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different organs of Chinese fir (Cunninghamia lanceolata) 
under  CO2 elevation and N addition and found that NSC 
concentrations and contents in all organs of Chinese fir sap-
lings increased remarkably under  CO2 elevation. However, 
N addition induced differential accumulation of NSC among 
various organs. Specifically, N addition decreased the NSC 
concentrations of needles, branches, stems, and fine roots, 
but increased the NSC contents of branches and coarse 
roots. The increase in the NSC contents of roots was more 
pronounced than that in the NSC content of aboveground 
organs under  CO2 elevation. The role of N addition in the 
increase in the structural biomass of aboveground organs 
was greater than that in the increase in the structural bio-
mass of roots. This result indicated that a different trade-
off between growth and NSC storage occurred to alleviate 
resource limitations under  CO2 elevation and N addition 
and highlights the importance of separating biomass into 
structural biomass and NSC reserves when investigating the 
effects of environmental change on biomass allocation.

Keywords Biomass partition · CO2 elevation ·  
N deposition · Nonstructural carbohydrates · Structural 
biomass

Abstract Stored nonstructural carbohydrates (NSC) indi-
cate a balance between photosynthetic carbon (C) assimila-
tion and growth investment or loss through respiration and 
root exudation. They play an important role in plant function 
and whole-plant level C cycling.  CO2 elevation and nitrogen 
(N) deposition, which are two major environmental issues 
worldwide, affect plant photosynthetic C assimilation and C 
release in forest ecosystems. However, information regarding 
the effect of  CO2 elevation and N deposition on NSC stor-
age in different organs remains limited, especially regard-
ing the trade-off between growth and NSC reserves. There-
fore, here we analyzed the variations in the NSC storage in 
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Introduction

A fluctuation of nonstructural carbohydrates (NSC) in plant 
organs represents an asynchrony between carbon (C) supply 
and C demand (Kobe et al. 2010; Sala et al. 2012; Hartmann 
and Trumbore 2016). NSC are primarily derived from foliage 
photosynthates (Kozlowski 1992; Carbone et al. 2013) and 
translocate to other organs for energy metabolism, osmoreg-
ulation, and defense compound synthesis (Hartmann and 
Trumbore 2016). Given that NSC constitute 8%–17% of a 
tree’s biomass (Wurth et al. 2005; Mei et al. 2015; Martínez-
Vilalta et al. 2016), they are a vital component in terrestrial 
C cycling. Furthermore, NSC dynamics across plant organs 
reflect C source–sink status and organ function in adapting 
to environmental changes (Hartmann and Trumbore 2016). 
Despite its vital role in plant function and in stand-level ter-
restrial C cycling, NSC allocation of plant organs to environ-
ment stresses has been the focus of very limited research. 
With the current and expected changes to the global climate, 
however, a comprehensive understanding of NSC allocation 
in response to environmental variations is essential (Li et al. 
2013; McDowell et al. 2008; Yang et al. 2016).

Because atmospheric  CO2 concentration has increased 
from 280 μmol  mol−1 before the Industrial Revolution to 
414 μmol  mol−1 in 2020 (Dong et al. 2021), the impacts 
of  CO2 elevation on C cycling of forest ecosystems have 
received considerable attention (Oren et al. 2001; Hamilton 
et al. 2002; Norby et al. 2010). For instance, in a sweetgum 
forest, Norby et al. (2002) found that  CO2 elevation leads 
to differential increases in the biomass of various organs, 
but NSC allocation to different organs in response to  CO2 
elevation has been rarely investigated (Li et al. 2018b). 
When  CO2 is elevated, C assimilation increases as con-
firmed by an upregulation of leaf photosynthetic capacity 
(Arp and Drake 1991; Long et al. 2004). Thus, under  CO2 
elevation, it is reasonable to infer that much more NSC are 
stored in leaves. The translocation of carbohydrates to other 
organs to support organ growth also increases as the pho-
tosynthetic rate increases (Li et al. 2018a). Nevertheless, 
additional tree growth is likely limited by nutrient supply, 
particularly nitrogen or phosphorus, when  CO2 is elevated 

