly of
soil microbial communities attributed to changes in plant composition may not necessarily
cause shifts in microbial functional composition due to microbial functional redundancy;
(3) it is also important that the microbial functional composition is identified at the DNA
level that cannot discern the active and inactive microbial groups, which may overestimate
the functional expression. Thus, the RNA sequencing will be required in further studies to
validate our results. In the future, we will further carry out comprehensive experiments to
draw mechanisms underlying the different responses between taxonomic and functional
structure of soil microbial community, especially the microbial functional groups that
have not yet been defined and explained but may play a role after the change of vegetation
composition.
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Relationships between microbial community and soil
physicochemical properties
Soil nutrients content affect microbial community by directly influencing their foods
and energy supply, and indirectly alter microbial metabolic activity by affecting nutrient
cycling and plant growth (Wang et al., 2016; Zi et al., 2017;Niu et al., 2017). Here we found
the relative abundance of Acidobacteria decreased while the Proteobacteria increased
after emergence of C. japonica. Proteobacteria and Acidobacteria are widely distributed
in soil systems around the world and are recognized as the most abundant dominant
bacterial groups. Due to their different lifestyles, they are often used as indicators of
soil nutrient status (Liu, Dong & Jiao, 2016). Acidobacteria grow in oligotrophic mode
while Proteobacteria prefer soil environment rich in nutrients, and the latter can grow
and metabolize with nutrients obtained from organic matter decomposition (Dong, Gao
& Zhou, 2021). Unexpectedly, the relative abundance of Acidobacteria decreased after
the emergence of C. japonica with declined AN, AK and AP. Perhaps Acidobacteria are
more sensitive to the changes in soil total nutrients content instead of availably nutrients
content. For instance,Wei et al. (2018) found that the relative abundance of Acidobacteria
in rhizosphere soil strongly depended on total nitrogen content. The higher relative
abundance of Proteobacteria in soil samples after the emergence of C. japonica mainly
because of their strong adaptability to increased SOC quantity and quality caused by
elevated understory plant diversity (Fan, An & Liang, 2021). In addition, the relative
abundance of Chloroflexi decreased after the emergence of C. japonica, which was mainly
attributed to the decreased nutrients content, as indicated by positive correlations with
AK, AP, AN and TN. Previous research (Li, Hou &Wang, 2018) showed that Chloroflexi
obtained energy through photosynthesis, therefore a continuous supply of soil nutrients,
such as N and P was necessary for the synthetize of enzymes involved in photosynthesis.
Regarding to the bacterial families, we observed that the enrichment of Chitinophagaceae
and SC-I -84 after C. japonica emergence were positively correlated with TK and negatively
correlated with AK and AP, which was consistent with previous study suggesting that the
increase of these two families may be the key factor leading to the significant increase of
soil TK (Gao et al., 2021).

Some researchers pointed out that SOC and TP had the greatest impact on soil fungal
community structure (Chen et al., 2018;Cao et al., 2016;Kumar et al., 2019). Similarly, here
the most abundant fungi (Ascomycota and Basidiomycetes) were substantially increased
by C. japonica emergence and positively correlated with TK, TN, TP and SOC. Clavariaceae
with quite higher abundance in the soil under C. japonica is positively correlated with
SOC, AN and pH. Most of Ascomycetes and Basidiomycetes are saprophytic or parasitic
fungi, which contribute significantly to the degradation of lignin, keratin and other
recalcitrant organic matter in soil (Huang et al., 2008; Beimforde et al., 2014; Jiang et al.,
2021). Clavariaceae, also belongs to saprophytic fungal, plays an important role in the
decomposition of pectin and cellulose in forest litter (Li, Han &Wu, 2021). Undoubtedly,
the saprophytic function expression of these fungiwill enable them to survive soil conditions
deplete in available nutrients while rich in total organic nutrients as the case of degraded
broad-leaved forests in karst areas caused by the continuous expansion of C. japonica.
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Based on these results, we speculate that the fast spread of C. japonica in broad-leaved
forests of the karst area will not change the potential ecological functions of the whole
soil microbial community in broad-leaved forest, but may change the specific groups with
certain ecological functions (Ma et al., 2021).

CONCLUSION
In this study, we characterized the changes of soil bacterial and fungal community structure,
soil physicochemical properties and understory plant features after the emergence of C.
japonica in a broad-leaved forest in karst area. Meanwhile, relationships among microbial
structure, soil properties and plant diversity were examined and compared under different
relative abundance of C. japonica to try to explore the potential ecological implications
derived from soil microbial changes. We found significant decreases in soil available
nutrients content in parallel with shifts of bacterial taxonomic composition alongside
the increase of C. japonica abundance. Changes in SOC, SWC and pH, were mainly
related to shifts in fungal taxonomic composition. Moreover, Acidobacteria, Chloroflexi,
Ascomycota and Basidiomycota are significantly correlated with soil property changes
caused by emergence of C. japonica. Thus, soil bacterial and fungal communities both play
important roles in shaping soil physicochemical environments. The rehabilitation of both
bacterial and fungal community structure, in particular the taxonomic structure, should
be considered during the effective restoration of soil ecological processes of the infertile
karst forests caused by fast spread of C. japonica. These results provide novel insights
into microbial regulating mechanisms of karst forest degradation under expansion of
C. japonica.
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