(Oren et al. 2001; Norby et al. 2010). In response to nutri-
ent limitation, plants may increase fine root production and 
mycorrhizal infection to intensify soil exploration (Zak et al. 
2000; Luo et al. 2004). To support root and mycorrhizal 
growth, additional photosynthetic C might be partitioned to 
underground organs. Previous studies have mostly focused 
on NSC concentration responses to  CO2 elevation at the leaf 
or whole-plant level (Smart et al. 1994; Cheng et al. 2004; 
Mašková et al. 2017). Therefore, whether the NSC contents 
and concentrations in various organs vary in response to  CO2 
elevation should be clarified.

Nitrogen (N) deposition is another serious global prob-
lem that is intensifying in China. N deposition rate in China 
increased by 0.41 kg   ha−1  a−1 between 1980 and 2010, 
reaching 21.1 kg  ha−1  a−1 in 2010 (Liu et al. 2013). N depo-
sition leads to an increase in NSC accumulation (Liu et al. 
2016) by promoting photosynthetic C assimilation (Evans 
and Terashima 1988; Nakaji et al. 2001; Cechin and Fumis 
2004; Granath et al. 2009). It may also intensify NSC con-
sumption through several mechanisms. First, N deposition 
may amplify N assimilation and consequently elevate NSC 
consumption by increasing the amount of energy and C 
skeletons consumed in N assimilation (Invers et al. 2004; 
Monson et al. 2006). Second, during the stimulation of plant 
growth after N deposition, more carbohydrates may be allo-
cated to structural biomass (Liu et al. 2016). Although previ-
ous studies have reported that N assimilation rates of leaves 
and roots show different responses to N addition (Invers 
et al. 2004), the changes in NSC consumption and allocation 
in various organs under N addition remain unclear. Thus, 
clarifying NSC dynamics in different organs under increased 
N deposition is urgently needed.

The allocation of biomass, which comprises structural 
biomass and NSC reserves, is a vital strategy used by plants 
to adapt to environmental conditions (Guo et al. 2016). Sep-
arating biomass into structural biomass and NSC storage is 
critical because the allocation of structural biomass and NSC 
reserves is the result of the trade-off between growth and 
carbohydrate storage (Canham et al. 1999; Kobe et al. 2010). 
Although the allocation of biomass under elevated  CO2 and 
N has received attention (Hättenschwiler and Körner 1997; 
Norby et al. 2002), few works have investigated the alloca-
tion of the separate biomass components at the whole-plant 
level under  CO2 elevation and N deposition. In addition, 
whether structural biomass or NSC reserves is the major 
contributor to alleviate resource limitations remains unclear. 
Optimal partitioning theory states that plants can increase 
biomass allocation to organs to acquire the resource(s) that 
most limits their growth (Bloom et al. 1985). Kobe et al. 
(2010), however, reported that incremental increases in NSC 
content rather than in structural biomass, are mainly respon-
sible for the increase in biomass allocation to roots under 
nutrient limitation. Therefore, the responses of allocation of 
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structural biomass and NSC content to  CO2 elevation and N 
deposition require clarification.

Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is 
widely planted in southern China and plays a vital role in tim-
ber production and C sequestration (Wang et al. 2017). Thus, 
further insight into the responses of NSC allocation in Chinese 
fir to  CO2 elevation and N deposition are needed to design 
strategies to address the effects of global climate change. Here 
we (1) investigated the responses of NSC concentrations and 
contents of various organs to  CO2 elevation or N deposition, 
and (2) compared the resultant changes in structural biomass 
and NSC storage among aboveground organs and roots.

Materials and methods

Study site and experimental design

The experiment was conducted at Huitong National Research 
Station of Forest Ecosystem (26°50′ N, 109°36′ E) in Hunan 
Province, China. This region has a typical humid mid-subtropi-
cal monsoon climate that is characterized by a warm and humid 
summer and a relatively dry and cold winter. The annual aver-
age air temperature is 16.5 °C, and the monthly mean maximum 
and minimum air temperatures of 29.0 °C and 1.9 °C occur in 
July and January, respectively. Annual precipitation ranges from 
1200 to 1400 mm, mainly during April to July.

In February 2016, 50 one-year-old Chinese fir saplings 
were planted in plastic pots (25 cm diameter, 50 cm height) 
filled with surface soil (0–30 cm) that had been homoge-
nized after its removal from a Chinese fir plantation. All pots 
were periodically watered to 60% field capacity to replace 
water lost via evapotranspiration.

In August 2016, 36 Chinese fir saplings with similar 
basal diameters and heights were selected and separated 
randomly into six equal groups. Each group was trans-
ferred to a randomly assigned closed climate-controlled 
chambers. From 06:00 to 18:00 every day, three chambers 
received ambient air  CO2 concentration (approximately 
400 μmol  mol−1) and the other three elevated  CO2 concentra-
tion (600 ± 50 μmol  mol−1) that was controlled using a  CO2 
detection system (Shsen-QZD, Institute of Shengsen Numeri-
cal Control Technology, Qingdao, China). Three Chinese fir 
saplings in each chamber were randomly chosen as parallel 
samples to receive N fertilizer in the form of  NH4NO3 at 
the rate of 10 g N  m−2  a−1 via irrigation once a month. The 
three other saplings received an equal amount of deionized 
water. Soil moisture was maintained at approximately 60% of 
field capacity during the experiment. Thus, four treatments 
were imposed: (1) ambient air  CO2 concentration and no N 
(EC0N0), (2) ambient air  CO2 concentration and N addition 
(EC0N1), (3) elevated  CO2 concentration and no N (EC1N0), 
and (4) elevated  CO2 concentration and N addition (EC1N1).

Sample collection and NSC measurement

In September 2017, all saplings in the chambers were har-
vested and separated into different organ types (needles, 
branches, stems, and roots). Needles and branches were 
each separated into current and previous year groups. 
Roots were separated into coarse (diameter ≥ 2 mm) and 
fine (diameter < 2 mm) roots. To reduce variability, we 
prepared mixed samples by combining the parallel sam-
ples from each chamber on the basis of organ types. All 
samples from different organs were oven-dried at 80 °C 
to a constant mass then weight to estimate biomass. The 
samples were then milled to a fine powder to measure NSC 
using the method described by Li et al. (2018a) and Yang 
et al. (2016): Soluble sugars (i.e., glucose, sucrose, and 
fructose) and starch concentration were measured and 
added to estimate total NSC concentration.

The NSC content for each organ was calculated as 
Organ-specific concentration × Organ-specific biomass. 
Structural biomass was then calculated as Biomass minus 
NSC content similar to the methods of Canham et  al. 
(1999) and Kobe et al. (2010).

Statistical analyses

The effects of  CO2 elevation, N addition, and their interac-
tion on concentrations and contents of NSC, concentrations 
and contents of starch and of soluble sugars in stems, coarse 
roots, and fine roots were all evaluated using a two-way 
ANOVA implemented in R version 4.1.3 (R Core Team 
2022). The mixed effects model was applied to evaluate the 
effect of  CO2 elevation, N addition, needle age or branch 
age, and their interactions on NSC concentrations and NSC 
contents in needles and branches. This model was run using 
the lmer function in R by loading the lme 4 and lmer Test 
packages. The ANOVA function in R was used for para-
metric tests. In this model,  CO2 elevation, N addition, and 
needle age or branch age were used as fixed effects; the 
chamber was used as a random effect. The significance level 
was set at P < 0.05 for all analyses unless otherwise stated.

Results

Concentrations of NSC and its two fractions in different 
organs

Needle NSC (Fig. 1a, P = 0.006), soluble sugars (Fig. 1c, 
P = 0.028), and starch (Fig. 1e, P = 0.002) concentrations 
greatly decreased with needle age.  CO2 elevation remarkably 
increased needle NSC concentrations (Fig. 1a, P = 0.001) 
and its two fractions (soluble sugars (Fig. 1c, P < 0.001) and 
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starch (Fig. 1e, P = 0.029). However, a marginally significant 
decrease in needle NSC concentration (Fig. 1a, P = 0.057) 
and a significant decrease in needle starch concentration 
(Fig. 1e, P < 0.001) were found under N addition. The soluble 

sugars concentration in needles did not change in response 
to N addition (Fig. 1c, P = 0.804). N addition and needle age 
exerted an interactive effect on starch concentration (Fig. 1e, 
P = 0.022). This effect indicates that the decrease in the starch 

Fig. 1  NSC (a, b), soluble sugars (c, d), and starch (e, f) concentra-
tions in needles (a, c, e) and branches (b, d, f) from Chinese fir sap-
lings under  CO2 elevation and N deposition. EC0: ambient air  CO2 
concentration; EC1: elevated  CO2 concentration; N0: no N; and N1: 
N addition. Different uppercase letters denote significant differences 

between EC0N0 and EC0N1 (P < 0.05). Different lowercase letters 
denote significant differences between EC1N0 and EC1N1 (P < 0.05). 
Significant differences between EC0N0 and EC1N0 or between 
EC0N1 and EC1N1 are denoted by asterisks: *P < 0.05, **P < 0.01. 
Values are expressed as means ± SE (n = 3)
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concentration of current year needles after N addition was 
greater than the decrease in the previous year needles (Fig. 1e).

Unlike the NSC concentration in needles, the concentra-
tion of NSC and its two fractions in branches did not differ 
based on branch age (Fig. 1b, d, f, P > 0.05).  CO2 elevation 
significantly increased branch NSC (Fig. 1b, P < 0.001), 
soluble sugars (Fig. 1d, P < 0.001), and starch (Fig. 1f, 
P < 0.001) concentrations. Conversely, N addition signifi-
cantly decreased branch NSC (Fig. 1b, P = 0.001), soluble 
sugars (Fig. 1d, P = 0.007), and starch (Fig. 1f, P = 0.005) 
concentrations.  CO2 elevation and branch age had an interac-
tive effect on branch NSC (Fig. 1b, P = 0.004) and soluble 
sugars concentrations (Fig. 1d, P = 0.002). These results 
demonstrate that the increase in NSC and soluble sugars 
concentrations in current year branches was more prominent 
than in previous year branches under  CO2 elevation.

CO2 elevation significantly increased the concentra-
tions of NSC (Fig. 2a, P < 0.001), soluble sugars (Fig. 2b, 
P < 0.001), and starch (Fig. 2c, P = 0.004) in stems, whereas 
N addition significantly decreased the concentrations of NSC 
(Fig. 2a, P = 0.009) and soluble sugars (Fig. 2b, P = 0.018). 
 CO2 elevation and N addition exerted a significant interac-
tive effect on NSC (Fig. 2a, P = 0.025) and soluble sugars 
concentrations (Fig. 2b, P = 0.005) in stems. This effect 
showed that the decrease in stem NSC and soluble sugars 
concentrations with N addition only happened in ambient 
 CO2, not in elevated  CO2.

CO2 elevation significantly increased the starch (Fig. 3e, 
P < 0.001) and NSC concentrations (Fig. 3a, P < 0.001) 
in coarse roots and starch (Fig. 3f, P < 0.001) and NSC 
(Fig. 3b, P < 0.001) concentrations in fine roots. However, 
the NSC, soluble sugars, and starch concentrations in coarse 
roots did not change in response to N addition (Figs. 3 a, 
c, and e, P > 0.05). N addition significantly decreased the 
NSC (Fig. 3b, P = 0.004) and soluble sugars concentrations 
(Fig. 3d, P = 0.001) in fine roots. A significant interactive 
effect between  CO2 elevation and N addition on the NSC 
concentration of coarse roots was found (Fig. 3a, P = 0.041).

Contents of NSC and its two fractions in different 
organs

Similar to needle NSC concentration, the contents of nee-
dle NSC and its two fractions decreased with needle age 
(Figs. 4a, c, e, P < 0.001). Similarly, branch NSC (Fig. 4b, 
P = 0.045) and soluble sugars (Fig. 4d, P = 0.047) contents 
decreased with branch age. With the exception of soluble 
sugars content in fine root, NSC, soluble sugars and starch 
contents significantly increased in all organs under  CO2 
elevation (Figs. 4, 5, and 6, P < 0.05). However, NSC con-
tent and its two fractions in various organs varied in their 
responses to N addition. In needles, N addition significantly 
increased soluble sugars content (Fig. 4c, P = 0.005) but 

significantly decreased starch content (Fig. 4e, P = 0.040). 
In branches, NSC (Fig. 4b, P = 0.007) and soluble sugars 
(Fig. 4d, P = 0.010) contents significantly increased with 
N addition, as did starch content (Fig. 6e, P = 0.003) and 
NSC content (Fig. 6a, P = 0.003) in coarse roots. However, 
soluble sugar content in fine roots significantly decreased 

Fig. 2  NSC (a), soluble sugars (b), and starch (c) concentration in 
stems from Chinese fir saplings under  CO2 elevation and N deposi-
tion. EC0: ambient air  CO2 concentration; EC1: elevated  CO2 con-
centration; N0: no N; and N1: N addition. Different uppercase letters 
denote significant differences between EC0N0 and EC0N1 (P < 0.05).  
Significant differences between EC0N0 and EC1N0 or between 
EC0N1 and EC1N1 are denoted by asterisks: *P < 0.05, **P < 0.01. 
Values are expressed as means ± SE (n = 3)
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with N addition (Fig. 6d, P = 0.036).  CO2 elevation and N 
addition had significant interactive effects on needle NSC 
(Fig. 4a, P = 0.004) and soluble sugars (Fig. 4c, P = 0.002), 
branch NSC (Fig. 4b, P = 0.003) and soluble sugars (Fig. 4d, 
P = 0.006), stem NSC content (Fig. 5a, P = 0.049), and on 
coarse-root starch (Fig. 6e, P = 0.003) and NSC content 
(Fig. 6a, P = 0.003).  CO2 elevation and needle age had 
a significant interactive effect on needle NSC (Fig. 4a, 
P < 0.001), starch (Fig. 4e, P < 0.001) and soluble sugars 
content (Fig. 4c, P < 0.001).

Comparison of allocation of structural biomass 
and NSC content to aboveground organs and roots

Under  CO2 elevation, NSC content was preferentially 
allocated to roots over aboveground organs (Fig.  7a, 
P = 0.027), but the proportion of the structural biomass 
of aboveground organs to the structural biomass of roots 
did not change in response to  CO2 elevation (Fig.  7b, 

P = 0.139). By contrast, N addition promoted the prefer-
ential partitioning of structural biomass to aboveground 
organs instead of underground roots, as indicated by the 
significant increment in the structural biomass of above-
ground organs relative to that of roots (Fig. 7b, P = 0.008). 
The proportion of the NSC content of aboveground organs 
to the NSC content of roots did not change in response to 
N addition (Fig. 7a, P = 0.473).

Discussion

Effect of  CO2 elevation on NSC concentration 
and content of different organs

The positive effect of  CO2 elevation on NSC accumula-
tion in needles could be due to the following reasons. First, 
NSC are mainly produced in leaves through photosynthetic 
C assimilation (Kozlowski 1992), the upregulation of leaf 

Fig. 3  NSC (a, b), soluble 
sugars (c, d), and starch (e, f) 
concentrations in coarse (a, c, 
e) and fine roots (b, d, f) from 
Chinese fir saplings under  CO2 
elevation and N addition. EC0: 
ambient air  CO2; EC1: elevated 
 CO2; N0: no N; and N1: N 
addition. Different uppercase 
letters denote significant dif-
ferences between EC0N0 and 
EC0N1 (P < 0.05).  Significant 
differences between EC0N0 and 
EC1N0 or between EC0N1 and 
EC1N1 are denoted by aster-
isks: *P < 0.05, **P < 0.01. Val-
ues are expressed as means ± SE 
(n = 3)
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photosynthetic capacity under  CO2 elevation increases C 
assimilation (Arp and Drake 1991; Long et al. 2004; Luo 
et al. 2006). Second,  CO2 elevation is likely to reduce needle 
respiration rates (Idso and Kimball 1992; Zha et al. 2002; 

Long et al. 2004). Thus, the increase in C sources and the 
reduction in C sinks resulted in needle NSC accumulation 
under  CO2 elevation. In addition, the response of NSC accu-
mulation to  CO2 elevation was dependent on needle age; the 

Fig. 4  NSC (a, b), soluble sugars (c, d), and starch (e, f) contents in 
needles (a, c, e) and branches (b, d, f) from Chinese fir saplings under 
 CO2 elevation and N addition. EC0: ambient air  CO2 concentration; 
EC1: elevated  CO2 concentration; N0: no N; and N1: N addition. Dif-
ferent uppercase letters denote significant differences between EC0N0 

and EC0N1 (P < 0.05). Different lowercase letters denote significant 
differences between EC1N0 and EC1N1 (P < 0.05). Significant differ-
ences between EC0N0 and EC1N0 or between EC0N1 and EC1N1 
are denoted by asterisks: *P < 0.05, **P < 0.01. Values are expressed 
as means ± SE (n = 3)
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accumulation in current year needles was more pronounced 
than in previous year needles (Fig. 4a, c, e) because pho-
tosynthetic rate in current year needles is more sensitive 
than in previous year needles to  CO2 elevation (Tissue et al. 
2001).

CO2 elevation increased branch and stem NSC con-
centration and content by augmenting the translocation of 

photosynthates from needles to branches and stems. We 
found that  CO2 elevation promoted sapling growth (Fig. S2) 
as reported previously (Curtis and Wang 1998; De Souza 
et al. 2008). Therefore, the excess photosynthate fixed by 
needles is translocated to branches and stems to promote 
their elongation and maximize space occupation and light 
harvest (Li et al. 2018a). Second, the additional growth of 
biomass under  CO2 elevation increased the amounts of soil 
nutrients required for organic matter production (Huang 
et al. 2007). Thus, large amounts of NSC must be translo-
cated to branches and stems for nutrient transport given their 
vital roles in phloem transport (Dietze et al. 2014).

Similar to the accumulation in aboveground organs, NSC 
accumulation in coarse and fine roots increased under  CO2 
elevation. This response may be related to the nutrient limi-
tations experienced by plants under  CO2 elevation (Fig. S3). 
Plants could alleviate nutrient limitation by amplifying their 
exploration of soil for available nutrients (Luo et al. 2004). 
Thus, the NSC fixed by needles were translocated to under-
ground organs to support the root activity and growth needed 
for nutrient acquisition (Kobe et al. 2010). Interestingly, 
starch, rather than soluble sugars, was mainly responsible 
for the increase in NSC accumulation in roots under  CO2 
elevation. This result may be attributed to the different func-
tions between starch and soluble sugars. Starch is used as a 
carbohydrate reserve and represents a relatively recalcitrant 
C pool (Hartmann and Trumbore 2016). Meanwhile, soluble 
sugars are usually used for immediate functions (e.g., sub-
strates for respiration, osmoregulation and transport com-
pounds) and represent a short-term pool (Du et al. 2020). 
Therefore, part of the photosynthate allocated to roots was 
converted to starch for future use, resulting in starch accu-
mulation. Plants exchange soluble sugars, especially glu-
cose, for nutrients with symbionts under  CO2 elevation; thus, 
soluble sugars are maintained at a critical level (Nehls et al. 
2010; Smith and Smith 2011; Martínez-Vilalta et al. 2016).

Interestingly,  CO2 elevation resulted in the preferential 
allocation of NSC content to roots instead of to aboveground 
organs. The allocation of structural biomass to aboveground 
organs vs roots, however, did not change in response to  CO2 
elevation. The promotion of plant growth under  CO2 eleva-
tion may result in nutrient limitation, especially nitrogen and 
phosphorus (Oren et al. 2001; Norby et al. 2010), because 
nitrogen and phosphorus concentration in Chinese fir sap-
lings decreased when  CO2 was elevated (Fig. S3). According 
to the optimal partitioning theory, biomass is preferentially 
allocated to roots to increase the absorptive surface area of 
roots as the main mechanism for plants to capture limited 
sources (Bloom et al. 1985; Zak et al. 2000; Luo et al. 2004). 
However, the present study found that only the NSC reserves 
of roots increased under nutrient limitation. Similarly, Kobe 
et al. (2010) found that enhanced NSC storage contributed 
more than increased structural biomass to the change in root 

Fig. 5  NSC (a), soluble sugars (b), and starch (c) contents in stems 
from Chinese fir saplings under  CO2 elevation and N addition. EC0: 
ambient air  CO2 concentration; EC1: elevated  CO2 concentration; 
N0: no N; and N1: N addition. Different uppercase letters denote sig-
nificant differences between EC0N0 and EC0N1 (P < 0.05). Signifi-
cant differences between EC0N0 and EC1N0 or between EC0N1 and 
EC1N1 are denoted by asterisks: *P < 0.05, **P < 0.01. Values are 
expressed as means ± SE (n = 3)
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biomass under nutrient limitation. This result is probably 
related to the fact that, in our study high NSC reserves pro-
vide more advantages than just an increase in absorptive 
surface area to gain more nutrients. First, root NSC provide 
energy to roots and mycorrhizae for nutrient uptake and are 
a carbon source in rhizosphere exudates that prime micro-
bial populations to mineralize organic matter and obtain 
nutrients (Rothstein et al. 2000; Dijkstra and Cheng 2007). 
Second, NSC storage, not the immediate construction of 

fine roots, favors plant survival when nutrients are scarce 
because newly formed fine roots consume energy required 
for respiration (Kobe et al. 2010).

Effect of N addition on the NSC concentration 
and content of different organs

Various factors could contribute to the decreased starch and 
NSC concentrations in needles under N addition (Fig. 1). 

Fig. 6  NSC (a, b), soluble sugars (c, d), and starch (e, f) contents in 
coarse (a, c, e) and fine roots (b, d, f) from Chinese fir saplings under 
 CO2 elevation and N addition. EC0: ambient air  CO2 concentration; 
EC1: elevated  CO2 concentration; N0: no N; and N1: N addition. Dif-
ferent uppercase letters denote significant differences between EC0N0 

and EC0N1 (P < 0.05). Different lowercase letters denote significant 
differences between EC1N0 and EC1N1 (P < 0.05). Significant differ-
ences between EC0N0 and EC1N0 or between EC0N1 and EC1N1 
are denoted by asterisks: *P < 0.05, **P < 0.01. Values are expressed 
as means ± SE (n = 3)
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First, the allocation of NSC for N assimilation needed to 
synthesize proteins likely increased under N addition. Krae-
mer et al. (1997) reported that high N assimilation rates is 
associated with high N contents. N addition increased foliar 
N concentration in our study (Fig. S3) and in others (Hicks 
et al. 2000; Mo et al. 2008; Lü et al. 2016). Therefore, NSC 
consumption goes up due to the increased demand for C 
skeletons and energy for N assimilation (Foyer et al. 2003; 
Cheng et al. 2004; Invers et al. 2004). Second, because N 
addition promotes plant growth (Cechin and Fumis 2004; 
Mo et al. 2008), photosynthate allocation to structural bio-
mass increased after N addition, resulting in the decrease in 
needle NSC concentration (Liu et al. 2016). This interpreta-
tion is well supported by the increase in sapling structural 
biomass under N addition in our study (Fig. S4).

Branch and stem NSC concentrations decreased under N 
addition, whereas NSC content increased or remained sta-
ble. Similar to the decrease in needle NSC concentration, 
the decrease in branch and stem NSC concentrations may 
be attributed to increased use of NSC for N assimilation, 
as indicated by the increase in the total N concentrations of 
branches and stems under N addition (Fig. S3). Moreover, 
the promotion of branch and stem growth after N addition 
was responsible for the reduction in NSC concentration. This 
interpretation is in line with the increases in branch (Fig. 
S1) and stem (Fig. S2) biomass under N addition. The NSC 
contents in different organs were calculated as organ-specific 
concentrations multiplied by organ-specific biomass. There-
fore, the decrease in NSC concentration under N addition 
may be used to promote growth of branch and stem and 
result in increased or constant NSC contents.

N addition decreased the NSC concentration of fine roots, 
but the NSC concentration of coarse roots was not respon-
sive to N addition. The different physiological functions of 
coarse and fine roots may account for the different responses 
in NSC concentrations after N addition. Coarse roots play 
an important role in resource reserves and transport (Guo 
et al. 2004; Hartmann and Trumbore 2016). Thus, stable 
NSC reserves in coarse roots favor the survival of plants dur-
ing environmental change. Fine roots are mainly responsible 
for nutrient uptake (Mei et al. 2015). Based on the optimal 
partitioning theory, N addition alleviates nutrient limitation, 
so that plants do not have to increase fine root production 
and promote mycorrhizal infection (Zak et al. 2000; Luo 
et al. 2004). Thus, the allocation of NSC to fine roots is 
reduced (Kobe et al. 2010). Another explanation is that the 
N content in fine roots is higher than in coarse roots (Fig. 
S3) (Guo et al. 2004). Root respiration rate is strongly and 
positively correlated with N content (Burton et al. 2012; Mei 
et al. 2015). Thus, compared with coarse roots, the much 
higher level of NSC in fine roots is likely used to maintain 
respiration.

The proportion of the NSC content in aboveground 
organs to the NSC content of roots was not responsive to 
N addition. However, we found that N addition increased 
structural biomass more in aboveground organs than in root, 
possibly because the increase in aboveground structural bio-
mass rather than an increase in NSC reserve was conducive 
to alleviating the C limitation caused by N addition. Previ-
ous studies have demonstrated that the stimulation of plant 
growth and N assimilation by N addition could result in a 
C limitation (Invers et al. 2004; Monson et al. 2006; Liu 
et al. 2016). Bloom et al. (1985) reported that plants may 
maximize their net photosynthetic rates through the timely 
reinvestment of carbohydrates into the continuous produc-
tion of new leaves, so that the plant can enhance photosyn-
thate acquisition. Similarly, in our study, photosynthates 
were mainly used for needle production, branch elongation, 

Fig. 7  Ratio of the sum of NSC content of aboveground (AG) organs 
to the NSC content in roots (a) and ratio of the sum of structural 
(struct) C content of aboveground organs to the structural C content in 
roots (b) from Chinese fir saplings under  CO2 elevation and N depo-
sition. EC0: ambient air  CO2 concentration; EC1: elevated  CO2 con-
centration; N0: no N; and N1: N addition. Different uppercase letters 
denote significant differences between EC0N0 and EC0N1 (P < 0.05). 
Different lowercase letters denote significant differences between 
EC1N0 and EC1N1 (P < 0.05). Significant differences between 
EC0N0 and EC1N0 or between EC0N1 and EC1N1 are denoted by 
asterisks: *P < 0.05. Values are expressed as means ± SE (n = 3)
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and stem growth to optimize light harvest by maximizing 
spatial occupation rather than being stored as NSC (Imaji 
and Seiwa 2010).

Conclusions

In our study of organ-specific NSC responses to  CO2 eleva-
tion and N addition,  CO2 elevation promoted NSC accu-
mulation in all organs, and NSC contents were preferen-
tially allocated to roots rather than to aboveground organs. 
This allocation pattern may be related to nutrient limitation 
experienced by plant under  CO2 elevation and the increased 
use of NSC as an energy source by roots to increase nutri-
ent absorption. N addition reduced NSC concentrations in 
needles, branches, stems, and fine roots and increased the 
NSC contents in branches and coarse roots. On a whole-
tree basis, structural biomass was preferentially partitioned 
to aboveground organs instead of underground roots under 
N addition. This partitioning pattern indicates that timely 
reinvestment of carbohydrate in growth rather than in NSC 
reserves helps alleviate C limitation under N addition. Our 
results indicated that different trade-offs between structural 
growth and NSC storage help ameliorate resource limita-
tions under  CO2 elevation and N addition in Chinese fir. Our 
results thus show that it is important to separate biomass 
into structural biomass and NSC storage when analyzing 
the effect of environmental change on biomass allocation.
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